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Abstract 1 

Single satellite Synthetic Aperture Radar (SAR) data are now regularly used to estimate hydraulic 2 

model parameters such as channel roughness, depth and water slope. However despite channel 3 

geometry being critical to the application of hydraulic models and poorly known a priori, it is not 4 

frequently the object of calibration. This paper presents a unique method to calibrate 5 

simultaneously the bankfull channel depth and channel roughness parameters within a 2D 6 

LISFLOOD-FP hydraulic model using an archive of moderate (75m) resolution SAR satellite-derived 7 

flood extent maps and a binary performance measure for a 30x50km domain covering the 8 

confluence of the rivers Severn and Avon in the UK. The unknown channel parameters are located by 9 

a novel technique utilising the Information Content and identifiability of single and combinations of 10 

SAR flood extent maps to find the optimum images for model calibration. Highest Information 11 

Content is found in those SAR flood maps acquired near to the peak of the flood hydrograph, and 12 

improves when more images are combined. We found model sensitivity to variation in channel 13 

depth is greater than for channel roughness and a successful calibration for depth could only be 14 

obtained when channel roughness values were confined to a plausible range. The calibrated reach-15 

average channel depth was within 0.9m (16% error) of the equivalent value determined from river 16 

cross section survey data, demonstrating that a series of moderate resolution SAR data can be used 17 

to successfully calibrate the depth parameters of a 2D hydraulic model.  18 

Introduction 19 

Flooding of over one third of the world’s land area affected more than 2 billion people - 38% of the 20 

world’s population – between 1985 and 2003 (Dilley et al., 2005).  Climate change forecasts also 21 

indicate that in the future there may be an increase in the frequency and pattern of flooding 22 

(European Environment Agency, 2012, European Commission, 2014, IPPC, 2014). One response to 23 

this global hazard has been an increasing demand for better flood forecasts (Schumann et al., 24 

2009a).  Flood inundation models have an important role in flood forecasting and there has been 25 

scientific interest in combining direct observations of flooding from remote sources with these 26 

inundation models to improve predictions because of the persistent decline in the number of 27 

operational gauging stations (Biancamaria et al., 2010), and the reality that many river basins are 28 

inaccessible for ground measurement. Synthetic Aperture Radar (SAR) satellites have particular 29 

importance in this respect as they can discriminate between land and smooth open water surfaces 30 

over large scales. These microwave (radar) frequency satellites are capable of all-weather day/night 31 

observations and this makes them a particularly attractive option for observing floods. Currently 32 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2015-511, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 18 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



2 

 

active SAR satellites include RADARSAT-2, ALSOS-2/PALSAR-2, TerraSAR-X, TanDEM-X, Sentinel 1 and 33 

the COSMO SkyMed constellation. Historic data are also available from SAR satellites now out of 34 

operation such as ENVISAT, ERS1 and 2 and RADARSAT-1.  35 

By processing SAR data it is possible to produce binary maps of flood extent that can then be used, 36 

either on their own, or intersected with a Digital Elevation Model (DEM) to produce shoreline water 37 

levels, for model calibration and validation. Integration of SAR data with models is an established 38 

technique for reducing uncertainty in model predictions as it updates/calibrates the model 39 

states/parameters with observed data (e.g. Andreadis et al., 2007, Biancamaria et al., 2011b, 40 

Domeneghetti et al., 2014, Giustarini et al., 2011, Garcia-Pintado et al., 2013 and 2015, Hostache et 41 

al., 2009, Matgen et al., 2010, Mason et al., 2009 and 2012, Tarpanelli et al., 2013), with the aim of 42 

improving flood forecasts. Naturally, calibration of these hydraulic models is essential for accurate 43 

results, and calibration studies to date have largely focussed on roughness. Aronica et al. (2002), 44 

Tarpanelli et al., 2013 , Hall et al., 2005 and Di Baldassarre et al. (2009a, 2010 & 2011) and others 45 

have used flood extent maps to successfully find best fit roughness parameter values. Schumann et 46 

al. (2007) state that identifiability of parameters is important in order to obtain acceptable model 47 

results since roughness factors can vary with location and in time. Mason et al. (2003) point to 48 

roughness being a dominant factor for shallow reaches in particular and Di Baldassarre et al. (2009b) 49 

found that the optimal roughness parameters depend on the timing of the SAR image and the 50 

magnitude of the flood event. Historic observations of flooding should therefore have a particular 51 

role in model calibration and sensitivity testing.  52 

Despite the focus on calibrating unknown roughness values, the provision of good bathymetric data 53 

is also critical to the application of hydraulic models (Trigg et al., 2009, Legleiter et al. 2009). 54 

Generally there are few ways to obtain bathymetry information for hydraulic models where no 55 

ground data measurements exist. River depth may be estimated (e.g. Durand et al., 2010 employed 56 

an algorithm based on the Manning equation) or measured with optical satellites using reflectance 57 

as Legleiter et al. showed (though the method is best suited to clear and shallow streams). Hostache 58 

et al., (2015) also proposed a drifting GPS buoy to assimilate water elevation and slope data into a 59 

hydraulic model to define riverbed bathymetry, but overall passive and remote mechanisms are 60 

scarce. Spatially distributed river depths are rarely available and there is a strong argument that 61 

where channel geometry is a priori unknown it should also be estimated through calibration. It has 62 

commonly been thought that channel geometry and roughness traded off against each other (e.g. as 63 

in the well-known Manning equation) and therefore that they could not be uniquely identified at the 64 

same time.  However, Garcia-Pintado et al. (2015) estimated channel friction and spatially-variable 65 

channel bathymetry together using water levels derived from a sequence of real SAR overpasses (3m 66 

resolution data from the COSMO-SkyMed constellation of satellites) and the Ensemble Transform 67 

Kalman Filter. Though relating more specifically to depth of flow, rather than depth of channel, 68 

