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GENERAL COMMENTS 

I found many drawbacks mainly due to the paper organization and presentation that have to be 

solved by the authors before it can be considered adequate for a publication in the HESS journal. 

Moreover there are some key points that I would like to underline. 

One is the justification of the small sensitivity of the roughness parameter with respect to the 

channel bathymetry that to me seems reasonable but I found some difficulty in understanding if this 

is supported by a robust analysis or it is not adequately shown in the manuscript. To this end, it 

would be interesting to see the DYNIA analysis carried out also for the channel roughness in order 

to recognize its information content and its value of identifiability. If this was already done, but not 

shown, some comments or an explaining figure would be very welcome. 

 

We did indeed carry out the DYNIA analysis on the channel roughness ‘nc’ parameter for all the SAR 

images used in this study but we found the results for this parameter were not as sensitive as those 

for the depth parameter ‘r’. Variations in channel roughness value did not produce a strong enough 

response in the model to match observed flood extent. For this reason these ‘r’ results did not feature 

in the final version of the paper. The authors have amended the text in section 3.1 to explain this: 

 

“Consequently an important result of this paper is that - in this particular experimental set up 

with channel roughness parameter ‘nc’ examined simultaneously with the channel depth 

parameter ‘r’ for the available ENVISAT SAR data - ‘nc’  has a much reduced sensitivity compared 

with the ‘r’ depth parameter response.  It is observed that ‘nc’ will yield optimal results for as 

long as ‘r’ is also unknown. This lack of sensitivity of channel roughness in this and all subsequent 

results meant that ‘nc’  could not be identified with any real confidence with this methodology 

(while ‘r’ is also unknown). So while ‘nc’  analysis was carried out we present here onwards only 

those results from the more identifiable ‘r’ parameter. ‘nc’  results are now omitted (but can be 

provided upon request if of interest)”. 

 

To illustrate we show some of the channel roughness results below. Here we show firstly the results 

for the ‘r’ parameter (red), then ‘nc’ (blue) CSI results, against parameter value for a sample of the SAR 

images. These CSI plots generally reflect the results we observed in all SAR data and illustrate the 

greater sensitivity of the depth parameter over the channel roughness parameter in our experimental 

results:  

 



  
Figure 1 Plot of ‘r’ parameter against Critical Success Index score for left: 23rd July 2007 at 10:27 and right: 

24th January 2008 at 10:12. 

  
Figure 2 Plot of ‘nc’ parameter against Critical Success Index score for left: 23rd July 2007 at 10:27 and right: 

24th January 2008 at 10:12.  

 

Additionally, Figure 3 below shows the cdf plot of the gradient of the cumulative distribution of 

rescaled support values for groupings of SAR data, against ‘nc’ value. This illustrates how 

different/lower the results are for ‘nc’ identifiability when compared with ‘r’ results (paper fig 7, inset). 

 



 

Figure 3 cdf of the gradient of the cumulative distribution of rescaled support values for each individual SAR 

image, against ‘nc’ parameter value. 

Lastly, the Information Content (IC) results for ‘groupings’ of SAR images are also shown here for ‘nc’  

and ‘r’ in Table 1. These illustrate how much lower the ‘nc’ information content can be compared with 

the IC of the depth parameter, for the same combination of data. 

Table 1 Information Content (IC) for groupings of SAR images, showing results for r and nc. 

‘grouping’ Parameter ‘r ’ Parameter ‘nc’ 

Rising limb 0.13 0.11 

Peak of hydrograph 0.23 0.12 

Falling limb 0.64 0.16 

March 07 event 0.50 0.14 

July 07 event 0.37 0.14 

January 08 event 0.25 0.12 

January 10 event 0.13 0.11 

All SAR   [1-11] 0.68 0.16 

 

 

 

 

 



A second point is the assumption that the error related to the processing of the SAR image will not 

affect the results (not considered for simplicity). I think that these errors are part of the procedure 

of identifiability and are able to affect the information content of the different images. For this point 

my question is: due to the different acquisition, times of the SAR images under different atmospheric 

and land conditions can be considered the error related to the image processing stationary? My 

opinion is that this error varies from image to image. This at least deserves some discussion. The 

authors could consider that aerial flood maps for analyzing this point or, since the area is very well 

instrumented, doing the same type of analysis with stage data. 

 

This is a good point and certainly each SAR image will have a unique processing error associated with 

it and indeed the errors inherent in the processed SAR data will be passed on to the final identifiability 

and IC score for single images. These will not be stationary errors, they will vary between images. 

For example, while different atmospheric conditions will not significantly affect the radar signal, 

different incident angles can have an effect. In the paper these were considered to be so small 

compared with the errors associated with the assumptions around parameter identifiability that they 

were thought to be overshadowed. Furthermore the use of moderate resolution flood imagery for 

hydraulic model calibration may lead to inaccuracies but it was deliberately chosen because we want 

to understand the usefulness of this data for global locations where other data may quite simply not 

be available. And while the magnitude of flooding and the land surfaces affected can cause specific 

errors/uncertainties, this is somewhat mitigated by the larger spatial scales employed in this analysis. 

Other errors in the processing of the SAR image can be evident, such as from bias - where in some 

areas radar data does not inform on the extent of flooding. Ideally, such non-informative areas would 

be masked out but this requires more comprehensive analysis and is currently an active area of 

research (e.g. Giustarini et al., submitted: puts forward the idea of flood ‘probability’ maps to illustrate 

confidence in the detected flood extent). There is now more discussion about this around Figure 3 in 

the paper which illustrates the CSI scores for the aerial flood map image that was acquired in July 

2007. However since the authors already have some concerns about the length of the document, and 

the comments of reviewer #2 on the length of the paper also, we attempt to keep these discussions 

brief. 

 

A final point is the quality of all the figures in the manuscript that I found very poor and such that to 

impede a proper understanding of the manuscript.  

Thank you for this feedback, we have replaced the figures mentioned with new marker-line versions 

(greyscale) and increased the image resolution to improve the quality.  

 

Based on that I recommend publication after major revisions. In the following, the authors can find 

a list of comments with the associated relevance listed in order of appearance in the manuscript. 

 

COMMENTS 

Pag. 2 Lines 53-76 MINOR: the authors may also cite the work of Moramarco et al. (2013) which uses 

an interesting method for identifying the flow depth distribution in natural channels. 



Moramarco, T., Corato, G., Melone, F., Singh, V.P., 2013. An entropy-based method for determining 

the flow depth distribution in natural channels. Journal of Hydrology, 497,176-188. 

This reference has been added to the paper. 

 

Pag. 3 Lines 88-91 MINOR: Can you rephrase this sentence more clearly? 

Lines 88-91 have been rephrased to: 

“In particular the methodology uses flood extent with an accuracy-scoring method that 

disregards the correct detection of ‘no water’ pixels” 

 

Pag. 4 Lines 120-128 MAJOR: If I understand correctly the channel depth is expressed as H=r*B where 

H is the channel depth, and B is the width of the channel. Since the hypothesis of linear scaling is 

central in the study, I thinks this part deserves more profound discussion about: 1) How much it will 

affect the results of the study. 2) Which are the expected problematics associated with the uniform 

channel depth. 

Extra discussion has been inserted at the end of the manuscript around the limitations of our 

assumptions and what affect these might have on the results. 

 

See also the paper of Yan et al. (2014) where H is a free parameter of the model uniform along the 

river reach. 

Yan, Kun, et al. "Exploring the potential of SRTM topography and radar altimetry to support flood 

propagation modeling: Danube case study." Journal of Hydrologic Engineering 20.2 (2014): 

04014048. 

This reference has been added to the paper. 

 

Pag 3 Section 1.2. MINOR: A scheme or figure of the method would significantly help to understand 

the image-processing algorithm. 

A good point, the authors have inserted a new figure to illustrate the steps of the methodology: Figure 

1. 

 

Pag. 6 Lines 211-213: MODERATE: it is not clear how the procedure is used with multiple images. 

Please provide more details. 

A description of the procedure for combining image results has been updated in section 1.4: 

“These group scores are determined by multiplying each single model/SAR flood map CSI result 

with the CSI score of the next SAR flood map until all members of the particular group have been 

added. The unique combinations which comprise these groups are described in Table 3 below.  

This combining of CSI scores is done for results from each of the 1000 models/parameter 



scenarios. The next step is the same as for single CSI scores as described above – i.e. to rescale 

the objective function and compute the cumulative sup 

 

Pag 7 Figure 1 MINOR: The quality of this figure is very poor. Please provide a larger and cleared 

picture where the identification of the study area and the boundary conditions are more clearly 

visible. 

Thank you for pointing this out, Figure 1 (now Figure 2) has now been amended to be clearer with 

boundary locations highlighted. 

