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Abstract. Droughts are serious natural hazards, especially in semi-arid regions. They are also difficult to characterize. Various

summary metrics representing the dryness level, denoted drought indices, have been developed to quantify droughts. They

typically lump meteorological variables and can thus directly be computed from the outputs of regional climate models in

climate-change assessments. While it is generally accepted that drought risks in semi-arid climates will increase in the future,

quantifying this increase using climate model outputs is a complex process which depends on the choice and the accuracy of5

the drought indices, among other factors. In this study, we compare seven meteorological drought indices that are commonly

used to predict future droughts. Our goal is to assess the reliability of these indices to predict hydrological impacts of droughts

under changing climatic conditions at the annual time scale. We simulate the hydrological responses of a small catchment

in northern Spain to droughts in present and future climate, using an integrated hydrological model, calibrated for different

irrigation scenarios. We compute the correlation of meteorological drought indices with the simulated hydrological times series10

(discharge, groundwater levels, and water deficit) and compare changes in the relationships between hydrological variables

and drought indices. While correlation coefficients linked with a specific drought index are similar for all tested land-uses and

climates, the relationship between drought indices and hydrological variables often differs between present and future climate.

Drought indices based solely on precipitation often underestimate the hydrological impacts of future droughts, while drought

indices that additionally include potential evapotranspiration sometimes overestimate the drought effects. In this study, the15

drought indices with the smallest bias were: the rainfall anomaly index, the reconnaissance drought index, and the standardized

precipitation evapotranspiration index. However, the efficiency of these drought indices depends on the hydrological variable

of interest and the irrigation scenario. We conclude that meteorological drought indices are able to identify years with restricted

water availability in present and future climate. However, these indices are not capable of estimating the severity of hydrological

impacts of droughts in future climate. A well-calibrated hydrological model is necessary in this respect.20

1



1 Introduction

In semi-arid regions, droughts are a serious natural hazard, often causing tens of millions of euros of damage (Gil et al., 2011).

In northern Spain, for example, drought severity has increased in the last decades (Hisdal et al., 2001) and is expected to

increase further in the next 50 years (e.g., Bovolo et al., 2010; Graveline et al., 2014; Majone et al., 2012), as a result of the

ongoing increase in global mean temperature (e.g., Meehl et al., 2007). More severe droughts will negatively impact the region,5

notably the agricultural sector (Stahl et al., 2015).

Droughts have a wide range of impacts, and are often difficult to define. They have been classified in four main categories

(Mishra and Singh, 2010; Samaniego et al., 2013; Wilhite and Glantz, 1985):

– meteorological droughts defined by a lack of precipitation over a certain period of time for a certain region,

– hydrological droughts defined by a reduced surface and subsurface water availability for a given water resource,10

– agricultural droughts defined by a period of declining soil moisture and reduced crop yields,

– and socio-economical droughts defined by a failure of water-resources management to meet the supply and demand of

water (taken as an economic good).

In order to quantitatively describe drought levels, about 150 different drought indices have been developed (Zargar et al.,

2011). A drought index is a scalar composed of one or more measured variables affected by dry and wet periods. In the case15

of meteorological drought (which is the focus of this study), typical variables considered for the calculation of drought indices

are precipitation and potential evapotranspiration.

In addition to the identification of drought periods, these meteorological drought indices are also good indicators for various

droughts impacts in present climate, based on the results of a range of studies. For example, text-recollections of droughts, such

as newspaper articles, are linked with different drought indices, indicating a relationship between the social impacts of droughts20

and drought-index values (Bachmair et al., 2015). Crop yields are also correlated with drought indices in different climatic

regions (e.g., Quiring and Papakryiakou, 2003; Mavromatis, 2007). Moreover, Vicente-Serrano et al. (2012) analyzed the

correlation between six drought indices and environmental variables, such as stream flow, tree rings widths, and soil moisture.

Significant correlations between the studied environmental variables and the drought indices were found. The correlation

between groundwater levels and drought indices seems to be smaller than for other drought impacts (probably because of the25

spatial and temporal variations of unsaturated hydraulic conductivity), but it was still noticeable (Kumar et al., 2016).

Hence, meteorological drought indices are correlated with hydrological and agricultural impacts of meteorological droughts.

Consequently, they are also correlated with hydrological or agricultural droughts. Many of the drought impacts cited above,

such as changes in groundwater levels or discharge, could also be conceptualized as an indicator of hydrological or agricultural

droughts. For example, groundwater levels could be transformed to a drought indicator such as the standardized groundwater30

level index (SGI, Bloomfield and Marchant (2013)) to identify hydrological droughts (Kumar et al., 2016). Indeed, hydrological

impacts of droughts and hydrological drought indices are often assessed as two perspectives of the same drought event. The
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viewpoint of this study is that changes in environmental variables are introduced by non-stationary meteorological forcing, i.e.,

that hydrological changes are a consequence of meteorological droughts. Therefore, we will not use hydrological variables to

define droughts.

The relationship between meteorological drought indices and drought impacts is valid for many drought indices in present

climate, including simpler indices using one input variable, such as precipitation. However, the suitability of drought indices5

has not been tested under a changing climate. The ongoing increase in air temperature was not taken into account. Because

climate change will probably impact drought intensity and frequency (e.g., Dai, 2011), various studies have aimed at predicting

future changes in dry periods using drought indices based on the output of regional or global climate models. An assumption of

these studies is that drought indices perform similarly in present and future climate. Our aim is to test this hypothesis. That is,

we will test the capability of meteorological drought indices to predict hydrological impacts of droughts in a changing climate.10

A large number of drought indices have been used in recent climate-impact studies. For instance, the standardized precipi-

tation index was often used to study future droughts (e.g., Leng et al., 2015; Masud et al., 2015; Tue et al., 2015; Zarch et al.,

2015). However, several studies used other indices, as the reconnaissance drought index (e.g., Kirono et al., 2011; Zarch et al.,