Durand et al. (2008) demonstrated that estimates of depth and water (i.e. friction) slope could be 69 

derived simultaneously from synthetic observations of water surface elevation integrated with a 70 

hydraulic model. Yoon et al. (2012) were also able to derive bed elevations from similar synthetic 71 

data. Mersel et al. (2013) progressed this further by proposing a slope-break method to locate 72 

optimal locations to measure flow depth, through low to high flows over time, using synthetic data.  73 

Durand et al., Yoon et al. and Mersel et al. used synthetic altimetry data which was created within 74 

the context of the upcoming Surface Water & Ocean Topography (SWOT) mission that will be able to 75 

resolve rivers over 100m wide only.  76 
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Research to date has therefore demonstrated the feasibility of calibrating hydraulic model 77 

parameters governing channel depth and channel roughness simultaneously, using the higher 78 

spectrum resolution (up to 50m resolution) SAR images of flood extent. But because pixel size is 79 

inversely proportional to orbit revisit time, high resolution data are available only infrequently.  80 

There is thus some benefit to exploring the use of existing moderate (50m to 300m) resolution SAR 81 

data (such as the archive of 150m resolution ENVISAT Wide Swath Mode) to understand more about 82 

how channel depth and friction can be identified concurrently using coarser resolution SARs, and 83 

whether a single SAR flood map is sufficient to achieve this or a sequence of flood maps are more 84 

beneficial.   85 

This paper draws on this prior research for simultaneous channel roughness and depth calibration 86 

and extends it by incorporating the use of an identifiability technique presented by Wagener et al. 87 

(2003), namely Dynamic Identifiability Analysis (DYNIA). In using flood extent for calibration the 88 

methodology also incorporates the under and over prediction of a model in accuracy scoring and 89 

disregards the correct detection of ‘no water’ pixels, thus adding extra information to the evaluation 90 

process. 91 

Consequently, the objective of this paper is to determine whether medium resolution SAR data can 92 

be used to concurrently estimate channel friction and geometry parameters in a hydraulic model. If 93 

so, to determine if a single SAR derived flood map is sufficient to do this, or if a sequence of flood 94 

maps is better. A secondary aim is to test the utility of the DYNIA identifiability technique in this 95 

specific context to find the SAR images with high parameter information and locate the likely 96 

optimum parameter values. In section 1 we describe the methodology with information on the 97 

hydraulic model, the data needed to run it and the methods used to select the range of model 98 

parameters. There is also an introduction to the procedure used to process the satellite data and 99 

create flood extent maps from the SAR data.  Section 2 describes the study area and data used, 100 

whilst Section 3 presents and discusses the results (including whether SAR observations at particular 101 

times during a flood or particular combinations of images are more successful). Conclusions are 102 

presented in Section 4. 103 

1 Method 104 

1.1 Hydraulic model  105 

We use the LISFLOOD-FP hydraulic model with the Sub-Grid formulation of Neal et al. (2012) to 106 

simulate flood flows. LISFLOOD-FP (Bates and De Roo, 2000) is a 2D hydraulic model for subcritical 107 

flow that solves the local inertial form of the shallow water equations using a finite difference 108 

method on a staggered grid. As input the model requires ground elevation data describing the 109 

floodplain topography, channel bathymetry information (river width, depth and shape), boundary 110 

condition data consisting of discharge time series at all inflow points to the domain, water surface 111 

elevation time series at all outflow points and friction parameters which typically distinguish 112 

different values for the channel and floodplain. Of these data floodplain topography information is 113 

readily available from airborne and satellite Digital Elevation Models, boundary condition data can 114 

be taken from ground gauges, hydrologic models or statistical distributions, and friction parameters 115 

are typically estimated from lookup tables or calibrated. Channel bathymetry can be taken from 116 

ground surveyed cross sections, however for much of the planet no such measurements exist and 117 
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are impossible to obtain remotely.  In this situation channel bathymetry is a priori unknown and it is 118 

therefore sensible to also treat it as a parameter that must be calibrated along with the friction. 119 

In order to describe bathymetry as a calibrated variable in this experiment, river channel depth was 120 

parameterised as a linear scaling of reach-average width using a single parameter ‘r’. This very basic 121 

scaling of width was chosen so that only one bathymetry parameter needed to be estimated. This 122 

simple approach will not be appropriate over an entire river network where the reach-averaged 123 

width to depth relationship would be expected to change with bankfull discharge. However, the 124 

width of the river chosen as a test case for this paper is constant along the simulated reach, while we 125 

assume the depth of tributaries has an insignificant impact on the flooding on the main stem. In 126 

effect the optimisation problem therefore simplifies to estimating reach-averaged bankfull depth 127 

and Manning’s ‘nc’ for a channel of reach-average width.  128 

In width-varying river systems a dual parameterisation approach for depth and width could be 129 

adopted but would substantially complicate the parameter estimation problem. The floodplain 130 

Manning’s roughness coefficient was assumed constant in these experiments as previous tests have 131 

shown that the model was less sensitive to floodplain friction than channel friction .   132 

We used Latin Hypercube Sampling (LHS) to take 1000 samples of the two uncertain LISFLOOD-FP 133 

parameters ‘r’ and channel Manning's roughness ‘nc’. LHS is a useful sampling scheme for multiple 134 

variables as the method can sample parameter values within a prior distribution in more than one 135 

dimension (Huntington, 1998). We used LHS here as it is an efficient scheme that statistically 136 

represents the parameter space without repetitions (Beven, 2009).  137 

1.2 SAR image processing algorithm 138 

Because SAR satellites are capable of all-weather day and night observations and can distinguish the 139 

differences between land and open water signal returns they are particularly useful for observations 140 

of flooding. To derive flood extent maps from the SAR images, we adopted the method proposed by 141 