 

Pag 11 Figure 2 MODERATE: the quality and the description of this figure is very poor. Also, ENVISAT 

and Aerial data seem to be a bit different although with this picture is very difficult to compare the 

results. I understand that the processing of the SAR image inherently contain errors, I am wondering 

if the results of the paper might be affected by these errors. The authors could test the procedure 

also on the aerial photograph to understand the effect of the errors in the processing of the image 

or on the observed stages. 

The observed model which is expected to behave better than the test model seems to be worse than 

the test model? Do you have a justification for that? Does this depend on the calibration? 

A well observed point for Figure 2 (now Figure 3) in the paper. The description of this figure in the text 

has been updated so it is clearer why it was inserted. Also the CSI scores embedded in the figure have 

been moved to a table for easier comparison/interpretation for the reader. The figures themselves 

(particularly the modelled and ENVISAT flood extents) have a coarse resolution that does not 

reproduce very nicely on the page unfortunately.  

This particular aerial flood extent image was derived from a single aerial photograph of the flood of 

July 2007 on the Severn by manual delineation and so is restricted both by the limits of the 

photographs (cutting off the upper River Avon for example) and interpretation of the image in terms 

of the flood boundary through vegetation. In this case we used the aerial data here more for validation 

purposes rather than explicitly to test the calibration methodology. The aim of the paper was to test 

a series of more ‘moderate’ resolution imagery that is more extensively and frequently available. 

However the authors have added some additional text around the new table of aerial versus ENVISAT 

CSI scores to explain further the test results we found when applying the methodology on the single 

aerial flood extent data. A good comparison could be made between the methodology applied to the 

ENVISAT observation (acquired 23rd July 2007, 10:27am) and the subsequent aerial image (acquired 

24th July 2007, 11:30am) as they were observing the flood merely 24hrs apart. While it is quite likely 

that the impact of SAR processing errors would be manifest in the final results, and be most obvious 

when compared with better resolution data such as can be obtained from a gauge record or aerial 

imagery, the authors felt that an explanation of the impact of these errors was beyond the scope of 

the paper (which is rather long already).  

In Figure 2 (now Figure 3), it is obvious that the observed model (constructed using surveyed cross 

sections) has not represented observed flood extent as well as the test model. This is most evident in 

the tributaries to the main River Severn. We updated the text in section 3.1 of the paper to explain 

this:  



“The scores and flood extent for the observed model are not better than the test model results 

as might be expected. This may be explained by the fact that while the bathymetry of the 

observed model does come from survey data, the (domain-average) channel roughness value is 

not calibrated in either model. While the test model had 1000 parameter-varying depth and 

roughness values, the observed model had a best estimate of domain-average channel 

roughness parameter (of 0.038). While appropriate for the main rivers, it is evident that the 

channel roughness value is not suitable for the narrower tributaries.”  

 

Pag 11 Figure 3 MAJOR: Please provide a better figure with colors. It is very difficult (with this figure) 

to follow the authors’ statements. 

This contour plot has now been updated in greyscale so it is easier to read with two single opposing 

colours than the original colour spectrum which made it difficult to see where CSI was highest and 

lowest, even in full colour. Plus this version should be more printer friendly in black and white. 

 
 

From the manuscript: figure 4 : Single SAR acquisitions are compared with LISFLOOD-FP modelled 

flood maps for the July 2007 flood event. Left: results from the SAR acquisition on 23rd July 2007 

at 10:27, right: result from the SAR acquisition 24th January 2008 at 10:12. 

 

Pag 11 Section 3.1 MODERATE: I found this section very difficult to follow and to read. I suggest to 

try to present it better. 

A re-write of this section has been carried out and the authors hope it is now easier to read and follow. 

 

Pag 12 lines 346-349, MAJOR: the authors concluded that nc is insensitive when estimated 

simultaneously with the channel depth. However, it seems that this was concluded based only on 

two images (23rd July 10:27, and 17 January 2008 21:55). Do the authors exclude that this is true in 

any case and there are not effects of the time of acquisition and the magnitude of the flood event? 

I think the authors should provide more proofs for this statement. Overall, I find this assumption 

reasonable however I think that including the DYNIA also for the parameter nc would add a lot of 

value to the paper. 

This paragraph has been rewritten within the context of the above comment on section 3.1 and 

hopefully now better explains why ‘nc’ results were excluded from the final version of the paper.   All 



available SAR data were analysed for ‘r’ and   ‘nc’ though only two ‘r‘ plots featured in the paper for 

simplicity. As the authors hope has been explained sufficiently within the general comments section 

above, the ‘nc’ parameter did indeed undergo the same DYNIA analysis as the depth parameter but 

results were not exceptional enough to be included within an already long paper. The same lack of 

responsiveness of this parameter in the results were observed for all SAR data analysed, and even 

when the SAR data were ‘grouped’ the identifiability and IC results did not greatly improve for ‘nc’ .  

With this available dataset of ENVISAT SAR images and hydraulic model set up, the authors have 

concluded that ‘nc’ is insensitive when estimated simultaneously with the channel depth parameter 

‘r’. However additional testing would need to be carried out to conclusively say that this insensitivity 

is true with other SAR data and magnitudes of flooding. 

 

Pag. 13 line 361. MODERATE: It is not clear how the IC score is calculated for multiple images. 

The grouping of SAR data occurs after each single model/SAR flood map is assessed and given a CSI 

score. It is the CSI scores which are multiplied together in particular combinations (as described in 

Table 3) before the DYNIA methodology is applied and identifiability and IC determined. A group IC 

score is derived from the grouped SAR data and CSI scores multiplied together.  This explanation has 

been inserted in to the paper in section 3.2 and 1.4 for greater clarity. 

 

Figures 4, 5, 6, 7 and 8 MAJOR: The interpretation of these figures must be described in the method 

section. From the text it is very difficult to follow the authors’ statements. Please provide a better 

quality figures as well. It is impossible to discriminate between the different lines. If I understand 

correctly these are the cumulative distribution of the rescaled support values and not the gradient. 

The gradient should refer to their slopes. Isn’t? If so, I expect a figure like the one in the paper of 

Wagener et al. (2003), (see FIGURE 8 in their paper). 

Thank you for pointing out how difficult these figures are to read. The original figure coloured lines 

have been replaced with marker-line figures (greyscale) in this revised version and an explanation of 

how the cdf plots should be interpreted is now inserted into the method section. 

It is correct that Figures 4 – 8 in the paper are representative of the (gradient of the) cumulative 

distribution of rescaled support values. The gradient plots were converted to cumulative distribution 

function (cdf) plots, and this is what was shown in the final version of the paper. This was a change 

introduced to make the plots easier to read together and normalised, when the original histogram 

plots were numerous and previously side-by-side for each grouping.   

For this experiment, the SAR data acquisitions are not regular or plentiful through time (as in the 

experiment of Wagener et al., 2003 which used 6 years of continuous daily flow data) and so it was 

more difficult to represent in a line plot. However for purposes of explanation, the last cdf plot in the 

paper is converted into a ‘gradient’ plot for parameter ‘r’ below (top figure) to mimic Figure 8 in the 

paper of Wagener et al., 2003. We have amended the Figures 4-8 (now Figures 5-9) within the paper 

so they more closely resemble the Wagener identifiability plots. 

 

 

 



 

 

Figure 4 top: a new gradient of the cumulative distribution of rescaled support values for each SAR grouping, 

and bottom: the original cdf of the gradient of the cumulative distribution of rescaled support values for 

each SAR grouping, as featured in the paper. 

 

Pag 18 lines 503. MODERATE: No colors can be seen in the figures. 

Figures have been redone and text updated accordingly. 

 

Pag 19 lines 545-556. MODERATE: I expect here some discussions about the possible consequences 

of the assumptions made in the paper. 
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This consequences of our assumptions in the paper have been expanded within the results and 

discussion sections, as described above. 

 



Reviewer Guy Schumann (Reviewer #2) 

 The IC approach is really nice and gives an objective assessment of the value of a flood image for 

calibration. However, what we are still missing in the literature is to find a way that gives an 

objective IC of a SAR flood map without the need to calibrate first. In other words, in this paper, 

which I think has a lot of merit, IC is built up based on parameter identifiability rather than for 

instance inter-comparing each SAR image and applying the score and identifiability that way, so 

without the need of a model and its parameter but I understand that this is outside the scope of this 

paper.  

It is an appealing idea to attribute IC to individual SAR data, without need of using models and 

parameters for calibration. At the moment the authors are not sure how to inter-compare SAR data 

to reveal information content but it could be an interesting topic of further study.  

 

I also think that what is innovative here is the analysis of IC and identifiability in relation to what 

stage in the hydrograph we are looking at and what type of data we use (single image, combined 

images, gauge data). I wonder if the title and the introduction should better reflect that since to me 

this is one of the first papers to try and answer these questions using real data. 

Thank you for raising this point. The authors have updated the title of the paper and reworded the 

abstract, so that these reflect more accurately the unique points within the paper. 

