
Anonymous Referee #1 

The paper is generally well written and well structured, which deserves to be published after some 
minor revisions. The presented work is an interesting extension of previous published papers from 
the authors and could become important for hydrologist working on operational forecast systems. 
Nonetheless there are a few points which should be addressed and clarified in more detail.  

Reply: Thank you very much for your insightful and constructive comments and suggestions. We have 
carefully revised the manuscript to address all your concerns. We attach our specific response to each 
of your comments below.  

The authors propose an interesting approach for modelling the forecast errors separated into four 
stages. Unfortunately the application is restricted to one step ahead predictions so far, which 
questions a bit the effort of implementing four different stages, since operational forecasts will need 
methods for longer lead times anyhow. Therefore it should be mentioned already in the abstract 
that the proposed method will be a theoretical exercise.  

Reply: The AR(1) model used in Stage 2 directly lead to one step ahead predictions, but ERRIS can be 
extended to multiple step ahead predictions by using AR(1) updating iteratively. We focus this work 
on some foundational issues of ERRIS, such as model structure and model inference. The model 
performance of direct one-step ahead forecasts is used to check model assumptions and understand 
the benefits of staged error modelling approaches. ERRIS is supposed to be an important component 
of future operational forecasting systems in Australia. 

We agree that we should make it clear in the abstract that this paper is only tested the application of 
one-step ahead forecasts. We have amended the abstract as follows. 

Page 3 Line 53: 

In a case study, we apply ERRIS for one-step ahead forecasting at a range of catchments. 

Furthermore it should be stressed right from the beginning that this paper represents some further 
developments of previous work of the authors, where they have published already parts of this work 
(stage 1 and stage 3), see Li (2015)!  

Reply: We have followed your suggestions and added the connections to our previous work.  

Page 6 Line 124: 

ERRIS is a further development of the restricted autoregressive model [Li et al., 2015] and a 
seasonal error model developed by Li et al. [2013]. 

The term “ensemble” used within the paper is somewhat divergent to its usage in hydro-
meteorology and I would suggest to use probabilistic or density forecasts instead of ensemble 
forecast. As far as I have understood you refer to “ensemble forecasts” because of the Gaussian 
distributed residuals in stages one to three (four). You should clarify how you understand ensembles, 
since your approach is not based on meteorological ensembles (e.g. ENS from ECMWF), which are 
usually the driving forces for creating hydrological ensembles (see HEPEX, which you have 
mentioned in the introduction).  

Reply: We have added clarification of the meaning of “ensemble” in this work.  

Page 7 Line 135: 



In this study we use the term “ensemble” to mean a set of equally probable realizations of 
future streamflow that represents the hydrological model uncertainty. The forecasts based on 
ERRIS are not typical probabilistic forecasts [Gneiting and Katzfuss, 2014], which explicitly 
provide the predictive distribution of future streamflow. For ERRIS, the probability distribution 
may be theoretically derived for one-step ahead forecasts based on the distributional 
assumption of model residuals. However, we can only obtain the predictive distribution of 
ERRIS forecasts at multiple step by means of Monte Carlo simulation. 

I find it also a bit surprising that the work of Krzysztofowicz, R. has not been mentioned, since there 
are quite a lot of analogies. Although his Hydrological Uncertainty Processor relies on Bayesian 
Theory, the different stages of ERRIS are implemented similarly: Transformation to the normal space 
(normal quantile mapping), bias correction (regression between observed and simulated series) and 
an Autoregressive AR(1) model. It would be good to cite some papers of Krzysztofowicz (1990,2001) 
and maybe follow up work (Todini, 2008; Reggiani, et a., 2009) and highlight the differences.  

Reply: It is very interesting to know that ERRIS shares some elements with HUP, though two methods 
were designed independently. We have added a paragraph to compare ERRIS with HUP.  