Matgen et al. (2011) and developed by Giustarini et al. (2013).  142 

This method has three steps. Firstly the probability density function (pdf) of the open water 143 

backscatter values in the SAR data is estimated. This requires identification of the bimodal aspect to 144 

a histogram of backscatter values so that ‘open water’ values can be recognized from other 145 

backscatter values. A theoretical pdf of water backscatter is then fitted to this histogram using 146 

nonlinear regression techniques. The backscatter value where this pdf starts to diverge from the 147 

histogram is identified. Then isolating those pixels with backscatter values lower than this threshold 148 

produces a preliminary flood map.  149 

The second step is to apply a region growing approach to grow the flooded areas within the 150 

preliminary flood map until a tolerance level is reached. For the SAR image this step refines the 151 

extent of pixels with an open water value.  152 

In the last step a reference image is used to remove pixels from the flood map that do not change 153 

between the flood and non-flood images (Hostache et al., 2012) – i.e. pixels which have ‘water 154 

surface like’ radar responses and could be either bodies of permanent water or smooth surfaces 155 

such as car parks or flat roofs. This third step creates the final binary map of flood extent. Errors 156 

inherent in the SAR processing are, for simplicity, not considered in this paper. 157 
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1.3 Performance measures 158 

We compare these SAR derived flood maps against the simulated flood maps generated from 159 

LISFLOOD-FP output at the equivalent time step by using a contingency matrix shown in Table 1. 160 

Flood maps are compared pixel to pixel to determine if there is agreement or disagreement between 161 

the two paired maps on whether there is surface water present or not. 162 

Table 1 Contingency table (after Stephens et al, 2014 and Mason, 2003). 163 
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Water No Water 
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Water A) Correct Water (Hits) B) Under-prediction (Misses) 

No 

Water 
C) Over-prediction (False Alarms) D) Correct No Water (Correct Rejections) 

 164 

From this a binary pattern performance measure is used to give a deterministic indication of how 165 

well each LISFLOOD-FP simulated flood map has represented the observed data (Mason, 2003 and 166 

Stephens et al., 2014). We chose to use the Critical Success Index (CSI, equation 1 below) as this 167 

measure does not consider ‘correct rejections’ (D in Table 1) in the calculation (Bates and De Roo, 168 

2000, Horritt et al., 2001a, Aronica et al., 2002) and it weights over- and under-prediction equally (C 169 

and B respectively).  170 

CSI =  
�

����	
                                   (1) 171 

If ‘correct rejections’ were included by the use of a different performance measure the result would 172 

be overly optimistic scores, given the large areas of ‘no water’ normally observed in a SAR image. All 173 

LISFLOOD-FP simulated flood maps would seem to perform exceptionally well with little to help 174 

differentiate between each simulation.  175 

1.4 Parameter identifiability 176 

To determine most likely values for ‘r’ and ‘nc’ we follow the technique of Wagener et al. (2003) in 177 

applying a dynamic identifiability analysis (DYNIA) to the ensemble of CSI score results. Since the 178 

original DYNIA method was applied to continuous data and not discrete observations some changes 179 

are needed which are described at the end of this section.  180 

The first stage in the DYNIA method is to rescale the ‘objective function’ (i.e. CSI scores) so that they 181 

add up to one, which is done by dividing each model result by the sum of all scores. Next, computing 182 

the cumulative distribution of the rescaled objective function transforms the objective function into 183 

a support measure which sums to unity - the ‘cumulative support’ – so that each support measure 184 

may be comparable. To obtain the information content (IC) a confidence limit is applied to the 185 

rescaled objective functions to exclude outliers. The width of the confidence limit depends on how 186 

the best performing parameters are spread within the parameter space: a wide confidence limit 187 

suggests that the parameters are distributed within the parameter space evenly, whereas a narrow 188 

confidence limit suggests that the best performing parameters are located within a smaller range. If 189 

the best performing model parameter combinations are distributed evenly within the parameter 190 
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space a confidence limit may be applied to the data. To normalise results, a transformation measure 191 

was used (1 minus the width of the confidence limits over the parameter range, normalised to run 192 

from zero to one): so a value close to 1 is equivalent to a high IC. The IC can have any value between 193 

0 (no information in that observation for parameter identification purposes) and 1 (observation is 194 

most informative for the parameter). The IC results are shown in section 3.2 below.   195 

The second stage in DYNIA is to find the identifiability by locating where in the parameter-time space 196 

most parameter information can be found. This is achieved by examining a plot of ‘cumulative 197 

support’ against a parameter value. Any deviation from a straight line gradient of this cumulative 198 

support indicates whether the parameter is conditioned by the objective function or not. The 199 

stronger the deviation, the stronger is the conditioning/identifiability of the parameter variable.  This 200 

is done using the marginal parameter distributions – interactions are therefore only implicitly 201 

accounted for. The final stage is to organise the data into bins and calculate the gradient of the 202 

cumulative support between them. The results from this examination are shown in section 3.3 203 

below.  The IC and identifiability for all single SAR acquisitions are shown along with particular SAR 204 

combinations/groupings: by flood event and by position in the flood hydrograph as detailed in 205 

section 2.2 and Table 3. The identifiability plots have been converted to cumulative distribution 206 

function (cdf) plots for easier cross- comparisons. 207 

The original method proposed by Wagener et al. (2003) recommends a pre-selection of models 208 

before stage 1 by using only the top 10% performing models. We deviate from this original method 209 

by using the complete sample of 1000 sets of CSI scores since we found this gave a clearer picture of 210 

identifiability with our data. Also to achieve the ‘grouping’ of SAR images (section 3.3.2 to 3.3.4) the 211 

CSI scores were multiplied before rescaling combined scores and obtaining the cumulative 212 

distribution at the end of stage one.  213 

2 Study area and data used 214 

The area around Tewkesbury (UK), located at the confluence of the Rivers Severn and Avon is our 215 

test location. Figure 1 illustrates the 30.5 km by 52.4 km model domain, showing the two main rivers 216 

and their tributaries.  217 
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 218 