 

My biggest reservation in this study lies with the choice of performance metric used, which may 

explain in my opinion why the greatest information content is in the SAR images closest to peak 

flow. Stephens et al. (2014) showed that the performance measure used here is particularly biased 

towards largest flooded area (in other words, it always gives the highest score to the biggest flooded 

area). This is significant in this study and could lead to an unwanted "bias" in the calibration. I 

suggest the authors repeat the exercise offline with the "F2" measure for instance ((A-B)/(A+B+C)) 

or an area in error index ((B+C)/(A+B+C+D)) to see if the same SAR images give the highest sensitivity 

still. 

A valid point is raised here. In the preparation for this paper the authors did indeed prepare a number 

of ‘skill score metrics’ before deciding on the CSI skill score in preference over ‘F’ measures and other 

promising metrics such as Percentage Correct. A sample of these initial plots are shown here in Figure 

5 to explain why in the end we decided to use the CSI results: 

 



Metric Jul 2007 # 1 at time 10:27 Jul 2007 #2 at time 21:53 

 

CSI 

A/(A+B+C) 

  

 

 

F4 / F2  

(A-B)/(A+B+C) 

  

 

 

PC  

(A+D)/(A+B+C+D) 

  

Figure 5 Skill Scores using a range of performance metrics. Top: CSI, Middle: F4 or F2 Score, Bottom: 

Percentage Correct 

These are just a sample of the results available and show the results from analysis of 2 SAR data from 

the flood of July 2007, but they are fairly representative of all the results for the full range of SAR-

derived flood maps which were analysed.  The F2 (aka F4) and CSI plots in particular gave a more 

sensitive response through the changing parameter value ‘r’. This was no doubt due to the ‘white 

space’ of no-water cells being absent from the skill score equation. Considering all SAR results 

together, the CSI scores were observed to provide a more responsive and consistent result with 

changing parameter value than the other metrics which were assessed.  

Concerning the comment regarding CSI skill scoring usually providing a better result for fuller flood 

extents due to the dominance of ‘water’ pixels, as pointed out by Stephens et al. (2014). This point is 

well raised but the authors would respond that the CSI skill score is secondary to the shape of the CSI 

peak itself in this particular case. This identifiability methodology looks at how sensitive the model is 

for different parameters around this CSI peak and gives little significance to the CSI scores themselves. 

To illustrate also the greater sensitivity/information for ‘r’ seen in the images when using CSI, the IC 

scores using PC and F4/F2 as the central metrics are shown in the table below, against the original 

scores obtained using CSI: 
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Table 2 Information Content (IC) for parameter r. Top row: single SAR images from July 2007 flood event, 

and bottom row: the same 2 data, grouped into ‘flood event’. 

IC for CSI F2/F4 PC 

Single SAR data (left: SAR1 at time 10:27, 

right: SAR2 at time 21:53)  
0.165 / 0.188 0.066 / 0.102 0.102 / 0.101 

July 2007 ‘flood event’ 0.37 0.079 0.105 
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Abstract 

Single satellite Synthetic Aperture Radar (SAR) data are now regularly used to estimate hydraulic 

model parameters such as channel roughness, depth and water slope. However despite channel 

geometry being critical to the application of hydraulic models and poorly known a priori, it is not 

frequently the object of calibration. This paper presents a unique method to calibrate simultaneously 

the bankfull channel depth and channel roughness parameters within a 2D LISFLOOD-FP hydraulic 

model using an archive of moderate (150m) resolution ENVISAT satellite SAR-derived flood extent 

maps and a binary performance measure for a 30x50km domain covering the confluence of the rivers 

Severn and Avon in the UK. The unknown channel parameters are located by a novel technique 

utilising the Information Content and DYNIA identifiability (Wagener et al. 2003) of single and 

combinations of SAR flood extent maps to find the optimum satellite images for model calibration. 

Highest Information Content is found in those SAR flood maps acquired near to the peak of the flood 

hydrograph, and improves when more images are combined. We found model sensitivity to variation 

in channel depth is greater than for channel roughness and a successful calibration for depth could 

only be obtained when channel roughness values were confined to a plausible range. The calibrated 

reach-average channel depth was within 0.9m (16% error) of the equivalent value determined from 

river cross section survey data, demonstrating that a series of moderate resolution SAR data can be 

used to successfully calibrate the depth parameters of a 2D hydraulic model.  

Introduction 

Flooding of over one third of the world’s land area affected more than 2 billion people - 38% of the 

world’s population – between 1985 and 2003 (Dilley et al., 2005).  Climate change forecasts also 

indicate that in the future there may be an increase in the frequency and pattern of flooding (European 

Environment Agency, 2012, European Commission, 2014, IPPC, 2014). One response to this global 

hazard has been an increasing demand for better flood forecasts (Schumann et al., 2009a).  Flood 

inundation models have an important role in flood forecasting and there has been scientific interest 

in combining direct observations of flooding from remote sources with these inundation models to 

improve predictions because of the persistent decline in the number of operational gauging stations 

(Biancamaria et al., 2010), and the reality that many river basins are inaccessible for ground 

measurement. Synthetic Aperture Radar (SAR) satellites have particular importance in this respect as 

they can discriminate between land and smooth open water surfaces over large scales. These 

microwave (radar) frequency satellites are capable of all-weather day/night observations and this 

makes them a particularly attractive option for observing floods. Currently active SAR satellites include 

RADARSAT-2, ALSOS-2/PALSAR-2, TerraSAR-X, TanDEM-X, Sentinel 1 and the COSMO SkyMed 

constellation. Historic data are also available from SAR satellites now out of operation such as 

ENVISAT, ERS1 and 2 and RADARSAT-1.  

By processing SAR data it is possible to produce binary maps of flood extent that can then be used, 

either on their own, or intersected with a Digital Elevation Model (DEM) to produce shoreline water 

levels, for model calibration and validation. Integration of SAR data with models is an established 

technique for reducing uncertainty in model predictions as it updates/calibrates the model 

states/parameters with observed data (e.g. Andreadis et al., 2007, Biancamaria et al., 2011b, 

Domeneghetti et al., 2014, Giustarini et al., 2011, Garcia-Pintado et al., 2013 and 2015, Hostache et 
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al., 2009, Matgen et al., 2010, Mason et al., 2009 and 2012, Tarpanelli et al., 2013, Yan et al. 2015), 

with the aim of improving flood forecasts. Naturally, calibration of these hydraulic models is essential 

for accurate results, and calibration studies to date have largely focussed on roughness. Aronica et al. 

(2002), Tarpanelli et al., 2013 , Hall et al., 2005 and Di Baldassarre et al. (2009a, 2010 & 2011) have 

used flood extent maps to successfully find best fit roughness parameter values. Mason et al. (2003) 

point to roughness being a dominant factor for shallow reaches in particular and Di Baldassarre et al. 

(2009b) found that the optimal roughness parameters depend on the timing of the SAR image and the 

magnitude of the flood event. Given this prior research, historic observations of flooding should have 

a particular role in model calibration and sensitivity testing.  

The provision of good bathymetric data is also critical to the application of hydraulic models (Trigg et 

al., 2009, Legleiter et al. 2009)., Yan et al., 2015). Yet generally there are few ways to obtain 

bathymetry information for hydraulic models where no ground data measurements exist. River depth 

may be estimated (e.g. Durand et al., 2010 employed an algorithm based on the Manning equation or 

Moramarco et al. 2013 who created an entropy depth distribution using surface flow velocity data) or 

measured with optical satellites using reflectance as Legleiter et al. showed (though the method is 

best suited to clear and shallow streams). Hostache et al., (2015) also proposed a drifting GPS buoy to 

assimilate water elevation and slope data into a hydraulic model to define riverbed bathymetry, but 

overall passive and remote mechanisms are scarce. Spatially distributed river depths are rarely 

available and there is a strong argument that where channel geometry is a priori unknown it should 

also be estimated through calibration.  

It has commonly been thought that channel geometry and roughness traded off against each other 

(e.g. as in the well-known Manning equation) and therefore that they could not be uniquely identified 

at the same time.  However, Garcia-Pintado et al. (2015) estimated channel friction and spatially-

variable channel bathymetry together using water levels derived from a sequence of real SAR 

overpasses (3m resolution data from the COSMO-SkyMed constellation of satellites) and the Ensemble 

Transform Kalman Filter. Durand et al. (2008) demonstrated that estimates of depth and water (i.e. 

friction) slope could be derived simultaneously from synthetic observations of water surface elevation 

integrated with a hydraulic model, though this research related more specifically to depth of flow, 

rather than depth of channel. Yoon et al. (2012) were also able to derive bed elevations from similar 

synthetic data. Mersel et al. (2013) progressed this further by proposing a slope-break method to 

locate optimal locations to measure flow depth, through low to high flows over time, using synthetic 

data.  Durand et al., Yoon et al. and Mersel et al. used synthetic altimetry data which was created 

within the context of the upcoming Surface Water & Ocean Topography (SWOT) mission that will be 

able to resolve rivers over 100m wide only.  