2015), the standardized precipitation evapotranspiration index (e.g., Kim et al., 2014; Masud et al., 2015), the effective drought

index (e.g, Park et al., 2015), or the Palmer drought severity index (e.g., Burke et al., 2006), among others. The choice of the15

drought index can have an important impact on the results. For example, Kim et al. (2014) and Park et al. (2015) predicted fu-

ture droughts over Korea in the next century using very similar climate scenarios. While Kim et al. (2014) projected an increase

in the severity of droughts in this region, Park et al. (2015) projected a more complex spatial pattern and a possible decrease

in drought severity in coastal regions. A possible reason for these contradictory results is that Park et al. (2015) used a drought

index based on precipitation only, while Kim et al. (2014) used an index which considers both potential evapotranspiration and20

precipitation. Precipitation-based drought indices, such as the effective drought index (EDI) or the standardized precipitation

index (SPI), tend to work well in present climate. However, they may be inadequate to predict climate-change effects because

they neglect the increase in potential evapotranspiration, resulting in a possible under-estimation of the intensity of future

droughts (Dubrovsky et al., 2009; Vicente-Serrano et al., 2009, 2015; Zarch et al., 2015).

To study the validity of drought indices in future climate, we chose seven well-known drought indices (Table 1), which can be25

computed from the output of climate models, such as precipitation, temperature or potential evapotranspiration. We investigate

the ability of these indices to predict hydrological variables under drought conditions: groundwater heads, discharge at the

catchment outlet, and water deficit of the crops, under present and (projected) future climate conditions. These three metrics

address different hydrological effects of droughts of high ecologic and/or economic relevance. Reduced stream discharge can

deteriorate the ecological status of the stream because the stream temperature and the concentrations of contaminants increase30

with decreasing discharge. In the most extreme case, the stream falls dry. The drawdown of groundwater heads is of high

economic relevance when groundwater is pumped for water supply and irrigation which, however, is not the case in the studied

catchment. Groundwater levels also control low flows in gaining streams. Finally, the water deficit of the crops, that is, the

difference between transpiration under conditions when enough water is available and the actual transpiration, is a simple

metric of water stress experienced by the crops, which may diminish crop yields.35
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A fully-integrated hydrological model of a small catchment, the Lerma catchment, in north-east Spain, is used to simu-

late the hydrological responses to the meteorological forcing. This catchment has recently undergone a monitored transition

from rainfed to irrigated agriculture, in which the irrigation water is imported from the Yesa reservoir located outside of the

catchment (Merchán et al., 2013). The model was calibrated under different irrigation conditions (von Gunten et al., 2014),

which increases our confidence in its ability to predict the hydrological responses to changes in meteorological forcing and5

land-use. We use these different land-use/irrigation schemes to compare the responses of different drought indices. The outputs

from a weather generator, representing present and future climate, are used as meteorological inputs to the model and for the

computation of the drought indices.

The remainder of this paper is structured as follows: First, we present the methodology used in this study. Specifically, we

briefly describe the study area, the hydrological model, the drought indices, and the methods used to compare them. Secondly,10

we discuss the climate and the irrigation scenarios. We also compare the frequency distribution of drought indices computed

from measurements and based on the outputs of the weather generator. Next, we summarize an analysis of the correlation

coefficients between hydrological variables and drought indices for two different land-uses (with/without irrigation), and for

present and future climate scenarios. Afterwards, we investigate changes in the relationship between these drought indices and

the hydrological variables. We then use these results to predict relevant changes in drought risks in the study area in future15

climate. Finally, we discuss the usefulness of drought indices in climate-impact studies.

2 Methods

2.1 Overview

The main objective of this paper is to test the suitability of several meteorological drought indices to estimate the impacts of

climate change on the water cycle of a small catchment. Seven drought indices, described in Sect. 2.4 and in the supplementary20

material, are investigated. The information on drought severity (as computed by these indices) is compared to three simulated

hydrological impacts of drought: (1) the mean annual discharge at the outlet, (2) the mean annual hydraulic heads in 12

observations wells of the local aquifer, and (3) the water deficit (WD), which is a simplified representation of how well the

water demand of the crops can be met (Abrahao et al., 2011):

WD [%] = 100× ETc−AET
ETc

(1)25

whereETc is the annual crop evapotranspiration under standard conditions with no soil moisture limitation (Allen et al., 1998),

and AET is the simulated actual evapotranspiration, calculated ona daily time scale, and aggregated for each year.

The time series of the drought impacts listed above are obtained using the outputs from a calibrated, integrated, pde-based,

hydrological model (Sect. 2.3) forced by present and future meteorological time series (Sect. 3.1), and daily irrigation scenarios

(Sect. 3.3). Five climate scenarios (one based on present climate and four based on the projections of regional climate models)30

and three irrigation scenarios are constructed and combined with each other in our simulations. The length of the simulation
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is 180 years for each combination of (present and future) climate and irrigation scenarios. This is equivalent to a total 2700

simulated years. From these 2700 simulated years, we extract time series of discharge, hydraulic heads, and water deficit.

These time series are directly used to represent the drought impacts on hydrology. They are compared to the time series of

meteorological drought indices (Sect. 2.5): We first compute the Pearson correlation coefficients between the drought indices

and the hydrological variables. Next, we analyze changes in the (assumed) linear relationship between hydrological variables5

and drought indices. These comparisons are repeated in present and future climate for the different irrigation scenarios. A

suitable drought index for climate-change studies would have a large correlation coefficient with all hydrological variables and

the relationships between this index and the hydrological variables would be identical in present and future climate. The results

and the interpretation of these quantitative studies are presented in Sect. 4 and Sect. 5.

This study is focused on annual droughts. We choose the annual time scale because it is often used when predicting future10

droughts (e.g., Kirono et al., 2011; Park et al., 2015) and because it is the most dominant precipitation cycle worldwide (Park

et al., 2015). Even though seasonal and sub-annual time scales are essential for drought management (e.g., Kumar et al., 2016),

we aim here to test the capabilities of drought indices to predict future hydrological impacts, not to produce direct predictions

of future drought impacts. For our purpose, annual time scale is sufficient and enables a detailed analysis of the differences

between the correlation coefficients and the linear relationships, which are at the center of this study.15

2.2 Study area

The Lerma catchment is situated within the Ebro basin in Spain with an altitude varying between 330 and 490 masl., and an

area of ~7.3 km2 (Fig. 1). Its climate is classified as semi-arid, with a mean precipitation of ~400 mm/year (2004-2011) and

a mean potential evapotranspiration rate of ~1300 mm/year (2004-2011) (Merchán et al., 2013). Precipitation and temperature

have been measured since 1988 at the meteorological station of Ejea de los Caballeros (~5 km north of the study area). Solar20

irradiance, wind speed, and relative humidity have been measured since 2003. Annual precipitation is highly variable, ranging

from 268 mm to 558 mm (2004-2011). Because of the limited water resources, drought is a serious natural hazard in the region

(Bovolo et al., 2010).