Figure 1 Extent of the River Severn model 219 

2.1 River Severn model set up 220 

Two separate LISFLOOD-FP models were created to test the methodology. Both models are at 75m 221 

spatial resolution and use the same background DEM. Additionally, both models use the same 222 

gauged inflows and have a rectangular shaped channel. At the lower end of the model a ‘free’ 223 

downstream boundary condition was applied with a fixed energy slope of 0.00007, based on the 224 

average valley slope. 225 

The differences between the two separate models are in how bankfull channel depth and Manning’s 226 

channel roughness values are obtained. First, an ‘observed’ model was created using surveyed cross 227 

sections of the main rivers to determine channel width and depth with a fixed Manning’s channel 228 

roughness parameter of 0.038 (a value representing a main channel which is clear with some 229 

winding and presence of stones/vegetation - from Ven Te Chow, 1959). The cross section survey 230 

data were provided by the Environment Agency of England and Wales (EA). Second, a ‘test’ model 231 

was created in which the depth parameter ‘r’ and Manning’s channel roughness parameter ‘nc’ are 232 

determined using the DYNIA identifiability analysis. The depth parameter ‘r’ was sampled between 233 

0.0 and 0.5 so that the modelled river depth would never exceed half of the river width. This is a 234 

reasonable assumption for this site where the Severn is on average 60m wide (estimated from LiDAR 235 

data, details below) with surveyed bankfull depth varying between 6m and 11m. The range of 236 

Manning channel roughness values for the sampling was set between 0.015 and 0.100 (Ven Te 237 

Chow, 1959). A low ‘nc’ of 0.015 would represent a channel which is clear and straight whereas and a 238 

high ‘nc’ value of 0.100 would represent a channel with very thick vegetation/submerged branches 239 

present. This range widely encompasses recommended roughness values for the rivers present 240 

within the study domain.   241 

For both the test and observed models the Manning’s floodplain roughness value was set at a 242 

standard 0.06 for the entire domain. This is a reasonable average for the floodplain which is mainly 243 

crop and grassland (0.03-0.04) but with presence of some trees (0.12) and brush (0.07). The 244 

Manning’s values for the floodplain and the river channel (‘nc’) are assumed to be spatially and also 245 
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temporally invariant. The floodplain topography was taken from a 2m resolution LiDAR based Digital 246 

Surface Model (DSM) with vertical RMSE of 0.10m taken on 9 December 2005 by EA. The EA treated 247 

the DSM to remove structures and vegetation and we then spatially averaged this Digital Terrain 248 

Model (DTM) to 75m resolution as this is an appropriate compromise between model fidelity and 249 

computational cost for rural river reaches (Horritt and Bates, 2001b).  The 75m DTM was further 250 

processed to reinsert the maximum height of the flood embankments along the reach in order to 251 

preserve normal flood behaviour along the river banks. No bridges or weirs are included in the 252 

model. Neal et al., 2011 and Garcia-Pintado et al., 2013 provide additional details of the model set 253 

up for the River Severn around Tewkesbury.   254 

Observed flows obtained from the EA were used as inflow to both models. Forcing flows come 255 

principally from the gauging station on the River Severn at Bewdley but with additional inputs from 256 

three tributaries of the River Severn: the Rivers Stour, Salwarpe and Teme.  For the River Avon flows 257 

from the Evesham gauging station were used, with two additional flow contributions from the Avon 258 

tributaries Bow Brook and the River Isbourne. A smaller input from a wetland area west of 259 

Tewkesbury was also included, with flows scaled by area from the Salwarpe gauged flows.   260 

The River Severn floods events of March 2007 (simulation period: 19 February 2007 - 29 April 2007), 261 

July 2007 (simulation period: 5 June 2007 - 12 August 2007), January 2008 (simulation period: 26 262 

November 2007 - 25 February 2008) & January 2010 (simulation period: 4 January 2010 – 18 263 

February 2010) were modelled. The dates were chosen so the model would start at least 10 days 264 

before the start of the flood and end after flows had returned to within bank. 265 

2.2 SAR observations of the River Severn 266 

Historic ENVISAT Wide Swath Mode (‘WSM’, 150m resolution) data are available from the European 267 

Space Agency’s ENVISAT catalogue. Previous research at this site has largely focused on the July 268 

2007 flood event observations (Mason et al., 2012 and 2014, Durand et al., 2014, Garcia-Pintado et 269 

al., 2013, Schumann et al., 2011). The present work makes use of many other historic flood 270 

observations in this area – namely the floods of March 2007, January 2008 and January 2010. Details 271 

of the satellite acquisition times are shown in Table 2, along with hydrologic information on the 272 

flood taken from the gauging station at Saxons Lode in the middle of the model domain. Time to 273 

peak describes the number of hours between the start of the event and the peak of the flood. 274 

Flooding from sequential events or with high contributions from other sources such as groundwater 275 

will therefore have a greater time to peak. 276 

Table 2  The ESA sourced ENVISAT ASAR WSM acquisitions used with equivalent flow and return period data 277 

for Rivers Avon and Severn: gauged data was obtained from the EA. 278 

SAR ID Date Time Time 

to 

flood 

peak 

(approx., 

hrs.) 

Gauged 

flow 

(m3/s) 

Event 

return 

period 

(approx.) 

Gauged 

flow 

(m3/s) 

Event 

return 

period 

(approx.) 

   At Saxons Lode (Severn) At Evesham (Avon) 

1 (March 2007, 1) 05/03/2007 10:27 268 388 
 <5 

188 
 <3 

2 (March 2007, 2) 05/03/2007 21:53 268 405 87 
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SAR ID Date Time Time 

to 

flood 

peak 

(approx., 

hrs.) 

Gauged 

flow 

(m3/s) 

Event 

return 

period 

(approx.) 

Gauged 

flow 

(m3/s) 

Event 

return 

period 

(approx.) 