Research to date has therefore demonstrated the feasibility of calibrating hydraulic model parameters 

governing channel depth and channel roughness simultaneously. This has been achieved using the 

higher spectrum resolution (up to 50m resolution) SAR images of flood extent. But because pixel size 

is inversely proportional to orbit revisit time, high resolution data are available only infrequently.  

There is thus some benefit to also exploring the use of existing moderate (50m to 300m) resolution 

SAR data (such as the archive of 150m resolution ENVISAT Wide Swath Mode) to understand more 

about how channel depth and friction can be identified concurrently using coarser resolution SARs, 

and whether a single SAR flood map is sufficient to achieve this or a sequence of flood maps are more 

beneficial.   
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Therefore the objective of this paper is to draw on this prior research for simultaneous channel 

roughness and depth calibration and extend it to determine whether medium resolution SAR data can 

be used to concurrently estimate channel friction and geometry parameters in a hydraulic model. If it 

can be used; to determine if a single SAR derived flood map is sufficient to do this, or if a sequence of 

flood maps is more useful. For this the identifiability technique presented by Wagener et al. (2003), 

namely Dynamic Identifiability Analysis (DYNIA) is utilised. A secondary aim of this paper is therefore 

to test the utility of the DYNIA identifiability technique in this specific context to find the SAR images 

with high parameter information and locate the likely optimum parameter values. This methodology 

particularly uses flood extent with an accuracy-scoring method that disregards the correct detection 

of ‘no water’ pixels. 

In section 1 we describe the methodology with information on the hydraulic model, the data needed 

to run it and the methods used to select the range of model parameters. There is also an introduction 

to the procedure used to process the satellite data and create flood extent maps.  Section 2 describes 

the study area and data used, whilst Section 3 presents and discusses the results (including whether 

SAR observations at particular times during a flood or particular combinations of images are more 

successful). Conclusions are presented in Section 4. 

1 Method 

1.1 Hydraulic model  

We use the LISFLOOD-FP hydraulic model with the Sub-Grid formulation of Neal et al. (2012) to 

simulate flood flows. LISFLOOD-FP (Bates and De Roo, 2000) is a 2D hydraulic model for subcritical 

flow that solves the local inertial form of the shallow water equations using a finite difference method 

on a staggered grid. As input the model requires ground elevation data describing the floodplain 

topography, channel bathymetry information (river width, depth and shape), boundary condition data 

consisting of discharge time series at all inflow points to the domain, water surface elevation time 

series at all outflow points and friction parameters which typically distinguish different values for the 

channel and floodplain. Of these data floodplain topography information is readily available from 

airborne and satellite Digital Elevation Models, boundary condition data can be taken from ground 

gauges, hydrologic models or statistical distributions, and friction parameters are typically estimated 

from lookup tables or calibrated. Channel bathymetry can be taken from ground surveyed cross 

sections, however for much of the planet no such measurements exist and are impossible to obtain 

remotely.  In this situation channel bathymetry is a priori unknown and it is therefore sensible to also 

treat it as a parameter that must be calibrated along with the friction. 

In order to describe bathymetry as a calibrated variable in this experiment, river channel depth was 

parameterised as a linear scaling of reach-average width. In general, this linear approach will not be 

appropriate over an entire river network where the reach-averaged width to depth relationship would 

be expected to change with bankfull discharge. However, the width of the river chosen as a test case 

for this paper is constant along the simulated reach, while we assume the depth of tributaries has an 

insignificant impact on the flooding on the main stem. In effect the optimisation problem therefore 

simplifies to estimating reach-averaged bankfull depth and Manning’s ‘nc’ for a channel of reach-

average width.  In width-varying river systems a dual parameterisation approach for depth and width 
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could be adopted but would substantially complicate the parameter estimation problem. The 

floodplain Manning’s roughness coefficient was assumed constant in these experiments as previous 

tests have shown that the model was less sensitive to floodplain friction than channel friction .   

We used Latin Hypercube Sampling (LHS) to take 1000 samples of the two uncertain LISFLOOD-FP 

parameters ‘r’ and channel Manning's roughness ‘nc’. LHS is a useful sampling scheme for multiple 

variables as the method can sample parameter values within a prior distribution in more than one 

dimension (Huntington, 1998). We used LHS here as it is an efficient scheme that statistically 

represents the parameter space without repetitions (Beven, 2009). and Pianosi et al.  2016 ).  

1.2 SAR image processing algorithm 

Because SAR satellites are capable of all-weather day and night observations and can distinguish the 

differences between land and open water signal returns they are particularly useful for observations 

of flooding. To derive flood extent maps from the SAR images, we adopted the method proposed by 

Matgen et al. (2011) and developed by Giustarini et al. (2013)  and Chini et al. (under review). This 

method has three steps as illustrated in Figure 1 below. Firstly the probability density function (pdf) 

of the open water backscatter values in the SAR data is estimated. This requires identification of the 

bimodal aspect to a histogram of backscatter values so that ‘open water’ values can be recognized 

from other backscatter values. A theoretical pdf of water backscatter is then fitted to this histogram 

using nonlinear regression techniques. The backscatter threshold value (Thseeds) where this pdf starts 

to diverge from the histogram is identified. Then isolating those pixels with backscatter values lower 

than this threshold produces a preliminary flood map (region growing seeds). The second step is to 

apply a region growing approach to grow the flooded areas within the preliminary flood map until a 

tolerance threshold level is reached (Thtolerance). For the SAR image this step refines the extent of pixels 

with an open water value.  

In the last step a reference image is used to remove pixels from the flood map that do not change 

between the flood and non-flood images (Hostache et al., 2012) – i.e. pixels which have ‘water surface 

like’ radar responses and could be either bodies of permanent water or smooth surfaces such as car 

parks or flat roofs. This third step creates the final binary map of flood extent. Errors inherent in the 

SAR processing are, for simplicity, not considered in this paper. 
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Figure 1 - General scheme of the three processing steps of the flood detection algorithm. 

 

1.3 Performance measures 

We compare these SAR derived flood maps against the simulated flood maps generated from 

LISFLOOD-FP output at the equivalent time step by using a contingency matrix shown in Table 1. Flood 

maps are compared pixel to pixel to determine if there is agreement or disagreement between the 

two paired maps on whether there is surface water present or not. 

Table 1 - Contingency table (after Stephens et al, 2014 and Mason, 2003). 

 

Modelled 

Water No Water 

O
b

s
e

r
v

e
d

 

Water A) Correct Water (Hits) B) Under-prediction (Misses) 

No 

Water 
C) Over-prediction (False Alarms) D) Correct No Water (Correct Rejections) 

 

From this a binary pattern performance measure is used to give a deterministic indication of how well 

each LISFLOOD-FP simulated flood map has represented the observed data (Mason, 2003 and 

Stephens et al., 2014). We chose to use the Critical Success Index (CSI, equation 1 below) as this 

measure does not consider ‘correct rejections’ (D in Table 1) in the calculation (Bates and De Roo, 

2000, Horritt et al., 2001a, Aronica et al., 2002) and it weights over- and under-prediction equally (C 
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and B respectively). CSI scales between 1 (indicating perfect skill in the model) and 0 (indicating no 

skill in the model). 

CSI =  
�

�����
                                   (1) 

If ‘correct rejections’ were included by the use of a different performance measure the result would 

be overly optimistic scores, given the large areas of ‘no water’ normally observed in a SAR image. All 

LISFLOOD-FP simulated flood maps would seem to perform exceptionally well with little to help 

differentiate between each simulation.  

Before comparing SAR and LISFLOOD-FP model results an independent remote dataset is used to 

illustrate the impact of observation errors and gaps inherent in the SAR data from processing. This 

validation step makes use of a very high-resolution (0.2m) aerial photograph taken by the EA on 24 

July 2007 from an aircraft passing over at 11:30 GMT (details within Giustarini et al., 2013). A flood 

map shapefile was created from this imagery by manual definition of the flood boundary.  This was 

then converted and upscaled to a raster with the same spatial resolution (75m) of the LISFLOOD-FP 

model results. Both the ENVISAT data and the LISFLOOD-FP results (the highest scoring models) are 

compared with this aerial data. A figure showing these flood extents and the CSI results from this 

comparison are given in section 3.1 below. 

1.4 Parameter identifiability 

To determine most likely values for ‘r’ and ‘nc’ we follow the technique of Wagener et al. (2003) in 

applying a dynamic identifiability analysis (DYNIA) to the ensemble of CSI score results. Since the 

original DYNIA method was applied to continuous data and not discrete observations some changes 

are needed which are described at the end of this section.  