The catchment underwent a rapid transition from non-irrigated to irrigated agriculture between 2006 and 2008. The majority

of the fields within the catchment are now irrigated, with an annual irrigation of 286 mm in 2011 (Merchán et al., 2013).25

This transition was closely monitored and crop types, monthly hydraulic head data, daily discharge, and irrigation volume

are available. In addition, a vertical-electrical-sounding campaign (Plata-Torres, 2012) was conducted to better understand the

local geology. Two main hydrologically relevant layers were identified: The top layer is composed of clastic and unconsolidated

Quaternary deposits and forms a shallow aquifer. Underneath lies an aquitard composed of lutite and marlstones (Fig. 2). Soils

are relatively shallow, with depths below ground surface ranging between 0.3 and 0.9 m (Beltrán, 1986), and are classified as30

inceptisols.
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2.3 Hydrological model

To simulate the hydrological response of the Lerma catchment, we use HydroGeoSphere (Therrien, 2006), a three-dimensional,

fully-coupled, integrated hydrological model, based on partial differential equations. In HydroGeoSphere (Therrien et al.,

2010), water flow in the variably-saturated sub-surface is modelled using the three-dimensional Richards’ equation, while over-

land flow is simulated by the diffusive-wave approximation of the Saint-Venant equations. We use the Mualem-van Genuchten5

parametrization (van Genuchten, 1980) to relate relative permeability and water saturation to capillary pressure in the vadose

zone. The surface and subsurface domains are coupled using a dual-node approach, where the coupling between the domains

is conceptualized as a virtual thin layer of porous material. Potential evapotranspiration is computed using the FAO Penman-

Monteith equation (Allen et al., 1998), and time-varying crop coefficients are used to account for the spatial variability of crops

(see the supplementary material for more information). The model choice is based on the necessity to model the transition to10

irrigation, which has a large impact on the hydrology of the catchment. Moreover, HydroGeoSphere allows to simultaneously

study the impact of droughts on the surface and subsurface components of water flow. The underlying equations have been

reviewed by von Gunten et al. (2014, 2015) and are not repeated here.

The conceptual model of our study area and its calibration have also been presented by von Gunten et al. (2014) and thus

are only presented here briefly. We divide the sub-surface catchment in six zones, two zones representing the aquitard, one15

representing the aquifer, and three representing the different soil zones (Fig. 2). The model parameters are homogeneous in

each zone and the saturated hydraulic conductivity is one order of magnitude smaller in the vertical direction than in the

horizontal one to account for anisotropy. The surface domain is divided into 55 zones, representing the different farm fields.

Daily irrigation volume, Manning’s parameters, seasonal leaf area index, and rooting depth are specified separately for each

surface zone, based on crop types and irrigation data. Precipitation is given as daily input, apart from days with intense rainfall20

(>25mm/day). In this case, precipitation data are given as a three-hour mean during summer and spring, and as a nine-hour

mean during autumn and winter, to mimic intense convection events (von Gunten et al., 2014), which are frequent in the

region. A no-flow boundary condition is assumed at the lateral and the bottom boundaries of the sub-surface domain. Critical

flow depth is used for the lateral boundaries of the surface flow domain.

We calibrated the parameters of the model using three computational grids of increasing resolution (von Gunten et al., 2014).25

The calibrated parameters are the hydraulic conductivity in all zones, apart from the "weathered aquitard" zone (Fig. 2), the

porosity of the aquifer, and the van-Genuchten parameters of the soil zones. The calibration period is from 2006 to 2009

and the validation period is from 2010 to 2011. The model is calibrated on the measured discharge at the outlet and on the

hydraulic heads in eight observation wells (twelve observation wells were used during validation). The model reproduces the

measurements satisfactorily (von Gunten et al., 2014). For example, the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970)30

of discharge is of 0.74 during the calibration period and of 0.92 during the validation period. The model performs similarly

well under all irrigation conditions. Because the model was able to reproduce the response in both discharge and groundwater

tables to the changes in irrigation practice, we are confident that it can also predict the response to changes in meteorological

forcing projected by climate models.
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2.4 Drought indices

More than 150 drought indices have been developed in the past (Zargar et al., 2011) and it would be unrealistic to include all of

them in this study. Therefore, we have selected seven well-known and commonly-used drought indices, based on the reviews

by Agwata (2014), Hayes and Lowrey (2007), Heim (2002), Niemeyer (2008), and Zargar et al. (2011). Our choice was guided

by the required data input and the popularity of the indices in recent studies related to climate change. The selected indices are:5

– the standardized precipitation index (SPI): SPI (McKee et al., 1993; Svoboda et al., 2012) is a widely-used drought

index whose computation is based on fitting long-term precipitation data to a probability distribution. This probability

distribution is then transformed into a normal distribution.

– the standardized precipitation evapotranspiration index (SPEI): The computation of SPEI (Vicente-Serrano et al., 2009)

is similar to SPI. However, the difference between precipitation and potential evapotranspiration is used rather than only10

precipitation.

– the rainfall anomaly index (RAI): RAI (e.g., Keyantash and Dracup, 2002) represents a ranking of annual precipitation,

compared to the most negative precipitation anomalies recorded.

– the effective drought index (EDI): EDI (Byun and Wilhite, 1999) is a drought index computed using daily precipitation

to account for the effect of precipitation variability on droughts.15

– the Palmer drought severity index (PDSI) : PDSI is a widely used drought index which was developed to measure the

cumulative departure of moisture supply during dry periods (Palmer, 1965).