   At Saxons Lode (Severn) At Evesham (Avon) 

3 (March 2007, 3) 08/03/2007 10:34 268 419 55 

4 (March 2007, 4) 08/03/2007 21:58 268 400 45 

5 (July 2007, 1) 23/07/2007 10:27 132 532 
 30-40 

196 
 110-150 

6 (July 2007, 2) 23/07/2007 21:53 132 512 167 

7 (January 2008, 1) 17/01/2008 21:55 228 432 

 <5 

64 

 <3 8 (January 2008, 2) 24/01/2008 10:12 228 440 28 

9 (January 2008, 3) 24/01/2008 21:38 228 433 26 

10 (January 2010, 1) 18/01/2010 10:30 73 407 
 <3 

107 
2 

11 (January 2010, 2) 18/01/2010 21:53 73 403 37 

 279 

We separated these 11 SAR observations into different categories by particular flood event (section 280 

3.3.2) or where the acquisition occurs on the flood hydrograph (section 3.3.3). Table 3 records this 281 

segmentation of the 11 acquisitions into categories. 282 

Table 3 Description of SAR groupings 283 

Description 

SAR ID 

1 2 3 4 5 6 7 8 9 10 11 

By flood ‘event’ March 2007 July 2007 January 2008 January 2010 

By point in hydrograph [r =rising 

limb, p = peak, f = falling limb] 
r r f f f f p f f p p 

 284 

To validate the methodology we take advantage of a very high-resolution (0.2m) aerial photograph 285 

taken by the EA on 24 July 2007, at 11:30 GMT (Giustarini et al., 2013). A flood map shapefile was 286 

created from this imagery by manual definition of the flood boundary.  This was then converted and 287 

upscaled to a raster with the same spatial resolution (75m) of theLISFLOOD-FP model results.   288 

9 
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Figure 2 - The July 2007 flood extents as observed by aerial photography (left) and ENVISAT ASAR instruments in WSM (on 23rd at 10:27, centre left). The same flood 

event simulated in LISFLOOD-FP with surveyed cross sections (centre right, with Manning’s channel roughness fixed at 0.038) and the test model with optimally 

calibrated parameters (right). 
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3 Results and discussion 289 

3.1 CSI scores  290 

Figure 2 shows the ENVISAT WSM derived flood map (centre left) from the July 2007 flood event 291 

with the LISFLOOD-FP simulation outcomes from the observed model (centre right) and best 292 

simulated or ‘test’ model (right) at the same time step. The Critical Success Index (CSI) scores 293 

indicate the ability of the LISFLOOD-FP model to reproduce SAR satellite-derived flood maps like this 294 

one. The CSI score is a scale between 1 (indicating perfect skill in the model) and 0 (indicating no skill 295 

in the model).  296 

The test model CSI results were plotted against the ‘r’ and 'nc' parameter variables to illustrate CSI 297 

trends with changing parameter value. The figure below compares two plots: one for an ENVISAT 298 

WSM acquisition taken on 23rd July 2007 (10:27am) and one taken on 17th January 2008 (21:55pm). 299 

These CSI plots represent typical results.  300 

  
 

Figure 3 Single SAR acquisitions are compared with LISFLOOD-FP modelled flood maps for the July 2007 301 

flood event. Left: results from the SAR acquisition on 23rd July 2007 at 10:27, right: result from the SAR 302 

acquisition 17
th

 January 2008 at 21:55. 303 

A number of ‘r’ and 'nc' parameter combinations are able to produce a good result (i.e. equifinality as 304 

described by Beven, 2009). The optimal ‘r’ parameter range varies slightly depending on the image 305 

considered. Here test models with the best reproduction of the SAR flood map have 'r' parameters 306 

between approximately 0.10 and 0.30 (July 2007) and between 0.07 and 0.25 (January 2008). 307 

Generally, the best reproduction of the SAR flood maps is obtained with models that have an 'r' 308 

value in the lower parameter range and this translates to a wide and shallow river channel and large 309 

width to depth ratio.  310 

 311 

For the 23
rd

 July 2007 and 17
th

 January 2008 events, the top CSI scores for the test model were 0.46 312 

and 0.20 respectively. Whereas the top CSI scores for the observed model were 0.43 and 0.20.  To 313 

compare results against those from the same models using the rescaled aerial photograph flood 314 

maps; the best CSI scores were around 0.75 for the test model and 0.74 for the observed model. The 315 

observed and calibrated LISFLOOD-FP models produce CSI scores that are modest by comparison to 316 

the aerial results and other studies, which have used higher resolution SAR imagery for validation 317 
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(e.g. Bates et al. 2006, Di Baldassarre et al. 2009a, Di Baldassarre et al. 2010). This is likely 318 

attributable to the incomplete nature of the ENVISAT WSM SAR image and resulting processed flood 319 

map (Figure 2, centre left).  Whereas the aerial photograph (Figure 2, left) has improved 320 

representation of flooding because there are no detection gaps as the flood extent was delineated 321 

manually.  322 

 323 

Figure 3 also illustrates the co-variance and a linear dependency between the two parameters. 324 

Although the choice of parameter range emphasizes it, there is a slightly greater skill score 325 

sensitivity to changes in ‘r’ than for ‘nc’. Since changes in channel depth would have an immediate 326 

and local impact on flood level, and hence flood extent, it is logical to see changes in ‘r’ producing a 327 

change in flood extent throughout the modelled domain. Channel roughness changes have an 328 

impact more on flow velocities, consequently impacting on the timing of flood wave propagation 329 

through the channel (as discussed in Neal et al., 2015) which would have a more spatially diffuse 330 

impact on flood extent.  331 

Previous SAR based assimilation studies (Hostache et al., 2009, Mason et al. 2009, Di Baldassarre et 332 

al. 2009a) show that with a known and fixed channel bathymetry there is sufficient sensitivity in the 333 

roughness parameter to enable calibration. The above findings indicate that the sensitivity of ‘nc’ is 334 

less obvious when ‘r’ is also unknown. There are previous studies also where, as here, channel 335 

friction appears less sensitive when other parameters are simultaneously calibrated. Roux et al. 336 

(2008) found sensitivity in hydraulic model response to channel roughness to be weaker than 337 

sensitivity to geometry parameters and boundary conditions within a Generalised Sensitivity 338 