The first stage in the DYNIA method is to rescale the ‘objective function’ (i.e. CSI scores) so that they 

add up to one, which is done by dividing each model result by the sum of all scores. Next, computing 

the cumulative distribution of the rescaled objective function transforms the objective function into a 

support measure which sums to unity - the ‘cumulative support’ – so that each support measure may 

be comparable. To obtain the information content (IC) a confidence limit is applied to the rescaled 

objective functions to exclude outliers. The width of the confidence limit depends on how the best 

performing parameters are spread within the parameter space: a wide confidence limit suggests that 

the parameters are distributed within the parameter space evenly and IC is low, whereas a narrow 

confidence limit suggests that the best performing parameters are located within a smaller range and 

IC is higher. To normalise results for this data a transformation measure was used (1 minus the width 

of the confidence limits over the parameter range, normalised to run from zero to one): so a value 

close to 1 is equivalent to a high IC. The IC can have any value between 0 (no information in that 

observation for parameter identification purposes) and 1 (observation is most informative for the 

parameter). The IC results are shown in section 3.2 below.   

The second stage in DYNIA is to find the identifiability by locating where in the parameter-time space 

most parameter information can be found. This is achieved by examining a plot of ‘cumulative support’ 

against a parameter value. Any deviation from a straight line gradient of this cumulative support 

indicates whether the parameter is conditioned by the objective function or not. The stronger the 
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deviation, the stronger is the conditioning/identifiability of the parameter variable.  This is done using 

the marginal parameter distributions – interactions are therefore only implicitly accounted for. The 

final stage is to organise the data into bins and calculate the gradient of the cumulative support 

between them. The results from this examination are shown in section 3.3 below. These results are 

represented using plots of the gradient of the cumulative support value versus the parameter of 

interest to indicate the strength of the identifiability in each case.  The IC and identifiability for all 

single SAR acquisitions are shown along with particular SAR combinations/groupings: by flood event 

and by position in the flood hydrograph as detailed in section 2.2 and Table 3. The identifiability plots 

have been converted to cumulative distribution function (cdf) plots for easier cross- comparisons. 

The original method proposed by Wagener et al. (2003) recommends a pre-selection of models before 

stage 1 by using only the top 10% performing models. We deviate from this original method by using 

the complete sample of 1000 sets of CSI scores since we found this gave a clearer overview picture of 

identifiability with our data.  

The objective of this paper is to determine if a grouping of SAR data provides more information than 

single data. Here the method of obtaining the CSI ‘group’ score is also a small departure from the 

original DYNIA method. These group scores are determined by multiplying each single model/SAR 

flood map CSI result with the CSI score of the next SAR flood map until all members of the particular 

group have been added. The unique combinations which comprise these groups are described in Table 

3 below.  This combining of CSI scores is done for results from each of the 1000 models/parameter 

scenarios. The next step is the same as for single CSI scores as described above – i.e. to rescale the 

objective function and compute the cumulative support. So although multiplying CSI values will reduce 

the grouped score, it has no bearing as it is the changes to the gradient of the cumulative support 

value that indicates parameter identifiability, not the CSI scores themselves. The group IC and 

identifiability results shown in sections 3.2 and 3.3 result from SAR data that was grouped by this 

multiplication of CSI scores. 
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2 Study area and data used 

The area around Tewkesbury (UK), located at the confluence of the Rivers Severn and Avon is our test 

location. Figure 2 illustrates the 30.5 km by 52.4 km model domain, showing the two main rivers and 

their tributaries. 

 

Figure 2 - Extent of the River Severn model. 

 

2.1 River Severn model set up 

Two separate LISFLOOD-FP models were created to test the methodology. Both models are at 75m 

spatial resolution and use the same background DEM. Additionally, both models use the same gauged 

inflows and have a rectangular shaped channel. At the lower end of the model a ‘free’ downstream 

boundary condition was applied with a fixed energy slope of 0.00007, based on the average valley 

slope. 

The differences between the two separate models are in how bankfull channel depth and Manning’s 

channel roughness values are obtained. First, an ‘observed’ model was created using surveyed cross 

sections of the main rivers to determine channel width and depth with a fixed Manning’s channel 

roughness parameter of 0.038 (a value representing a main channel which is clear with some winding 
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and presence of stones/vegetation - from Ven Te Chow, 1959). The cross section survey data were 

provided by the Environment Agency of England and Wales (EA). Second, a ‘test’ model was created 

in which the depth parameter ‘r’ and Manning’s channel roughness parameter ‘nc’ are determined 

using the DYNIA identifiability analysis as described in the previous section. The depth parameter ‘r’ 

was sampled between 0.0 and 0.5 so that the modelled river depth would never exceed half of the 

river width. This is a reasonable assumption for this site where the Severn is on average around 75m 

wide (estimated from LiDAR data) with surveyed bankfull depth varying between 6m and 11m. The 

range of Manning channel roughness values for the sampling was set between 0.015 and 0.100 (Ven 

Te Chow, 1959). A low ‘nc’ of 0.015 would represent a channel which is clear and straight whereas and 

a high ‘nc’ value of 0.100 would represent a channel with very thick vegetation/submerged branches 

present. This range widely encompasses recommended roughness values for the rivers present within 

the study domain.   

For both the test and observed models the Manning’s floodplain roughness value was set at a standard 

0.06 for the entire domain. This is a reasonable average for the floodplain which is mainly crop and 

grassland (0.03-0.04) but with presence of some trees (0.12) and brush (0.07). The Manning’s values 

for the floodplain and the river channel (‘nc’) are assumed to be spatially and also temporally invariant. 

The floodplain topography was taken from a 2m resolution LiDAR based Digital Surface Model (DSM) 

with vertical RMSE of 0.10m taken on 9 December 2005 by EA. The EA treated the DSM to remove 

structures and vegetation and we then spatially averaged this Digital Terrain Model (DTM) to 75m 

resolution as this is an appropriate compromise between model fidelity and computational cost for 

rural river reaches (Horritt and Bates, 2001b).  The 75m DTM was further processed to reinsert the 

maximum height of the flood embankments along the reach in order to preserve normal flood 

behaviour along the river banks. No bridges or weirs are included in the model. Neal et al., 2011 and 

Garcia-Pintado et al., 2013 provide additional details of the model set up for the River Severn around 

Tewkesbury.   

Observed flows obtained from the EA were used as inflow to both models. Forcing flows come 

principally from the gauging station on the River Severn at Bewdley but with additional inputs from 

three tributaries of the River Severn: River Stour (at Kidderminster), River Salwarpe (at Harford Hill 

near Droitwich Spa) and River Teme (at Knightsford Bridge near Knightwick).  For the River Avon flows 

from the Evesham gauging station were used, with two additional flow contributions from the Avon 

tributaries Bow Brook (at Besford) and the River Isbourne (at Hinton). A smaller input from a wetland 

area west of Tewkesbury was also included, with flows scaled by area from the Salwarpe gauged flows.   

The River Severn floods events of March 2007 (simulation period: 19 February 2007 - 29 April 2007), 

July 2007 (simulation period: 5 June 2007 - 12 August 2007), January 2008 (simulation period: 26 

November 2007 - 25 February 2008) and January 2010 (simulation period: 4 January 2010 – 18 

February 2010) were modelled. The dates were chosen so the model would start at least 10 days 

before the start of the flood and end after flows had returned to within bank. 

2.2 SAR observations of the River Severn 

Historic ENVISAT Wide Swath Mode (‘WSM’, 150m resolution) data are available from the European 

Space Agency’s ENVISAT catalogue. These were resized to 75m resolution data. Previous research at 

this site has largely focused on the July 2007 flood event observations (Mason et al., 2012 and 2014, 
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Durand et al., 2014, Garcia-Pintado et al., 2013, Schumann et al., 2011). The present work makes use 

of other historic flood observations in this area – namely the floods of March 2007, January 2008 and 

January 2010. Details of the satellite acquisition times are shown in Table 2, along with hydrologic 

information on the flood taken from the gauging station at Saxons Lode in the middle of the model 

domain. Time to peak describes the number of hours between the start of the event and the peak of 

the flood. Flooding from sequential events or with high contributions from other sources such as 

groundwater will therefore have a greater time to peak. 

Table 2  - The ESA sourced ENVISAT ASAR WSM acquisitions used with equivalent flow and return period 

data for Rivers Avon and Severn: gauged data was obtained from the EA. 

SAR ID Date Time Time 

to 

flood 

peak 

(approx., 

hrs.) 

Gauge

d flow 

(m3/s) 

Event 

return 

period 

(approx.) 

Gauged 

flow 

(m3/s) 

Event 

return 

period 

(approx.) 