– the Palmer hydrological drought index (PHDI): PHDI is an index similar to PDSI, which was developed to better repre-

sent hydrological droughts (Palmer, 1965).

– the reconnaissance drought index (RDI): The computation of RDI (Tsakiris and Vangelis, 2005) is based on the FAO20

aridity index, i.e., the ratio of precipitation and potential evapotranspiration.

We present the selected indices in more detail in the supplementary material and provide a summary in Table 1. We generally

consider meteorological drought indices that aggregate data annually (Section 2.1). The exceptions are the Palmer drought

indices (PDSI and PHDI) whose time length depends on an empirical estimation of the start and the end of drought periods

(Szép et al., 2005).25

Potential evapotranspiration (ET0) is needed to compute SPEI, PDSI, PHDI, and RDI. To obtain this variable, we use the

FAO Penman-Monteith equation (Allen et al., 1998), which is presented in the supplementary material along with additional

explanations on the calculation of ET0.
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2.5 Methods of comparing the drought indices to predict hydrological variables

To compare how well the drought indices can predict the chosen hydrological variables in present and future climate, we use

two approaches. First, we compute the Pearson’s linear correlation coefficient r, which quantifies how well the variability

in one time series can be explained by the variability of another time series, assuming a linear relationship between the two

variables. In the context of this study, it indicates if the drought indices have the capability of finding periods with a discharge5

or hydraulic heads lower than usual and periods with water deficit higher than usual. It is defined as follows:

r =
cov(DI,x)

σDI σx
(2)

in which cov is the covariance, σi is the standard deviation of the variable i, DI is the value of the drought index and x is the

hydrological variable under consideration.

The Pearson’s correlation coefficient indicates the degree of linear dependence between two variables. However, if this10

correlation coefficient is calculated under different climatic conditions, it does not indicate possible changes in the coefficients

of the (assumed) linear dependencies. To investigate the changes in the linear dependency between the two climates, we

perform a linear regression between a drought index and a hydrological variable in the present climate. Then, we use this linear

relationship to predict the hydrological variables from the same drought index in future climate. We conduct this analysis

for each combination of drought index and hydrological impact in all irrigation scenarios. By this, we aim to investigate if15

drought indices in future climate represent on average a similar drought (i.e., a drought with similar hydrological impacts)

than in present climate. This is important because many drought studies (e.g., Kirono et al., 2011) only report changes in

drought indices, implicitly assuming identical drought impacts for identical drought-index values in present and future climate.

However, a drought described by a SPI-value of -1, for example, may have different consequences on discharge and water

deficit in projected future climate than under current climate conditions (see Sect. 4.2).20

To quantify the changes in the linear dependencies between hydrological variables and drought indices, two performance

metrics were selected: The relative model biasBrel and the normalized root mean square error (NRMSE). The relative model

bias is the sum of the differences between the predicted and the actual values of the hydrological variable, divided by its mean

value.

Brel =
100%

1
n

∑n
i=1Vmod,i

n∑
i=1

(Vstat,i−Vmod,i) (3)25

in which Vstat,i indicates the predicted value of discharge or water deficit based on the linear regression, Vmod,i represents the

value of the same variable predicted by the hydrological model and n is the length of the time series.

The NRMSE is the root mean square error divided by the standard deviation of the least-square regression in present

climate σpres:

NRMSE =
1

σpres

√∑n
i=1(Vstat,i−Vmod,i)2

n
(4)30

In present climate, the variability of the differences between the outputs from the hydrological model and the linear re-

gression is smaller than 12% of the average difference between model outputs and the linear regression. Hence, the error of
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the linear model in the present climate can be considered homoscedastic, i.e, σpres is considered constant in the subsequent

analysis.

3 Climate and irrigation scenarios

3.1 Climate scenarios

The climate scenarios used in this study have been presented by von Gunten et al. (2015) and are thus only summarized here.5

Our future climate scenarios cover the time period of 2040-2050, using the A1B IPCC emission scenario (Nakićenović et al.,

2000). They are based on four regional climate models from the ENSEMBLES project (van der Linden and Mitchell, 2009)

driven by two global climate models (Table 2). As it is not advisable to use the direct outputs from climate models as input for

a small-scale hydrological model (Prudhomme et al., 2002), we have downscaled the outputs from the climate models using a

weather generator, i.e., a statistical model reproducing the characteristics of the observed climatic time series (Srikanthan and10

McMahon, 2001). We calibrated the weather generator using the observed time series of the closest meteorological station (Ejea

de los Caballeros). Then, the parameters of the weather generator were modified using the differences between the control and

future simulations of the regional climate models. These change factors, described in Burton et al. (2010), are an indication of

future changes of the mean and variability of precipitation, temperature, radiation, and relative humidity. The weather generator

is run using the updated parameters to create the future climate scenarios. In this study, we use the RainSim weather generator15

for precipitation (Burton et al., 2008) and the EARWIG weather generator for ET0 (Kilsby et al., 2007).

The chosen downscaling procedure has the advantage of producing longer time series, compared to the relatively short (23

years) climate record in the Lerma catchment. Moreover, it reproduces future changes in the precipitation variability, and not

only in the precipitation mean, which is an important criterion when studying future droughts.

Nevertheless, the downscaling of climate model outputs is a complex task and the choice of a particular downscaling method20

can have a large impact on the results (Holman et al., 2009). Our study is not an exception and the downscaling process

presented here might introduce uncertainties in the climate scenarios. We have mitigated this issue using three different ap-

proaches: a) We prepared both present and future time series of meteorological inputs using the weather generator. Hence, the

potential bias resulting from the weather generator is reproduced in the present and future time series. b) We compared the

future time series of precipitation and ET0 downscaled with the weather generator with the corresponding time series down-25

scaled with a simpler bias correction method (Li et al., 2009). The time series were found to be generally similar regardless of

the downscaling method (von Gunten et al., 2015). c) The time series of present precipitation and ET0 have been extensively

tested against measurements to control the quality of the weather generator outputs (von Gunten et al., 2015).