Page 28 Line 556: 

The staged approach of ERRIS sets it apart from several predecessors, for example the hydrological 
uncertainty processor (HUP) and the dynamic uncertainty model by regression on absolute error 
(DUMBRAE). HUP is a Bayesian forecasting system to produce probabilistic streamflow forecasts 
[Kelly and Krzysztofowicz, 1997; Krzysztofowicz, 1999; 2001; Krzysztofowicz and Kelly, 2000; 
Reggiani et al., 2009; Todini, 2008]. HUP and ERRIS have some similarities: (1) both are post-
processors of deterministic hydrological models for hydrological uncertainty quantification; (2) 
both apply transformation to normalize data; (3) both use a linear regression in the 
transformed space for bias correction; (4) both use an autoregressive model to update 
hydrological simulation. However, ERRIS differs fundamentally from HUP by being implemented 
in stages. As we have noted, the staged approach avoids unwanted the interaction between 
parameters, and ensure the base hydrological model performs as strongly as possible. In 
addition, some other technical advances distinguish ERRIS from HUP. For instance, ERRIS 
applies a restricted autoregressive model in order to avoid the possible overcorrection from 
the ordinary autoregressive model used in HUP. ERRIS uses a mixture of two Gaussian 
distributions for the residual distribution, which is more flexible than a Gaussian distribution 
used in HUP to describe the peak, shoulder and tail of the distribution.  

Regarding the PIT diagrams: It should be mentioned that the usual analysing tool is the rank 
histogram (Hammil, 2001; Gneiting, et al., 2005), which is closely related to the diagrams used in this 
paper, which are, however, called “predictive quantile quantile” plots (Renard, 2010). Furthermore a 
Kolmogorov significant band should be included in these QQ diagrams as a test of uniformity (Laio 
and Tamea, 2007 (which is cited within the text, however missing in the reference list)).  

Reply: We have added more descriptions of the PIT plots and include the Kolmogorov significant 
band in Figures 4 and 9. 

Page 16 Line 303 

We graphically examine t  with the corresponding theoretical quantile of the uniform distribution 

using the PIT-uniform probability plot (or simply PIT plot; also called the predictive quantile quantile 



plot [Renard et al., 2010]). The PIT plot is closely related to the rank histogram [Gneiting et al., 2005; 
Hamill, 2001]. From our experience, the PIT plot is more suitable than the rank histogram for the 
experiments where observations are abundant (such as daily or sub-daily forecasting verification). A 
perfectly reliable forecast follows the 1:1 line. A Kolmogorov-Smirnov significant band can be 
included in the PIT plots to as a test of uniformity [Laio and Tamea, 2007].  

Page 21 Line 415 

As PIT values are highly autocorrelated, we have to “thin” them in order to make the Kolmogorov-
Smirnov significant band applicable [Zhao et al., 2015]. We generate PIT plots from every 30-th 
forecast to eliminate the autocorrelation. 



 

Page 44 

 
Figure 4: Comparison of the cumulative probability distribution of the PIT at different stages (light blue 
shaded strips indicate the 95% significant band of the Kolmogorov-Smirnov test.) 



 

Page 49 

 
Figure 9: Same as Figure  but the hydrological model is calibrated by the least-squares method. 



 

Since you use the CRPS for verification, it would make sense to decompose the CRPS into a reliability 
part and a resolution/uncertainty part (Hersbach, 2000). Thus the uncertainty part could be related 
to the average spread within the ensemble and the behaviour of its outliers, which would be an 
important information complementing the results of the α–index and the AWCI and maybe confirm 
your interpretation of the decreased reliability of stage 3. 

Reply: This is an interesting suggestion. We show the CRPS decomposition in the Table 1, below. We 
found that the reliability part does not always support the improvement of reliability at Stage 4 as 
suggested by the PIT plots.  

This is caused by the fact that the CRPS decomposition interprets the reliability differently from the 
PIT plots (or equivalently the rank histogram). Hersbach (2000) stated that “the reliability of CRPS is 
sensitive to the width of the ensemble bins, while the rank histogram gives each forecast the same 
weight”. The CRPS decomposition by Hersbach (2000) actually defines a weaker condition of 
reliability [Candille and Talagrand, 2005]. The reliability part has a dimension that is related to the 
ensemble spread. Therefore, the reliability part actually measures both reliability and sharpness. The 
use of a mixture of two Gaussian distributions at Stage 4 effectively corrects the shape of the 
predictive distribution, especially the peak and shoulders of the distribution. Nevertheless, Stage 4 
sometimes produces longer tailed predictive distribution than Stage 3 and has to sacrifice the 
forecast sharpness as a result.  

We have added clarification on the different interpretation between the reliability part and the PIT 
plots. In order to avoid the confusion of different interpretations of reliability from the CRPS 
decomposition and the PIT plots, we chose not to report Table 1.   