   At Saxons Lode (Severn) At Evesham (Avon) 

1 (March 2007, 1) 05/03/2007 10:27 268 388 

 <5 

188 

 <3 
2 (March 2007, 2) 05/03/2007 21:53 268 405 87 

3 (March 2007, 3) 08/03/2007 10:34 268 419 55 

4 (March 2007, 4) 08/03/2007 21:58 268 400 45 

5 (July 2007, 1) 23/07/2007 10:27 132 532 
 30-40 

196 
 110-150 

6 (July 2007, 2) 23/07/2007 21:53 132 512 167 

7 (January 2008, 1) 17/01/2008 21:55 228 432 

 <5 

64 

 <3 8 (January 2008, 2) 24/01/2008 10:12 228 440 28 

9 (January 2008, 3) 24/01/2008 21:38 228 433 26 

10 (January 2010, 1) 18/01/2010 10:30 73 407 
 <3 

107 
2 

11 (January 2010, 2) 18/01/2010 21:53 73 403 37 

 

We separated these 11 SAR observations into different categories by particular flood event (section 

3.3.2) or where the acquisition occurs on the flood hydrograph (section 3.3.3). Table 3 shows how this 

segmentation of the 11 acquisitions into categories was devised. 

Table 3 - Description of SAR groupings. 

Description 

SAR ID 

1 2 3 4 5 6 7 8 9 10 11 

By flood ‘event’ March 2007 July 2007 January 2008 January 2010 

By point in hydrograph [r =rising 

limb, p = peak, f = falling limb] 
r r f f f f p f f p p 
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3 Results and discussion 

3.1 CSI scores  

In this paper we compare the results of hydraulic model-generated flood maps with the SAR 

observations of flood extent in order to determine if the satellite data has information in terms of 

calibrating the model. However with inherent errors in the SAR data from processing it is worthwhile 

first to compare the SAR data with those from other available remote data to illustrate the impact of 

observation errors. For validation, the CSI score is calculated between the ENVISAT data and an aerial 

photograph of the River Severn taken on 24th July 2007. 

Figure 3 illustrates the derived flood extent from this aerial data (far left) with the ENVISAT WSM SAR 

derived flood map (centre left) from the previous day. Highest scoring LISFLOOD-FP simulation flood 

maps from the ‘observed’ model (centre right) and ‘test’ model (far right) at the same time step as 

the ENVISAT data are included for comparison. The CSI results from this SAR-aerial and SAR-LISFLOOD-

FP model comparison are shown in Table 4.  

Table 4 - CSI scores, for July 2007 flood extent maps. Comparing results obtained using ENVISAT WSM SAR 

and aerial derived flood extents, with hydraulic model generated flood extent. 

Flood map: Aerial photograph derived ENVISAT  derived 

Aerial photograph derived  - 0.47 

‘Observed’ Model (not calibrated) 0.74 0.43 

‘Test’ Model 0.75 0.46 

 

It is clear that the observed and test LISFLOOD-FP models produce lower CSI scores with the SAR data 

than with the aerial data. This is to be expected and other studies, which have used higher resolution 

SAR imagery for validation (e.g. Bates et al. 2006, Di Baldassarre et al. 2009a and 2010), have observed 

the same result. The aerial photograph-derived flood map was delineated manually and therefore has 

improved representation of flooding because there are no detection gaps in the flood extent, whereas 

SAR-derived flood extents rely on the correct detection of areas of water using a procedure which is 

vulnerable to issues of detection and processing. So while we may conclude that aerial imagery has 

the best level of detail in flood extent available here, this data can also be limited by observation 

extent and processing (i.e. manual delineation of the flood edge is still interpretive) and as a resource 

is not as frequently available as SAR data for observing flood events. It is also worth pointing out that 

for the ENVISAT SAR data, describing flood extent using the semi-automated algorithm can be a faster 

solution than manually delineating flood extent from new photographs. 
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Figure 3 - The July 2007 flood extents as observed by aerial photography (on 24rd July 2007 at 11:30 , left) and ENVISAT ASAR instruments in WSM (on 23rd at 10:27, 

centre left). The same flood event simulated in LISFLOOD-FP with surveyed cross sections (centre right, with Manning’s channel roughness fixed at 0.038) and the test 

model with optimally calibrated parameters (right). 

Aerial ENVISAT 

Observed 

model 

Test 

model 
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The scores and flood extent for the observed model are not better than the test model results as might 

be expected. This may be explained by the fact that while the bathymetry of the observed model does 

come from survey data, the (domain-average) channel roughness value is not calibrated in either 

model. While the test model had 1000 parameter-varying depth and roughness values, the observed 

model had a best estimate of domain-average channel roughness parameter (of 0.038). While 

appropriate for the main rivers, it is evident that the channel roughness value is not suitable for the 

narrower tributaries.  

Of interest also, when the aerial data is compared with the ENVISAT WSM SAR derived flood maps 

(row 1, last column), CSI scores are similar to those obtained from the best hydraulic model results. 

This indicates that the hydraulic models are representing the observed flood extent for this flood 

accurately, within the limits of the available data. While sections of the flood are missing in the SAR 

data (for example upper River Avon and Severn) bias can be introduced. Ideally these non-informative 

areas of the SAR data would be masked out to limit the impact, but with series of data each differently 

capturing a flood event this requires a more comprehensive analysis than available here.  It is currently 

is an active area of research; for example Giustarini et al. (submitted) propose flood probability maps 

from sequences of SAR data. These maps could be used to mask out ‘low probability of flooding’ areas. 

Also Schlaffer et al., 2015 makes use of harmonic analysis to refine flood extent mapping – a mask 

could be created to obscure pixels with low signal to noise ratios.  

As explained in section 1 the first step in the methodology is to examine the accuracy of the test model 

with changing parameter value, using CSI. The ENVISAT WSM SAR and LISFLOOD-FP CSI results were 

plotted against the ‘r’ and 'nc' parameter variables and are presented in Figure 4.  This figure includes 

only two plots: one for an ENVISAT WSM acquisition taken on 23rd July 2007 (10:27am) and one taken 

on 24th January 2008 (10:12am), but these CSI results represent typical results for the entire SAR data 

available.  

  
 

Figure 4 - Single SAR acquisitions are compared with LISFLOOD-FP modelled flood maps. Left: results from 

the SAR acquisition on 23rd July 2007 at 10:27, right: result from the SAR acquisition 24th January 2008 at 

10:12. 

The black areas in Figure 4 show that a number of ‘r’ and 'nc' parameter combinations/models are able 

to produce a good result (i.e. equifinality as described by Beven, 2009). The optimal ‘r’ parameter 

range varies slightly depending on the image considered. Here test models with the best reproduction 

of the SAR flood map have 'r' parameters between approximately 0.10 and 0.30 (July 2007) and 
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between 0.07 and 0.25 (January 2008). Generally, the best reproduction of the SAR flood maps is 

obtained with models that have an 'r' value in the smaller parameter range which translates to a wide 

and shallow river channel.  

 

Figure 4 also illustrates the co-variance and a linear dependency between the two parameters. This 

was observed in all the SAR data. Although the choice of parameter range emphasizes it, there is a 

slightly greater skill score sensitivity to changes in ‘r’ than for ‘nc’. This is to be expected since changes 

in channel depth would have an immediate and local impact on flood level and flood extent. It is logical 

therefore to see changes in ‘r’ producing a marked change in flood extent. Channel roughness changes 

by contrast have an impact more on flow velocities, consequently impacting on the timing of flood 

wave propagation through the channel (as discussed in Neal et al., 2015). This would have a more 

spatially diffuse impact on flood extent that is barely perceptible here.  

Previous SAR based assimilation studies (Hostache et al., 2009, Mason et al. 2009, Di Baldassarre et 

al. 2009a) show that with a known and fixed channel bathymetry there is sufficient sensitivity in the 

roughness parameter to enable calibration. The above findings indicate that the sensitivity of ‘nc’ is 

less obvious when ‘r’ is also unknown. There are previous studies also where, as here, channel friction 

appears less sensitive when other parameters are simultaneously calibrated. Roux et al. (2008) for 

example found sensitivity in hydraulic model response to channel roughness to be weaker than 

sensitivity to geometry parameters and boundary conditions within a Generalised Sensitivity Analysis 

framework. Additionally Garcia-Pintado et al. (2015) found that sensitivity to bathymetry parameters 

dominated when using the Ensemble Transform Kalman Filter to simultaneously estimate bathymetry 

and channel friction. The sensitivity in channel friction may therefore be not as obvious when other 

parameters are simultaneously calibrated because the model is no longer compensating for previously 

unrepresented uncertainties. It could be suggested that channel friction is reverting to its true 

sensitivity and so when channel friction is combined with more dominant parameters such as channel 

bathymetry it is rendered less useful for model calibration. 

Consequently an important result of this paper is that - in this particular experimental set up with 

channel roughness parameter ‘nc’ examined simultaneously with the channel depth parameter ‘r’ for 

the available ENVISAT SAR data - ‘nc’ has a much reduced sensitivity compared with the ‘r’ depth 

parameter response.  It is observed that ‘nc’  will yield optimal results for as long as ‘r’ is also unknown. 

This lack of sensitivity of channel roughness in this and all subsequent results meant that ‘nc’ could not 

be identified with any real confidence with this methodology (while ‘r’ is also unknown). So while ‘nc’  

analysis was carried out, from this point onwards only those results from the more identifiable ‘r’ 

parameter. are shown. ‘nc’  results are now omitted (but can be provided upon request if of interest).  