Analysis framework. Additionally Garcia-Pintado et al. (2015) found that sensitivity to bathymetry 339 

parameters dominated when using the Ensemble Transform Kalman Filter to simultaneously 340 

estimate bathymetry and channel friction. The sensitivity in channel friction may therefore be not as 341 

obvious when other parameters are simultaneously calibrated because the model is no longer 342 

compensating for previously unrepresented uncertainties. It could be suggested that channel friction 343 

is reverting to its true sensitivity and so when channel friction is combined with more dominant 344 

parameters such as channel bathymetry it is rendered less useful for model calibration. 345 

For ‘nc’, there is not a significant trend and this parameter appears insensitive when estimated 346 

simultaneously with the channel depth: channel roughness can take any value between 0.01 and 0.1 347 

and still yield optimal results as long as ‘r’ is also unknown. For this reason the results presented 348 

below now focus only on the more identifiable ‘r’ parameter.  349 

3.2 Information content (IC) 350 

Table 4 presents IC results for parameter ‘r’. For single SAR observations (left column) there is clearly 351 

greater information content in the July 2007 flood event images. The inundation during this higher 352 

magnitude event extended well into the floodplain and the flood detection algorithm was able to 353 

detect a large number of flooded cells. The lower IC scores for the March 2007, January 2008 and 354 

January 2010 events show that these observations contain less information to help estimate 355 

parameter ‘r’. 356 

 357 
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Table 4 - Information content for ‘r’ from SAR observations and groups of SAR observation with a 90% 358 

confidence limit applied. 359 

Sequence Information Content  Sequence Information Content  

1 - Mar07_1 0.10 Rising limb 0.13 

2 - Mar07_2 0.11 Peak of hydrograph 0.23 

3 - Mar07_3 0.11 Falling limb 0.64 

4 - Mar07_4 0.11 March 07 event 0.50 

5 - Jul07_1 0.16 July 07 event  0.37 

6 - Jul07_2 0.19 January 08 event  0.25 

7 - Jan08_1 0.10 January 10 event  0.14 

8 - Jan08_2 0.11 All SAR   [1-11] 0.68 

9 - Jan08_3 0.11   

10 - Jan10_1 0.10   

11 - Jan10_2 0.10   

 360 

Combining images boosts the IC scores considerably as can be seen in the right hand side columns of 361 

Table 4. The image results were combined by multiplying CSI scores for each model for each 362 

combination. Different combinations were tested including grouping according to flood event and 363 

position on the hydrograph as well as ‘all SAR’ data.  364 

For IC the July 2007 flood now no longer outperforms the rest and instead combinations of images, 365 

like the March 2007 flood event, have greater information on ‘r’.  The March 2007 flood 366 

combination combines observations either side of the hydrograph peak and the January 2008 flood 367 

combination observes flooding ‘at peak’ and soon after in the falling limb. By contrast the reduced-368 

scoring January 2010 and July 2007 combinations acquired images at a single stage in the 369 

hydrograph only. We might conclude that the detection quality of the SAR flood maps and timing of 370 

acquisition must influence the final IC score and this is supported also by the observation that the 371 

early ‘falling limb’ grouping has one of the largest IC scores here.  372 

Nevertheless, the number of SAR flood maps combined appears to be important also since the ‘all 373 

SAR’ and early ‘falling limb’ (just over half of these SAR images, Table 3) groupings emerge as 374 

providing the highest IC. The March 2007 flood grouping also contains twice as many members as 375 

the July 2007 or January 2010 flood groupings and outperforms both. Clearly, incorporating data 376 

from multiple observations improves IC since combining SAR images (and CSI scores) improves the 377 

likelihood of extracting information on the unknown parameters. However it is not simply a question 378 

of numbers otherwise ‘falling limb’ (combining 6 SAR flood maps for an IC score of 0.64) would not 379 

be approaching the success of ‘all SAR’ (combining 11 SAR flood maps for an IC score of 0.68). Nor is 380 

greater information necessarily revealed by removing poor scorers (‘all SAR’ IC score reduces from 381 

0.68 to 0.64 when the 4 lowest scoring flood maps are removed from this grouping). Instead the 382 

solution may lie in using SAR flood maps around the peak and falling limb of the flood since 383 

combining ‘falling limb’ and ‘rising limb’ observations together yields an IC score of 0.65 but 384 

combining ‘falling limb’ and ‘peak’ observations together provides an IC score of 0.67. Further work 385 

and data is necessary to draw any firm conclusions for the ‘r’ model parameter. 386 

 387 

 388 
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3.3 Identifiability 389 

The identifiability of ‘r’ within single images and combinations of images is assessed in this section. 390 

This shows where the parameter is most easily identified in the ensemble of model results (for a 391 

particular combination of images). A strong identifiability response would be marked out by having a 392 

narrow shape and peak in the following plots, indicating that the best performing parameters are 393 

concentrated in a small area of the parameter space/group of models. Conversely a wide plot would 394 

indicate weak identifiability and that the best performing models would be those with the ‘r’ 395 

parameter widely distributed. Figure 3 shows that the best performing model parameter 396 

combinations are distributed fairly evenly within the parameter space so a 90% confidence limit was 397 

applied to the data prior to measuring the gradient of cumulative distribution of rescaled support 398 

values. With these data 20 bins was deemed sufficient to clearly show identifiability.  399 

3.3.1 Individual SAR observations 400 

 401 
Figure 4 - Identifiability against ‘r’ parameter, for each ENVISAT SAR observation in archive. 402 

 403 

Figure 4 shows that typically for the individual SAR observations there is higher identifiability for the 404 

smaller ‘r’ parameter values. It is evident that the peaks in the majority of these plots occur for ‘r’ 405 

between 0.05 and 0.15, although there is a subtle difference between the individual results. The first 406 

observations during the March 2007 and January 2008 events are more peaked so that the location 407 

of 'r' can be more easily approximated. By contrast the individual plots for the January 2010 events 408 

are slightly flatter indicating lower identifiability in these SAR observations.  409 