Table 1: The reliability part in the CRPS decomposition 

 
Stage 1  Stage 2 Stage 3 Stage 4 

Abercrombie 0.028 0.012 0.034 0.056 
Mitta Mitta 0.203 0.010 0.028 0.010 
Orara 0.061 0.061 0.007 0.009 
Tarwin 0.001 0.003 0.001 0.001 
Emu 0.103 0.035 0.039 0.078 
Hope 0.021 0.043 0.013 0.038 
Amite 0.580 0.576 0.337 0.619 
Guadalupe 0.188 0.034 0.112 0.139 
San Marcos 0.076 0.038 0.091 0.090 

 

Page 18 Line 347 

While a decomposition of CRPS is available that gives an indication of reliability [Hersbach 2000], 
we do not use this. PIT plots are a stronger test of reliability [Candille and Talagrand, 2005], and 
accordingly we focus on PIT plots to discuss reliability. 

Some more technical comments:  

Paper Page 3, line 53: I don’t agree with the statement that the aim of the ensemble is the reduction 
of the uncertainty! This is rather the aim of the post-processing of the ensembles.  



Reply: Thanks for your comment, but we respectfully disagree. We believe it is generally true that 
ensemble forecast researchers in all fields aim make their forecasts as accurate and sharp as possible. 
This implies reducing the uncertainty as much as possible. Indeed, many meteorological forecasts are 
over-confident, and post-processors are required to make the forecasts more (not less) uncertain. 

Page 5, line 92: Since there are a lot of papers applying the Normal Quantile Transform, you should 
cite this paper at least: Krzysztofowicz, R. (1997)  

Reply: We have followed your suggestion: 

Page 4 Line 89 

Heteroscedasticity and non-Gaussianity of residuals may also be dealt with implicitly, and often 
more conveniently, by using data transformation to normalize the residuals and stabilize their 
variance, such as the normal quantile transform [Kelly and Krzysztofowicz, 1997; Krzysztofowicz, 
1997; Montanari and Brath, 2004], the Box-Cox transformation [Thyer et al., 2002] and the log-sinh 
transformation [Wang et al., 2012].  

Line 108-109: The forecast quality will more and more depend on the quality of the meteorological 
forecast and will dominate the uncertainty with increasing lead-time! (the same remark is valid for 
page 25, line 500)  

Reply: We restrict our study on the hydrological model uncertainty and do not consider the 
uncertainty of meteorological forcing variables. I agree that the quality of the meteorological 
forecasts will be a dominant factor to forecast uncertainty at longer lead times. We clarify this point 
more clearly in the revision.  

Page 6 Line 116 

Thus as lead-time increases, and the influence of the error model decreases, the quality of the 
forecast relies on the performance of the base hydrological model and the quality of 
meteorological forecasts [Bennett et al., 2014a]. 

 

Page 26 Line 529 

Thus forecasts at long lead times rely strongly on the hydrological model (and, in our case, a bias-
correction) to be plausible, even with perfect meteorological forcings.  

Page 8, line 153: you assume a constant variance for the residuals in the normal space. In Figure 2 (a) 
it seems that the variance is varying depending on stream-flow. So this variability of the variance will 
stem from the back-transformation, I assume. Could you please clarify this.  

Reply: You are absolutely correct. A constant variance in the transformed space becomes a varying 
variance in the original space through the back-transformation. We make this clear in the revision.  

Page 8 Line 166  

The forecast variance in the original (untransformed) space is not a constant but is dependent 
on the magnitude of simulated streamflow through the back-transformation.  

Page 12, line 241: weights p = ω, ω-1  

Reply: We have changed the notation. 



Page 13 Line 254 

where   2 2
4 4,1 4,2, , ,wMN Z t    represents a mixture of two Gaussian distributions  2

4 4,1( ),N Z t   

and  2
4 4,2( ),N Z t   with weights w  and 1 w . 

Page 14, line 269: Why are these parameters needed for estimation purposes only. That should be 
clarified.  

Reply: We have added some clarification as follows. 

Page 15 Line 282 

The variances at Stages 1-3 (i.e. 1 , 2  and 3 ) are not used to generate forecasts, but  only for 

estimating parameters at corresponding stages. We use maximum likelihood at each stage to 
estimate parameters, and this requires us to specify the variance of residuals at each stage.  

Page 16, line 295 – 300: No references are given for sharpness, AWCI ! (E.g. Gneiting, et al., 2007 ) 
Line 306-308: I assume that you will need a reference forecast for each day (day/month/year) and 
not only one per month (month/year) and that you will take the mean of the 1000 samples per day? 
Could you please clarify this?  