3.2 Information content (IC) 

Table 5 presents IC results for depth parameter ‘r’. For single SAR observations (left column) there is 

clearly greater information content in the July 2007 flood event images. The inundation during this 

higher magnitude event extended well into the floodplain and the flood detection algorithm was able 

to detect a large number of flooded cells. The lower IC scores for the March 2007, January 2008 and 

January 2010 events show that these observations contain less information to help estimate 

parameter ‘r’. 
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Table 5 - Information content for ‘r’ from SAR observations and groups of SAR observation with a 90% 

confidence limit applied. 

Sequence Information Content  Sequence Information Content  

1 - Mar07_1 0.10 Rising limb 0.13 

2 - Mar07_2 0.11 Peak of hydrograph 0.23 

3 - Mar07_3 0.11 Falling limb 0.64 

4 - Mar07_4 0.11 March 07 event 0.50 

5 - Jul07_1 0.16 July 07 event  0.37 

6 - Jul07_2 0.19 January 08 event  0.25 

7 - Jan08_1 0.10 January 10 event  0.14 

8 - Jan08_2 0.11 All SAR   [1-11] 0.68 

9 - Jan08_3 0.11   

10 - Jan10_1 0.10   

11 - Jan10_2 0.10   

 

Grouping SAR data boosts the IC scores considerably as can be seen in the right hand side columns of 

Table 5. Group IC scores are estimated after the SAR data have been grouped together and CSI scores 

combined as described in section 1.4. Different SAR groupings were tested as illustrated in Table 3 

including combinations according to flood event, position on the hydrograph as well as ‘all SAR’ data. 

For IC the July 2007 flood now no longer outperforms the rest and instead combinations of images, 

like the March 2007 flood event, have greater information on ‘r’.  The March 2007 flood combination 

combines observations either side of the hydrograph peak and the January 2008 flood combination 

observes flooding ‘at peak’ and soon after in the falling limb. By contrast the reduced-scoring January 

2010 and July 2007 combinations acquired images at a single stage in the hydrograph only. We might 

conclude that the detection quality of the SAR flood maps and timing of acquisition must influence 

the final IC score and this is supported also by the observation that the early ‘falling limb’ grouping 

has one of the largest IC scores here.  

Nevertheless, the number of SAR flood maps combined appears to be important also since the ‘all 

SAR’ and early ‘falling limb’ (just over half of these SAR images, Table 3) groupings emerge as providing 

the highest IC. The March 2007 flood grouping also contains twice as many members as the July 2007 

or January 2010 flood groupings and outperforms both. Clearly, incorporating data from multiple 

observations improves IC since combining SAR images (and CSI scores) improves the likelihood of 

extracting information on the unknown parameters. However it is not simply a question of numbers 

otherwise ‘falling limb’ (combining 6 SAR flood maps for an IC score of 0.64) would not be approaching 

the success of ‘all SAR’ (combining 11 SAR flood maps for an IC score of 0.68). Nor is greater 

information necessarily revealed by removing poor scorers (‘all SAR’ IC score reduces from 0.68 to 

0.64 when the 4 lowest scoring flood maps are removed from this grouping). Instead the solution may 

lie in using SAR flood maps around the peak and falling limb of the flood since combining ‘falling limb’ 

and ‘rising limb’ observations together yields an IC score of 0.65 but combining ‘falling limb’ and ‘peak’ 

observations together provides an IC score of 0.67. Further work and data is necessary to draw any 

firm conclusions for the ‘r’ model parameter. 
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3.3 Identifiability 

The identifiability of ‘r’ within single images and combinations of images is assessed in this section. 

This shows where the parameter is most easily identified in the ensemble of model results. A strong 

identifiability response would be marked out by having a sharper peak in the following plots. The 

steeper the gradient, the stronger is the identifiability of the parameter. A sharper peak indicates that 

the best performing parameters are concentrated in a small area of the parameter space. Conversely 

a wider, shallower peak would indicate lower identifiability and that the best performing models are 

widely distributed within the parameter range.  

From the CSI contour plots as illustrated in Figure 4 we see that the best performing model parameter 

combinations are distributed fairly evenly within the parameter space so a 90% confidence limit was 

also applied to the data prior to measuring the gradient of cumulative distribution of rescaled support 

values and creation of these following plots.  

3.3.1 Individual SAR observations 

 

 

Figure 5 - Identifiability against ‘r’ parameter, for each ENVISAT SAR observation in archive. 

 

Figure 5 shows the identifiability plots for all single SAR data, numbered as in Table 2. Because these 

plots do not generally have a strong peak, identifiability is relatively weak for the individual SAR 

observations. The strongest response here occurs for ‘r’ between 0.05 and 0.15.  The peaks are shaped 

differently for each SAR observation; SAR 4 and SAR 3 both have stronger identifiability (narrower 

peaks than the rest) whereas SAR 6 and SAR 2 are relatively weak in this ensemble by having wider 

peaks.  

Taken collectively these data provide inconclusive results. This generally weaker identifiability 

suggests that parameter ‘r’ would be difficult to identify within this data individually. The SAR data 

0.1 0.2 0.3 0.4
parameter r

0

0.2

0.4

0.6

0.8

1

Id
en

tif
ia

bi
lit

y 
(S

in
gl

e 
S

A
R

)

SAR 1
SAR 2
SAR 3
SAR 4
SAR 5
SAR 6
SAR 7
SAR 8
SAR 9
SAR 10
SAR 11



17 

 

were acquired during different flood events (see Table 3) and their peaks occur at different ‘r’ 

parameter values. This variation may be due to differences in the size of flood extent (magnitude of 

flooding), the processing of the image or simply how the flood developed and that the location of 

flooded pixels is important. 

3.3.2 Flood event 

This section illustrates identifiability when data from individual SAR images are combined into ‘flood 

events’ as indicated in Table 3. An important characteristic of the ‘flood event’ identifiability plots is 

that the SAR acquisitions are taken together in close sequence. Garcia-Pintado et al. (2013) found that 

a tight sequence of images could improve model predictions. Combining observations in this way 

appears to focus the location of the ‘r’ parameter more clearly than is possible using single images.  

 

 

Figure 6 -Identifiability against parameter ‘r’, for flood events. 

This plot shows that the March 2007 and January 2008 events produce a stronger identifiability, 

between ‘r’ parameter values 0.07 and 0.15. However, the optimum ‘r’ value varies between 0.07 to 

0.1 and 0.1 to 0.15 depending on which of these floods is examined. It is entirely reasonable that 

identifiability of channel depth parameter in the data would vary with flood event as each flood is 

unique in magnitude and mechanism. Based on Figure 6, the March 2007 and January 2008 SAR 

images might therefore be best utilised to locate the value of parameter ‘r’. These two events have 

approximately the same peak discharge flows at Saxons Lode (see Table 2). However, the IC results 

point towards the March 2007 data combination alone as having more parameter information and 

the reason for this becomes clear when looking at the individual SAR maps of flood extent. The group 

of SAR images acquired in March 2007 combine to yield a more complete representation of the flood 

development than the combination from January 2008. So although Figure 6this identifiability plot 

shows that both March 2007 and January 2008 flood events would be useful to locate the parameter 

‘r’, IC shows the information contained in the March 2007 flood maps to be of most value. 
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3.3.3 Through the flood hydrograph 

Figure 7 looks at identifiability at three stages of a flood hydrograph for the 'r' parameter, namely from 

observations at the (late) rising limb, the peak and the (early) falling limbs (with reference to the stage 

hydrograph at Saxon’s Lode in the central portion of the model domain). The SAR data used for 

‘through the hydrograph’ groupings is described in Table 3. 

Previous studies have found that the scheduling of SAR images is important for calibration of models. 

Di Baldassarre et al. (2009b) found that identification of the optimal model parameters depended on 

the timing of the SAR image acquisition and the magnitude of the flood event. Garcia-Pintado et al.’s 

(2013) paper established that to improve forecasting of water levels in a model, regular observations 

during the rising limb and then less frequent observations during the falling limb gave most success. 

Additionally, Schumann et al. (2009b) cautioned that SAR images acquired during the wetting and 

drying phases of a flood could be showing floodplain connections and dewatering processes 

unconnected with the hydraulics represented by the model.  

 

 

Figure 7  - Identifiability against ‘r’ parameter, for different stages in hydrograph. 

While here the number of SAR data within each category is limited, Figure 7 shows there is a still 

difference in identifiability for these separate phases. The strongest 'r' parameter identifiability occurs 

for those images taken around the flood peak and falling limb of the hydrograph. These lines have the 

steepest gradients and narrower peaks. Parameter ‘r’ is most identifiable between 0.1 and 0.2 in this 

data. 