3.3.2 Flood event 410 

This section illustrates identifiability when data from individual SAR images are combined into ‘flood 411 

events’. An important characteristic of the ‘flood event’ identifiability plots is that the SAR 412 

acquisitions are taken together in close sequence. Garcia-Pintado et al. (2013) found that a tight 413 

sequence of images could improve model predictions. The identifiability peak for 'flood event' 414 
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combined SAR images is slightly narrower such that the 'r' parameter values/models with higher 415 

identifiability have a range from 0.07 to 0.15. Combining observations in this way appears to focus 416 

the location of the ‘r’ parameter more clearly than is possible using single images.  However, the 417 

optimum ‘r’ value is not stationary and varies between 0.07 to 0.1 and 0.1 to 0.15.  418 

 419 

Figure 5 Identifiability against parameter ‘r’, for flood events. 420 

As also seen in the individual SAR observations, the March 2007 and January 2008 events produce a 421 

strong identifiability. Based just on identifiability, the March 2007 and January 2008 SAR images 422 

might therefore be best utilised to locate the value of parameter ‘r’ in the bin 0.10 to 0.125. These 423 

events have approximately the same peak discharge flows at Saxons Lode (see Table 2). However, 424 

the IC results point towards the March 2007 data combination alone as having more parameter 425 

information and the reason for this becomes clear when looking at the binary flood maps contained 426 

in each event. The group of SAR images taken in March 2007 combine to yield a more complete 427 

representation of the flood extent than the combination from January 2008. So although 428 

identifiability shows that both March 2007 and January 2008 flood events would be useful to locate 429 

the parameter ‘r’, IC shows the information contained in the March 2007 binary flood maps to be 430 

higher. 431 

3.3.3 Through the flood hydrograph 432 

Figure 6  looks at identifiability at three stages of a flood hydrograph for the 'r' parameter, namely 433 

from observations at the (late) rising limb, the peak and the (early) falling limbs are plotted, with 434 

reference to the stage hydrograph at Saxon’s Lode in the central portion of the model domain.  435 

Previous studies have found that the scheduling of SAR images is important for calibration of 436 

models. Di Baldassarre et al. (2009b) found that identification of the optimal model parameters 437 

depended on the timing of the SAR image acquisition and the magnitude of the flood event. Garcia-438 
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Pintado et al.’s (2013) paper established that to improve forecasting of water levels in a model, 439 

regular observations during the rising limb and then less frequent observations during the falling 440 

limb gave most success. Additionally, Schumann et al. (2009b) cautioned that SAR images acquired 441 

during the wetting and drying phases of a flood could be showing floodplain connections and 442 

dewatering processes unconnected with the hydraulics represented by the model.  443 

 444 

Figure 6  Identifiability against r parameter, for different stages in hydrograph. 445 

The number of SAR acquisitions within each category is limited but Figure 6 shows there is a 446 

difference in identifiability for these separate phases and that the location of optimum ‘r’ varies. The 447 

narrowest peak and therefore strongest 'r' parameter identifiability occurs for those images taken 448 

around the flood peak and falling limb of the hydrograph. The weakest identifiability for the 'r' 449 

parameter occurs for the images taken during the rising limb in contrast to previous studies (e.g. 450 

Garcia-Pintado et al., 2013). The IC results in Table 4 also support this. The reasons for this 451 

disagreement with earlier research may simply lie with the way that ‘through the hydrograph’ 452 

images were categorised. The method makes use of only a single independent gauge (at Saxons 453 

Lode) to define the phases and as such it could be an oversimplification of the flood dynamics in a 454 

large domain such as this where the ‘rising’, ’peak’ and ‘falling limb’ of the flood occur at significantly 455 

different times depending on where you measure within the model domain. It might be more 456 

accurate to state that these flood maps around the peak and early falling limb capture the average 457 

moment of transition of flows over banks into the floodplain and these are better conditions for 458 

identifying channel depth parameters.  459 

Alternatively this divergence of findings for the optimum image time could be explained by the 460 

different experimental set up and goals. Garcia-Pintado et al. (2013) made use of distributed and 461 

derived water levels to correct model inflow errors and improve model predictions with assimilation, 462 

whereas identifiability here makes use of SAR derived flood extent to calibrate reach-averaged 463 

bathymetry and roughness parameters for the entire river network. Information obtained during the 464 
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rising limb was the most useful time to correct inflows because the water level and channel volumes 465 

are most changing during this time. Whereas this experiment, in locating the optimum bathymetry 466 

and roughness parameters, relies on mapping of flood extent (i.e. at bankfull and overbank). This is 467 

seen most usually in the so-named ‘peak’ and ‘falling limb’ images where there is indeed flood 468 

extent but also where flows (at some locations within the model domain) are transitioning between 469 

channel and floodplain. 470 

3.3.4 All data 471 

Figure 7 shows the identifiability result for all 11 SAR flood maps combined. As for the IC results, this 472 

arrangement produces an observable improvement in identifiability compared with the single SAR or 473 

‘flood event’ plots. Although a single image does provide the information needed to locate 474 

parameter 'r', these results show that a group of similarly conditioned images can locate ‘r’ more 475 

distinctly and thus with greater confidence. The strongest identifiability is for those models with ‘r’ 476 

between 0.10 and 0.12 when looking at 'all data'. These results suggest that greatest information for 477 

parameter 'r' can be obtained by making use of as much data as is available: in other words that by 478 

simply making use of all available images the depth parameter 'r' becomes more identifiable. 479 

Moreover ‘all data’ mixes flood magnitudes and therefore the model is therefore likely to be more 480 

robustly calibrated for a range of event scenarios. In this instance including even relatively poor 481 

flood maps does not negatively impact the result.  However, this might not always be true and 482 

situations may arise where particular flood maps (or sets of flood maps) would be disinformative. 483 