Reply: We have added the reference for AWCI. Considering only 14-year data are used, the reference 
forecast for each day (day/month/year) is duplicated 14 values at most and is not robust based on 
our experience. In order to increase the robustness of the reference forecast, we chose to the 
reference forecast for each month. We have clarified this point in the revision.  

Page 17 Line 322 

We use the average width of the 95% forecast intervals (AWCI) to indicate forecast sharpness 
[Gneiting et al., 2007]. 

 

Page 17 Line 341 

As only 14years of data are used in this study, the reference forecast for each month is more robust 
than the similar reference forecast for each day. 

Page 18: Here you mention the GR4J model, in table 4 you show 4 hydrological model parameters 
x1,..x4, could you please give more details about the model and explain the meaning of these four 
parameters  

Reply: We have added the explanation of GR4J parameters. 

Page 19 Line 364 

GR4J is a widely used conceptual model that was designed to be as parsimonious as possible. Its four 
parameters describe the depth of a production store (X1), groundwater exchange (X2), the depth of 
a routing store (X3) and the length of unit hydrographs (X4). 

References:  



Hamill, T. M. (2001) Interpretation of rank histograms for verifying ensemble forecasts. C3 HESSD 
Interactive comment Printer-friendly version Discussion paper Monthly Weath. Rev., 129, 550–560. 

Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T. (2005) Calibrated probabilistic 
forecasting using ensemble model output statistics and minimum CRPS estimation. Monthly Weath. 
Rev., 133, 1098–1198.  

Gneiting, T., Balabdaoui, F.and Raftery, A., 2007. Probabilistic forecasts, calibration and sharpness. 
Journal of the Royal Statistical Society. Series B: Statistical Methodology 69, 243–268.  

Hersbach H. 2000. Decomposition of the continuous ranked probability score for ensemble 
prediction systems. Weather and Forecasting 15: 559–570.  

Krzysztofowicz, R. (1997), Transformation and normalization of variates with specified distributions, J. 
Hydrol., 197(1–4), 286–292.  

Krzysztofowicz, R. (1999), Bayesian theory of probabilistic forecasting via deterministic hydrologic 
model, Water Resour. Res., 35(9),2739–2750.  

Krzysztofowicz, R. (2001), The case for probabilistic forecasting in hydrology, J. Hydrol., 249(1–4), 2-9.  

Laio, F., and S. Tamea (2007), Verification tools for probabilistic forecasts of continuous hydrological 
variables, Hydrol. Earth Syst. Sci., 11(4), 1267–1277.  

Todini, E. (2008), A model conditional processor to assess predictive uncertainty in flood forecasting, 
Int. J. River Basin Manage., 6(2), 123–137.  

Reggiani, P., Renner, M., Weerts, A., and van Gelder, P.: Uncertainty assessment via Bayesian 
revision of ensemble streamflow predictions in the operational river Rhine forecasting system, 
Water Resources Research, 45, 2009. 



Anonymous Referee #2  

It is a very well written paper, with an excellent overview. Figures illustrate the text well. The paper 
is mathematically rigorous. A considerable number of case studies are used for validation. 
Conclusions are well justified. Can be recommended for publication after some revisions; please see 
below.  

The components of the approach are not new (distribution transforms and linear bias corrections 
and AR) but their combination seems to be useful, and their sequence is quite well justified. With 
respect to earlier literature, there are a couple of references which would be good to include, and to 
discuss the similarity and differences of these approaches.  

Reply: Thank you very much for your careful review and valuable suggestions. We have revised the 
manuscript carefully to address your concerns. Please refer to the point-to-point responses to your 
comments.  

1) Kelly and Krzysztofowicz, 1997; Montanari and Brath 2004 – meta-Gaussian approach.  

Reply: we have added these two references. 

Page 4 Line 89 

Heteroscedasticity and non-Gaussianity of residuals may also be dealt with implicitly, and often 
more conveniently, by using data transformation to normalize the residuals and stabilize their 
variance, such as the normal quantile transform [Kelly and Krzysztofowicz, 1997; Krzysztofowicz, 
1997; Montanari and Brath, 2004], the Box-Cox transformation [Thyer et al., 2002] and the log-sinh 
transformation [Wang et al., 2012].  

2) Solomatine and Shrestha (2009) presented a method of predicting residual error distribution. 
They make no assumptions about the error distributions (which is perhaps a weakness) but simply 
build a non-linear regression model (neural network) model able to predict quantiles of this 
distribution at each time step. This model is not autoregressive but uses more information about the 
state of the system.  

Reply: we have added this reference.  