The weakest identifiability for the 'r' parameter occurs for the images taken during the rising limb as 

evidenced by the wider peak. Yet this result is in contrast to previous studies (e.g. Garcia-Pintado et 

al., 2013). The reasons for this disagreement with earlier research may simply lie with the way that 

‘through the hydrograph’ images were categorised. The method makes use of only a single 
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independent gauge (at Saxons Lode) to define the phases and as such it could be an oversimplification 

of the flood dynamics in a river catchment such as this where the ‘rising’, ’peak’ and ‘falling limb’ of 

the flood occur at different times depending on where you measure within the model domain. It might 

be more accurate to state that these flood extents observed around the peak and early falling limb 

capture the average moment of transition of flows over banks into the floodplain and these are better 

conditions for identifying channel depth parameters.  

Alternatively this divergence of findings for the optimum image time could be explained by the 

different experimental set up and goals. Garcia-Pintado et al. (2013) made use of distributed and 

derived water levels to correct model inflow errors and improve model predictions with assimilation, 

whereas identifiability here makes use of SAR derived flood extent to calibrate reach-averaged 

bathymetry and roughness parameters for the entire river network. Information obtained during the 

rising limb was the most useful time to correct inflows because the water level and channel volumes 

are most changing during this time. Whereas this experiment, in locating the optimum bathymetry 

and roughness parameters, relies on mapping of flood extent (i.e. at bankfull and overbank). This is 

seen most usually in the so-named ‘peak’ and ‘falling limb’ images where there is indeed flood extent 

but also where flows (at some locations within the model domain) are transitioning between channel 

and floodplain. 

3.3.4 All data 

Figure 8 shows the identifiability result for all 11 SAR flood maps combined and compares it with all 

the previous group results so far. As for the IC results, this ‘All SAR’ arrangement produces an 

observable improvement in identifiability compared with the single SAR or ‘flood event’ plots. 

Although section 3.3.1 shows that a single image does provide the information needed to locate 

parameter 'r', these results show that a grouping of similarly conditioned images can locate ‘r’ more 

distinctly and thus with greater confidence. Here the strongest identifiability is for those models with 

‘r’ between approximately 0.10 and 0.12. Identifiability is particularly strong for the ‘All SAR’ results.   

 



20 

 

 

Figure 8 - Identifiability against r parameter, for all hydrographs. 

These results suggest that greatest information for parameter 'r' can be obtained by making use of as 

much data as is available: in other words that by simply making use of all available images the depth 

parameter 'r' becomes more identifiable. Moreover ‘All SAR’ data mixes flood magnitudes and 

therefore the model is therefore likely to be more robustly calibrated for a range of event scenarios. 

In this instance including even relatively poor flood maps does not negatively impact the result.  

However, this might not always be true and situations may arise where particular flood maps (or sets 

of flood maps) would be disinformative. 

3.4 Constraining the channel roughness parameter ‘nc’ 

The results above show that calibration is possible for the more dominant depth parameter but that 

roughness is less easily located in this simultaneous calibration methodology. So far it is assumed that 

no ground data are available to give prior information on either parameter and so the ranges are 

deliberately broad. However one or both parameters could be constrained further with some 

knowledge of the catchment and standard look up tables (e.g. Phillips et al., 2007, Ven Te Chow, 1959). 

Given that even a cursory examination of Google Earth imagery shows regions of meander and 

channel alteration, obstructions and changing vegetation along the River Severn reach, the Manning’s 

channel roughness values are more likely to lie between 0.035 and 0.055. This section shows that if 

we constrain the ‘nc’ parameter to a narrower range based on physical principles and expert 

judgement it is possible to improve on first results. We focus here on just on the top performing 

models (the maximum CSI score or within 2% of it) to remove outlying model results. 
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Figure 9 – Identifiability for 23rd July 2007 at 10:27 showing ‘all data’ (solid line) and with ‘nc’ restricted to 

between 0.035 and 0.055 (dashed line).  

Figure 9 compares the identifiability for ‘All SAR’ data for the full range of models (roughness is not 

constrained, solid line) and for 236 models which satisfy the constraint of having ‘nc’ between 0.035 

and 0.055 (dashed line).  Where there is no constraint on ‘nc’ the location of ‘r’ is most identifiable 

between approximately 0.10 and 0.12 in ‘All SAR’ groupings.  With ‘nc’ constrained the ‘r’ value moves 

to a lower depth range of between approximately 0.08 and 0.10. This translates to a reach-average 

model depth of between 6m and 7.2m and is reasonably close to the observed data. In this constrained 

group of models, the single highest scoring model has ‘r’ of 0.086 (‘nc’ of 0.036) and so indicating the 

optimum reach-average model depth is around 6.51m. The equivalent rectangular depth from the EA 

survey is 5.63m (assuming a reach median width of 76m) using bank-full cross sectional area. The 

difference therefore between the calibrated value and the observed equivalent is approximately 

0.88m (an error of 16%). 

 

The model responds to changes in channel friction by altering the speed of the flood wave and flow 

velocities. These results highlight the important reasons for calibrating this second parameter 

concurrently. If channel roughness were set too high the flood wave would be delayed. Set too low 

and the flood wave would be too advanced. 

4 Conclusion 

This paper presents a methodology for dual calibration of bankfull depth and channel roughness 

parameters of the LISFLOOD-FP Sub-Grid hydraulic model using SAR data and a binary pattern 

classification measure based on flood extent. Multiple models performed well initially, but by 

employing an identifiability methodology we located the area of the parameter space with highest 

information for the depth parameter ‘r’. The location narrows with the use of more SAR images. 
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The methodology provides some information on which single and combinations of SAR flood maps 

would be most useful for calibration purposes. Single SAR flood maps would be sufficient to calibrate 

the depth parameter but the identifiability is much improved when multiple maps are combined. 

Combinations aligned according to particular flood events/magnitudes are not conclusively different, 

but using many or all available SAR images does offer a real improvement in identifiability. There are 

indications that combining maps with similar flood duration, or stage of flood (i.e. SAR images acquired 

close to peak or just after) would be beneficial for calibrating the reach-average depth parameter, but 

further work is needed with more targeted observations than the 11 used here. For robustness, a good 

range of flood magnitudes should be used for calibration.  

The channel roughness parameter ‘nc’ was less sensitive to variations in flood extent and we failed to 

locate a representative value for this parameter when ‘r’ was also varied. The likely cause probably 

due to the initial range selected being too broad and the suggestion that depth/bathymetry is the 

more dominant parameter in the model which largely overrides, at this model scale at least, the 

significance of channel friction. By constraining ‘nc’ to a more plausible range it was possible to 

improve the calibration method and further improve the global estimate for the depth parameter. 

Under this constraint the models with top CSI and identifiability results show that the reach-averaged 

depth parameter is calibrated to 0.086, translating roughly to a reach-average depth of approximately 

6.51m. This is an error of 0.88m compared with an equivalent measure from observed cross section 

data, where channel depth is approximated as 5.63m. 

A benefit of this methodology is that although we used gauged inflows within the model, in theory the 

calibration methodology should work also with no recourse to ground data if good inflows can be 

simulated and a good DEM is available. The method also does not require a step to obtain water levels 

from the flood data. It does however make some simplifications and assumptions. First, the method 

assumes that as there are no errors in the return signals or processing of the ENVISAT WSM images 

and the derived flood maps therefore represent the true and full flood extent, however in reality all 

data have some error.  and this would likely impact on the identifiability and IC results here. This is 

particularly true for single SAR data which are compared against each other but perhaps less easily 

isolated in grouped SAR data as the combining of data smooths out errors and by accumulation 

compensates for perceived detection errors in the remotely sensed data. Understanding the impact 

of these individual errors on the final result would be an interesting follow-on experiment. Neither 

has the importance of the SAR resolution been tested here.  

There is also error likely in the assumptions behind the model set up.  For example, we assume that 

the channel depth can be approximated with a parameter ‘r’ which is the ratio between channel depth 

to width at bankfull flow (i.e. ‘r’ is a linear scaling so as width varies, so directly does depth in order to 

conserve water volumes). There is also the assumption that there is no rate of change between width 

and depth, so in essence depth and width do not vary along the modelled reach and are therefore 

uniform within the domain. This fixes ‘r’, width and depth to a single value per model, which is applied 

throughout the domain. This assumption cannot truly represent the reality of channel bankfull flows 

at particular points in the model, so it can only be used if there is an assumption that results represent 

a ‘reach-average’ depth value for the entire modelled domain, based on a reach-average width. In this 

way, local variations in width, depth and flow can be smoothed out. Straight uniform channels are 

observed in natural systems only for short stretches of river and so the methodology may be more 

appropriate within smaller sub-reaches (i.e. ‘sub-regions’ or tributaries) where hydraulics and 



23 

 

hydrology are similar. or within medium sized catchments with ostensibly negligible variation in 

domain channel width. Future work will investigate the applicability of the methodology under these 

conditions.  
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