3.2 Reproduction of the drought indices by the weather generator

In addition to the reproduction of the meteorological forcing mentioned in Sect. 3.1, the weather generator should also repro-30

duce the frequency distribution of the studied drought indices. Here, we compare these frequency distributions in the observed
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climate record with the corresponding frequency distribution computed from the weather generator outputs in the current

climate.

All seven drought indices used in our study are normalized (Sect. 2.4) so that they can be used in different regions. If the

normalization would have been carried out separately in the observed and simulated data, the frequency distributions of the

drought indices would be similar, regardless of the similarity of the time series. To provide a meaningful comparison, we5

compute the normalization on the simulated data (weather generator) and we use the same normalization for the observed data

(current climate record).

To compute each drought index, we use the measured time series, which has a length of 23 years (1988-2011). In addition,

we compute the drought indices using the simulated data. To get a comparable length between measured and modeled data,

the time series of drought indices based on the weather generator are separated into 15 periods with a duration of 23 years10

each (totaling 354 years). The final length of this time series is chosen such that it is about twice the length of the hydrological

simulations (180 years). We then prepare 15 empirical cumulative distribution functions (ecdf ) based on the outputs of the

weather generator and compare them with the ecdf based on the current observed climate record (Fig. 3).

The ecdf of all drought indices based on measurements fall into the region defined by the 15 modeled ecdf. Hence, differences

between the observed and simulated data were small, compared to the difference between the 15 modeled ecdf. In addition,15

we used a two-sided Kolmogorov-Smirnov test to compare the time series based on modeled and measured data. This test

(e.g., Hazewinkel, 2001) is a non-parametric statistical test which quantifies the maximum distance in cumulative probability

between two distributions and tests how likely it is that the two samples are drawn from the same distribution. All drought

indices pass this test, i.e., the null hypothesis of identical ecdf between measured and simulated data is not rejected at a 5%

significance level. Therefore, the drought indices based on the time series of the weather generator outputs are showing a20

reasonable agreement with the observed time series to be used in present climate. Weather generators are commonly operated

to produce time series of future hydro-meteorological variables (e.g., Burton et al., 2010), and we are also confident to use the

weather generator to produce future time series of drought indices.

3.3 Irrigation scenarios

Consistent with our earlier study (von Gunten et al., 2015), we use three irrigation (or land-use) scenarios that can be summa-25

rized as follows:

– scenario NOIRR: without irrigation and without agriculture.

– scenario PIRR: with present cropping patterns and present irrigation.

– scenario FUTIRR: with present cropping pattern, but with an updated irrigation volume to account for future climatic

conditions. To create this scenario, we assume that the irrigation efficiency will not change in future climate. In addition,30

we assume that the increase in irrigation will only depend on the increase in ET0 and changes in precipitation amount

(see Toews and Allen, 2009).
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The irrigation water originates from the Yesa reservoir, which is situated about 65 km north of the catchment, at the foot of the

Pyrenees mountains. The modeled increase in the future irrigation volume is between 6.6% and 10.6% of the present irrigation

(about 280mm/year), depending on the climate scenario. Water availability in the reservoir is not considered to be a limiting

factor in this study.

3.4 Predicted climatic change5

Future precipitation (Fig. 4) is predicted to decrease in summer and spring (between 3% and 39% of the current precipitation,

depending on the regional climate model). On the contrary, in winter and autumn, an increase in precipitation is predicted

(between 1% and 55%). Change in total annual precipitation depends on the regional climate model. MPI and UCLM predict

a wetter future, while ETHZ and METO predict a dryer one (see Table 2 for the references of the regional climate models).

The coefficients of variation increase in spring (between +3% and +6%), decrease in winter and autumn (between -0.1% and10

-10%), and do not show a clear trend in summer (between +5% and -5%).

Because of the higher temperature, potential evapotranspiration (ET0) increases (between 9% and 22% in the annual average)

in all regional climate models for all months. This increase might impact droughts, regardless of the precipitation changes.

3.5 Modeled catchment responses to climate change

The hydrological responses of the Lerma catchment to climate change under different irrigation conditions have been mod-15

elled previously by von Gunten et al. (2015). As this study extends these results, we will shortly recall them here. Overall,

the catchment responses to climatic change strongly depend on the irrigation scenarios and on the considered regional climate

model. For all considered climate scenarios, the increase in temperature and the decrease in summer precipitation result in

a lower groundwater table and in a decrease of low-flow discharge (defined as the total discharge during dry periods). This

decrease is more intense in scenarios with irrigation than in the scenario without irrigation. Peak discharge decreases if irri-20

gation is present. However, it often increases in scenarios without irrigation, notably because the lack of vegetation results in

lower infiltration and higher surface runoff during thunderstorms. Spring and summer actual evapotranspiration increases if

the catchment is irrigated because of the increase in ET0 and the relatively large soil moisture. Without irrigation, changes in

annual actual evapotranspiration depend on the annual precipitation. In climate scenarios where precipitation decreases, actual

evapotranspiration decreases because of the lower water availability. On the contrary, if annual precipitation increases, actual25

evapotranspiration also increases. More details on the modelling of hydrological impacts of climate change are available in von

Gunten et al. (2015).
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4 Results

4.1 Correlation coefficients between drought indices and hydrological variables

In this section, we analyze the correlation between the different drought indices for the 180 years of each scenario and the

corresponding simulated mean annual discharge, water deficit, and hydraulic heads. For this purpose, we use the Pearson’s

linear correlation coefficient r between the drought indices and the hydrological variables (Sect 2.5). We conduct the same5

analysis for present and future climate, and for the different irrigation scenarios. Here, we present only the main results of this

comparison (details are available in the supplementary material).

The values of the correlation coefficients between the hydrological variables and the drought indices depend on the drought

indices. For example, the correlation coefficient between water deficit and EDI is 0.47, while the correlation coefficient between

this variable and RAI is 0.78 in the present climate. However, the correlation coefficients for a particular drought index and a10

particular hydrological variable are similar for all irrigation scenarios in present and future climate. For example, let us consider

the correlation coefficients between drought indices and discharge (Fig. 5). In present climate, SPEI, RDI, and RAI have the

highest correlation with discharge in the PIRR scenario (0.77< r < 0.80) as well as in the NOIRR scenario (0.81< r < 0.83).