Page 5 Line 93 

Solomatine and Shrestha [2009] presented an alternative method of predicting residual error 
distributions using machine learning techniques. They built a non-linear regression model to predict 
the forecast quantiles at each lead time. Their method is not based on an autoregressive model but 
captured recent information about the model error with a non-linear regression. 

3) In their DUMBRAE method Pianosi and Raso (2012) use an approach similar to what is presented 
in the reviewed paper – a residual error corrector and AR model. It would be very useful to compare 
the presented approach to DUMBRAE.  

Reply: In this revision, we compare the DUMBRAE method with ERRIS in the discussion section.  

Page 28 Line 559 

Pianosi and Raso [2012] developed DUMBRAE to quantify predictive uncertainty of deterministic 
hydrological models. Unlike ERRIS, DUMBRAE does not apply data transformation and considers an 
error model in the original space. To deal with heteroscedastic residual errors, DUMBRAE explicitly 



formulates the error variance as a function of time series of absolute hydrological model errors and 
several independent predictors (such as precipitation). The dynamic variance model of DUMBRAE is 
an interesting alternative to the method we have presented here. As with HUP, another major 
difference between ERRIS and DUMBARE is staged error modelling that allows ERRIS to characterize 
the forecast error in stages and to avoid potential parameter interference and ensure robust 
performance of the base hydrological model.  

I would make it clearer when you talk about a single model, and when about an ensemble. It is not 
immediately clear what the “error model” is – is a model providing the residual error, or the residual 
error distribution?  

Reply: We are not really sure whether we understand this comment correctly. It seems to relate to 
another comment from Reviewer #1 about the term “ensemble”. We have added clarification on the 
meaning of “ensemble” in the context of this study. 

Page 7 Line 135: 

In this study we use the term “ensemble” to mean a set of equally probable realizations of 
future streamflow that represents the hydrological model uncertainty. The forecasts based on 
ERRIS are not typical probabilistic forecasts [Gneiting and Katzfuss, 2014], which explicitly 
provide the predictive distribution of future streamflow. For ERRIS, the probability distribution 
may be theoretically derived for one-step ahead forecasts based on the distributional 
assumption of model residuals. However, we can only obtain the predictive distribution of 
ERRIS forecasts at multiple step by means of Monte Carlo simulation. 

On page 9 it is mentioned that the flow forecast is the median of the ensemble flow forecast. This 
effectively makes model Qwave a deterministic model. It would be useful to clarify: is the presented 
method to be used only with the models using ensemble rainfall forecasts, or it can be applied to 
any (deterministic) model with a single (nonensemble) input?  

Reply:  We apologise for this point of confusion. When we discuss the ‘median’, what we are stating 
is that, in the original space, we assume that the streamflow simulation is the median of the 
distribution of the residuals. (After transformation, the median and the mean should be 
approximately equal.) The streamflow simulation (or forecast) is always deterministic. We are not 
describing the median resulting from an ensemble of rainfall forecasts. 

There are two points of clarification that we hope will address the reviewer’s query about how ERRIS 
will interact with meteorological ensemble forecasts: 

1) ERRIS is designed to be applied only to a single streamflow realisation 

2) ERRIS does not account for uncertainty in rainfall forecasts 

To use ERRIS with a meteorological ensemble, each member of the rainfall ensemble would be run 
through GR4J, and ERRIS would be applied to each ensemble trace. If ERRIS is applied to a 
deterministic meteorological forecast, the uncertainty of the rainfall forecast would not be present in 
the streamflow forecast, and the forecasts would not be reliable. This is particularly important at 
longer lead times, where rainfall forecast uncertainty tends to be the most significant contributor to 
overall streamflow forecast uncertainty. We designed ERRIS to be used in conjunction with ensemble 
meteorological forecasts (specifically, the method described by Robertson et al. 2013 and Shrestha et 
al. 2015). This allows us to separately quantify of rainfall and hydrological uncertainties – a 
significant benefit of the method. 



We rephrase our arguments as following  

Page 6 Line 127 

We assume that errors in streamflow forecasts due to weather forecasts (precipitation in 
particular) will be considered separately by using ensemble weather forecasts [Bennett et al., 
2014b; Robertson et al., 2013; Shrestha et al., 2013], and we do not consider these in this 
paper. 

I suggest to provide a reference to Table 1 somewhat earlier – I think this would make reading easier. 

Reply: We have followed your suggestion and moved Table 1 earlier.  

Page 10 Line 196 

Stage 1 of the ERRIS method is summarized in Table 1. 
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