 484 

Figure 7  Identifiability against r parameter, for all hydrographs. 485 

4 Constraining the channel roughness parameter ‘nc’ 486 

The results above show that calibration is possible for the more dominant depth parameter but that 487 

roughness is less easily located in this simultaneous calibration methodology. So far it is assumed 488 

that no ground data are available to give prior information on either parameter and so the ranges 489 
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are deliberately broad. However one or both parameters could be constrained further with some 490 

knowledge of the catchment and standard look up tables (e.g. Phillips et al., 2007, Ven Te Chow, 491 

1959). Given that even a cursory examination of Google Earth imagery shows regions of meander 492 

and channel alteration, obstructions and changing vegetation along the River Severn reach, the 493 

Manning’s channel roughness values are most likely to lie between 0.035 and 0.055 (rather than in 494 

the wide 0.015 to 0.100 range previously assumed). This section shows that if we constrain the ‘nc’ 495 

parameter to a narrower range based on physical principles and expert judgement it is possible to 496 

improve on first results. 497 

 

 
Figure 8 – identifiability for 23rd July 2007 at 10:27 showing ‘all data’ (red) and with ‘nc’ restricted to 498 

between 0.035 and 0.055 (blue). Inset: the CSI plot against parameter ‘r’. 499 

As before, the calibration location of ‘r’ varies marginally with each SAR image or grouping. Figure 8 500 

shows CSI results against parameter ‘r’ for a single observation (July 2007) along with the ‘all data’ 501 

identifiability plot. The 236 models which satisfy the constraint of having ‘nc’ between 0.035 and 502 

0.055 are shown in blue (red shows all other model results).  503 

 504 

In this set-up, and focusing just on the top performing models (the maximum CSI score or within 2% 505 

of it), the information rich combinations like ‘all data’ (Figure 8, right) suggest the location of ‘r’ is 506 

between 0.09 and 0.11.  This translates to a reach-average model depth of between 6.4m and 8.5m 507 

and is reasonably close to the observed data. In this group, the single highest scoring model has ‘r’ of 508 

0.086 (‘nc’ of 0.036) and so indicating the optimum reach-average model depth is around 6.51m. The 509 

equivalent rectangular depth from the EA survey is 5.63m (assuming a reach median width of 76m) 510 

using bank-full cross sectional area. The difference therefore between the calibrated value and the 511 

observed equivalent is approximately 0.88m (an error of 16%). 512 

 513 

With ‘nc’ constrained the ‘r’ value moves to a lower depth range. The model responds to this specific 514 

channel friction by altering the speed of the flood wave and flow velocities. With ‘nc’ constrained to 515 
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0.036, Saxons Lode station experiences the ‘flood peak’ closer to the observed peak time than 516 

models with other friction values. These results highlight the important reasons for calibrating this 517 

second parameter concurrently. If channel roughness were set too high the flood wave would be 518 

delayed. Set too low and the flood wave would be too advanced. 519 

5 Conclusion 520 

This paper presents a methodology for dual calibration of bankfull depth and channel roughness 521 

parameters of the LISFLOOD-FP Sub-Grid hydraulic model using SAR data and a binary pattern 522 

classification measure based on flood extent. Multiple models performed well initially, but by 523 

employing an identifiability methodology we located the area of the parameter space with highest 524 

information for the depth parameter ‘r’. The location narrows with the use of more SAR images. 525 

The methodology provides some information on which single and combinations of SAR flood maps 526 

would be most useful for calibration purposes. Single SAR flood maps would be sufficient to calibrate 527 

the depth parameter but the identifiability is much improved when multiple maps are combined. 528 

Combinations aligned according to particular flood events/magnitudes are not conclusively different, 529 

but using many or all available SAR images does offer a real improvement in identifiability. There are 530 

indications that combining maps with similar flood duration, or stage of flood (i.e. SAR images 531 

acquired close to peak or just after) would be beneficial for calibrating the reach-average depth 532 

parameter, but further work is needed with more targeted observations than the 11 used here. For 533 

robustness, a good range of flood magnitudes should be used for calibration.  534 

The channel roughness parameter ‘nc’ was less sensitive to variations in flood extent and we failed to 535 

locate a representative value for this parameter when ‘r’ was also varied. The likely cause probably 536 

due to the initial range selected being too broad and the suggestion that depth/bathymetry is the 537 

more dominant parameter in the model which largely overrides, at this model scale at least, the 538 

significance of channel friction. By constraining ‘nc’ to a more plausible range it was possible to 539 

improve the calibration method and further improve the global estimate for the depth parameter. 540 

Under this constraint the models with top CSI and identifiability results show that the reach-541 

averaged depth parameter is calibrated to 0.086, translating roughly to a reach-average depth of 542 

approximately 6.51m. This is an error of 0.88m compared with an equivalent measure from 543 

observed cross section data, where channel depth is approximated as 5.63m. 544 

A benefit of this methodology is that although we used gauged inflows within the model, in theory 545 

the calibration methodology should work also with no recourse to ground data if good inflows can 546 

be simulated and a good DEM is available. The method also does not require a step to obtain water 547 

levels from the flood data. It does however make some simplifications and assumptions. First, the 548 

method assumes that there are no errors in the return signals or processing of the ENVISAT WSM 549 

images the derived flood maps therefore represent the true and full flood extent, however in reality 550 

all data have error. There is also error likely in the assumptions behind the model set up. Neither has 551 

the importance of the SAR resolution been tested here. Second, we assume that the friction and 552 

depth parameters are uniform through the model domain when in reality spatial variability will exist. 553 

The calibrated parameters here are therefore reach-averaged values and it is for this reason that the 554 

methodology is perhaps more appropriately used for medium sized catchments with ostensibly 555 

negligible variation in domain channel width. For width varying and large catchments, future work 556 
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will investigate the impact of applying the methodology within smaller sub-reaches (i.e. ‘sub-regions’ 557 

or tributaries) where hydraulics and hydrology are similar.  558 
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