These indices also have similar correlation coefficients in future climate (0.79< r < 0.84). If we consider the correlation of a

particular drought index with discharge over all climate/irrigation scenarios, the differences in r is < 0.1.15

Water deficit exhibits a similar behavior as discharge when correlation coefficients are examined. When the absolute values

of correlation coefficients are large in present climate, they will be similarly large in future climate or in another irrigation

scenario. SPEI, RDI, and RAI have the largest correlation coefficients with water deficit in all scenarios (0.78< |r|< 0.81).

Correlation coefficients between drought indices and groundwater heads in a particular observation well are similar for all

drought indices considered. However, the correlation coefficients are very different from one observation well to another (see20

supplementary material for more information).

Seasonal differences in the correlation coefficients are not considered here, even though these correlations might be influ-

enced by the annual cycle. Our analysis is focused on annual droughts.

4.2 Linear regressions between hydrological variables and drought indices

The previous section has shown that the linear correlations between drought indices and hydrological variables are relatively25

similar under all climatic and irrigation conditions. Hence, a particular drought index is able to identify the dry periods in

present and future climate. However, this does not indicate whether the droughts in future climate have similar hydrological

impacts than those in present climate. Correlation coefficients quantify how well a relationship between two variables can be

expressed by an (assumed) linear equation, without considering the actual coefficients of the linear equation. The latter are

commonly evaluated by linear regression.30

Identifying changes in the regression coefficients of the relationships between drought-indices and hydrological variables is

important when making hydrological predictions based on meteorological drought indices in a changing climate. Only when

the regression coefficients do not change, the same value of a drought index has the same hydrological impact. Towards this end,
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we compare changes in the (assumed) linear regressions between drought indices, and discharge or water deficit (Sect. 2.5). In

the subsequent analysis, we do not consider hydraulic heads because the results almost entirely depend on the position of the

observation well.

The stability of the relationship between drought indices and hydrological variables strongly depends on the chosen drought

index and the irrigation scenario. In Fig. 6, we exemplify the relationship between SPEI and discharge for two irrigation5

scenarios in present and future climate. On the lower panel of Fig. 6 (scenario FUTIRR), the relationship between SPEI and

discharge is relatively stable in different climates. A drought with a similar intensity (as defined by SPEI) has similar impacts on

discharge in present and future climate. On the top panel, the bias is larger. In this case, a drought with a particular SPEI-value

results in a different annual mean discharge in present and future climate.

As outlined above, we use two different performance metrics to quantify this bias, the relative model bias Brel and the10

NRMSE (Sect 2.5). Fig. 7 shows these two metrics for all indices and the two hydrological variables. Overall, our results

suggest that the relationships between the chosen meteorological drought indices and hydrological variables are not stable

under a changing climate. The computed model biases between drought indices in present and future climate appear important.

In the scenario without irrigation, the largest relative model bias is 86.7% for discharge and 3.8% for the water deficit (mean

discharge in present climate: 0.015 m3/s, mean annual water deficit: 80%). With irrigation, the largest relative bias for discharge15

is -25.2% for the RAI drought index and 14.2% for water deficit (mean discharge: 0.03 m3/s, mean annual water deficit for

irrigated and non-irrigated zones: 52%). In the worst case described above (discharge without irrigation), the relative model

bias is on the same order of magnitude than the value of the hydrological variable, which is a significant difference. For certain

conditions, however, the bias is low. For example, water deficit in the scenario without irrigation is predicted well by the linear

model (the largest bias is equivalent to only 3.8% of the present water deficit).20

For discharge, model bias depends strongly on the irrigation scenario (Fig. 7, top panels). With irrigation, the drought indices

often underestimate the changes in discharge, especially if the indices are based on precipitation only. For example, in the case

of SPI, the model bias for discharge is -24.8% with irrigation (and 6.8% without irrigation). On the contrary, drought indices

which are based on ET0 and precipitation have a lower bias in the scenario with irrigation than in the scenario without irrigation.

For example, SPEI has a model bias of 86.7% with irrigation and of 11% without irrigation. In the Lerma catchment, discharge25

is more sensitive to climate change when irrigation is present (von Gunten et al., 2015). Hence, drought indices which are more

sensitive to climate change, notably to changes in ET0, predict changes in discharge better in irrigated cases. The discharge in

the scenario without irrigation does not change significantly and drought indices with a smaller reaction to climate change are

better predictors for hydrological impacts than those with a stronger reaction (Fig. 7, top panels).

For the water deficit (Fig. 7, bottom panels), drought indices which include ET0 have a lower model bias than indices which30

only include precipitation. In the case of SPI with irrigation, the relative model bias is 13.9%. In the case of RDI, which

includes ET0, the model bias is 5.4%. The lower bias for drought indices containing ET0 can be explained because ET0 is

directly influencing the water-deficit calculation. The relative model bias is lower in the scenario without irrigation than in the

scenario with irrigation. Indeed, irrigation is not accounted for in the calculation of the drought indices, but it influences the

modeled water deficit.35
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The drought indices with the lowest model bias and a correlation coefficient r > 0.6 are: RAI for discharge in NOIRR

scenario, RDI for the water deficit in FUTIRR/PIRR scenario, and SPEI for the water deficit in the NOIRR scenario and

discharge in FUTIRR/PIRR scenario.

4.3 Future droughts

In Sect. 4.1 and Sect. 4.2, we explored the relationships between the different drought indices and the selected hydrological5

variables in present and future climate. In the present section, we compare the drought indices in present climate to those in

future climate. This is a step forward compared to previous studies because we use the information of Sect. 4.1 and Sect. 4.2 to

improve the predictions of future droughts, notably to interpret differences between the predictions based on different drought

indices.

Our definition of a drought is identical for present and future climate. Practically, we standardize the drought indices in10

the present climate and keep the same standardization (explained in Section 2.4 and in the supplementary material) in the

future climate. From a conceptual point of view, this is unexpected as meteorological droughts can be defined as a period of

exceptionally dry conditions. If the average precipitation changes, the definition of a meteorological drought should also be

changed. However, from a practical point of view, drought severity depends on the water needs and on the vulnerabilities of

society and agriculture. Hence, the definition of future droughts is linked to current conditions. From this perspective, using15

the same standardization in present and future climate is logical. Moreover, this procedure has been applied in the majority of

studies on future droughts (e.g., Zarch et al., 2015).

Fig. 8 shows the changes between present and future climate in the seven drought indices based on the outputs of the four

regional climate models. Note that a decrease in the values of the drought indices indicates an increase in drought intensity.

When we compare the changes in drought indices between present and future climate, significant differences can be observed20

between the different climate scenarios (based on the four regional climate models). Indices which only contain precipitation

(RAI, SPI, and EDI) predict a small increase in droughts or a small decrease depending on the climate scenario (Fig. 8, top

panels). For example, the average SPI decreases by 0.4 when using the ETHZ climate scenario and increases by 0.2 when using

the MPI scenario (for comparison, an SPI of -3 would be an extreme drought). In these scenarios, the MPI and UCLM regional

climate models predict an increase in annual precipitation for the Lerma catchment (von Gunten et al., 2015). Hence, the25

climate scenarios based on these regional climate models result in a decrease in drought events (i.e., an increase in the drought

index value) when indices are only based on precipitation (RAI, SPI, and EDI). Indices which also consider ET0 (Fig. 8, bottom

panels) indicate an increase in droughts in all analyzed future climates. However, this increase is smaller when MPI and UCLM

are used to construct the climate scenario. In the UCLM case, a decrease of 1.59 in the mean value of SPEI is computed. In

contrast, when the ETHZ climate model is used, a decrease of 2.95 is computed (Fig. 8, bottom panel). Differences in the30

values of drought indices which include evapotranspiration between present and future climate follow predicted changes in

ET0. Models which predict a strong increase in ET0, such as ETHZ, result in a stronger increase in drought risks. A change in

the coefficient of variation of ET0 or annual precipitation (von Gunten et al., 2015) is not directly related to changes in drought

indices.
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The sources of the differences between the climate scenarios, which result in the aforementioned differences in the values of

drought indices, are uncertain. Nevertheless, two factors are often cited when discussing differences in future climate scenarios

with identical emission scenarios: Modeling of cloud cover (van der Linden and Mitchell, 2009) and parameterization of

the interactions between the land cover and the atmosphere (Flato et al., 2013). Both processes have a large influence on

precipitation and evapotranspiration, and therefore on drought predictions.5

In addition to the differences related to the chosen climate scenario, the choice of the drought index has a large influence

on the prediction of future droughts. These differences in drought prediction are largely the reflection of the differences in the

linear relationships between drought indices and hydrological variables discussed in Sect. 4.2. If a drought index has a negative

bias for discharge (as it is the case for indices which are based on precipitation only), small changes in future droughts are

predicted. For example, when we average the four different climate scenarios, mean RAI in future climate shows a decrease10

of 0.02 when compared to RAI in present climate (Fig. 8, top panel, left column). Based on the linear model under present

irrigation conditions, this can be translated to an increase in water deficit of 0.21 mm/year and a decrease in discharge of

8.7×10−5 m3/s. These changes are unlikely to have consequential impacts on irrigation or on the hydraulic regime of the

catchment. For the indices that depend on ET0, the predicted increase in droughts becomes larger. For example, mean SPEI

shows a decrease of 2.43 (average of four regional climate models). If we would use the linear model developed in present15

climate, the decrease in discharge in the scenario with irrigation would be of 0.01 m3/s, which is one third of the annual

mean discharge. Based on the hydrological model, the change in discharge in the FUTIRR scenario is 0.006 m3/s (average

of the four climate models). Large uncertainties linked with climate prediction and hydrological modeling still prevail in this

estimation. However, the hydrological model generally reproduces discharge and hydraulic head measurements. Moreover,

it simulates many relevant processes leading to discharge generation. Hence, we assess this model to be more reliable in20

predicting hydrological effects of climate change than a mere comparison of meteorological drought-index values.

If we analyze the hydrological impacts of meteorological droughts (defined here as periods with a SPI- and a SPEI-value

lower than one), the general behavior is similar in present and future climate (Figure 9). As expected, during droughts, precip-

itation and discharge decrease, and actual evapotranspiration increases. In present climate, in the scenario without irrigation,

discharge decreases by more than 60% during dry periods when compared to the average conditions. In the scenario with25

irrigation, the decrease in discharge is less marked (24% difference between dry and average conditions) as the irrigation water

partly compensates the lack of precipitation. On the contrary, impacts of droughts on actual evapotranspiration are stronger in

the scenario with irrigation than in the scenario without irrigation. In the latter case, soil moisture is simply too low to support

actual evapotranspiration, regardless of the evaporative demand (von Gunten et al., 2015). In future climate, the decrease in

precipitation and the increase in ET0 during droughts is more intense than in present climate (Figure 9). Hence, we could expect30

more intense droughts with larger hydrological impacts. If the catchment is irrigated, modeled hydrological impacts are indeed

more intense, with a stronger decrease in discharge, a higher increase in actual evapotranspiration, and an additional decrease

in the level of the water table, at least in the case of the observation wells under the irrigated zone. Observation wells which

are away from the intensely irrigated fields, such as Po8, exhibit a more complicated behavior. However, if the catchment is

not irrigated, certain hydrological impacts are less intense. For example, discharge and the distance to the water table decrease35

15



less during droughts in future climate than in present one. A possible explanation for this behavior is linked to evaporation.

In the non-irrigated case, the increase in ET0 during droughts is not transferred to an increase in actual evapotranspiration

because of the dry average conditions. Consequently, the higher ET0 during drought in future climate has a low impact on the

hydrology. Hence, impacts of climate change are lower under very dry conditions. This is probably also why drought indices

which include ET0 are better at predicting discharge when irrigation is present, while the quality of their prediction is lower5

when the catchment is not irrigated: The presence of irrigation increases water availability, which increases the importance of

ET0 on the hydrological impacts of droughts, notably a decrease in discharge.

5 Discussion

Outputs from global or regional climate models are often used to predict changes of droughts in future climates because

these outputs are easy to obtain and relatively simple to analyze. In most cases, the analysis is based on the computation of10

meteorological drought indices. To use drought indices in climate-impact studies, it is necessary to choose a particular set of

indices. Based on the assessment of correlation coefficients and stability of the relationships between hydrological variables

and drought indices, the drought indices RDI, RAI, and SPEI are the most suitable indices in our case study. However, their

performance strongly depends on the assumed irrigation scenarios and may thus be different in other climates and land-uses.

Other drought indices might perform better in more humid or colder climates. However, based on this study, these three indices15

are the most suitable for climate-impact studies in mediterranean climate.

On a broader level, we propose to use drought indices with a certain caution in climate-impact studies and advise against

using a single drought index. A hydrological model is a more direct way to analyze hydrological drought impacts in future

climate and it should be used whenever possible in such studies. Unfortunately, the development and the parameter calibration

of hydrological models is a complicated task and depends on the availability of hydrological measurements such as discharge20

and hydraulic heads.

If the development of a hydrological model is not an option, our results suggest that outputs from drought indices should be

analyzed in detail with respect to three issues, regardless of the set of the chosen drought indices:

1. The importance of potential evapotranspiration (ET0): Many meteorological drought indices only consider precipita-

tion. Because these indices neglect the predicted increase in ET0, their uses could lead to an underestimation of future25

drought risks. This has been reported in previous studies, notably by Dubrovsky et al. (2009) and Zarch et al. (2015).

Our study confirms that drought indices which neglect ET0 predict smaller changes in droughts than those which in-

clude ET0 (Sect. 4.3). However, we found that some indices that include ET0, such as SPEI, predict larger changes in

drought severity compared to the simulations with the hydrological model (Sect 4.2), especially in scenarios with low

soil moisture (scenario NOIRR). This was not previously considered and it indicates that, under some circumstances,30

the influence of ET0 can be overestimated. In our case study, the influence of ET0 is higher in the irrigated scenarios

(PIRR/FUTIRR) with a high water availability. Hence, we can speculate that using drought indices which include ET0
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is more important in wetter climates, such as the ones in northern Europe, than in the mediterranean climate. However,

this hypothesis should be tested further in real case studies.

2. Correlation coefficients are not always sufficient to compare drought indices: Our comparison of the correlation coef-

ficients between hydrological variables and drought indices (Sect 4.1) leads to similar results to previous studies. For

example, Vicente-Serrano et al. (2012) compared the correlation between standardized stream flow (SSI) at monthly time5

scale and six drought indices, including SPI, SPEI, PDSI, and PHDI. SPEI showed the best correlation with discharge

- results that we could reproduce (Fig. 5). SPI has a lower correlation than SPEI, but the difference is relatively small

in both studies. However, more detailed investigations of the relationships between the drought indices and hydrological

variables provide new insights which are not possible to obtain by using correlation coefficients alone. For instance, the

correlation coefficients between drought indices and annual mean discharge are similar in all scenarios and all climates10

within our study, while the regression coefficients change in future climate, and they do so differently in different irriga-

tion scenarios. Hence, impacts of irrigation and climate on drought indices are better understood if we use analysis tools

beyond correlation coefficients.

3. The hydrological impacts of droughts depend on climate change: This has been previously explored in other studies,

notably in studies focusing on hydrological droughts. For instance, Wanders et al. (2015) proposed a method to adapt15

the low-flow threshold defining the start of a hydrological drought as a function of the advance of climate change.

The goal was to account for changes in the responses of low flows to droughts in a changing climate. However, these

changes are also important when studying meteorological droughts. In this field, it is often assumed that the same lack

of precipitation would have the same (hydrological) effects in present and future climate. However, this is not always the

case (Sect 4.2). Investigating changes in frequency and intensity of meteorological droughts results in biased predictions20

of climate change impacts if changes in the hydrological processes are not considered.

6 Conclusions

The interpretation of changes in meteorological drought indices between future and present climates can be considerably com-

promised by the assumption that the relationship between the drought indices and the hydrological variables (which represent

the effects of drought) is identical in present and future climate. The same drought-index value might lead to different drought25

consequences in present and future climate. Results can be further compromised by neglecting the increase in ET0. In our case

study, drought indices that take into account precipitation only (SPI, RAI, and EDI) underestimate the impact of droughts on

water deficit and discharge often. By contrast, indices which give a high weight to ET0 (as SPEI) sometimes overestimate the

impact of future droughts on discharge, especially in the absence of irrigation.

As a summary, in the Lerma catchment, drought indices are useful indicators of dry periods in all tested climate scenarios30

and land-uses. However, a change in a particular drought index in future climate cannot easily be transferred to hydrological

effects of droughts. In a stationary climate, the relationships between drought impacts and drought indices are usually reliable
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and so the hydrological consequences of droughts can be assessed from the drought indices. However, these relationships

may change in a non-stationary climate and their evolution strongly depends on the particular combination of drought index

and land-use. Hence, projections of future droughts using only one drought index may results in misleading estimation of the

possible drought impacts.

Because drought indices can be estimated directly from the outputs of climate models, they are popular metrics of droughts5

even though they cannot be related uniquely to hydrological or even ecological impacts of droughts. Rather than relying on

these indices, we recommend using a hydrological model to study hydrological effects of future droughts whenever possible.

If setting up a hydrological model is not feasible, we advise to consider more than a single drought index and choose drought

indices that take both precipitation and ET0 into account. We also advise to test the chosen drought indices against measured

or modeled results.10

Regardless of the chosen drought index or of the climate scenarios, this study, and many previous studies (e.g., Blenkinsop

and Fowler, 2007), predict an increase in the severity of droughts in the next fifty years in northern Spain. Adaptation to the

new climatic conditions will therefore be necessary. The complexity of hydrological predictions should not prevent a timely

adjustment of the urban water and irrigation networks. In northern Spain, a particular attention should be given to the future

management of irrigation water because of the large dependency of local agriculture on irrigation.15

7 Data availability

Hydrological data from the Lerma catchment have been collected and are owned by the Spanish Geological Survey (e.g.,

Merchán et al., 2013). Meteorological data have been collected by the Spanish meteorological national agency (AEMET) and

are currently proprietary. Data from the ENSEMBLES project are available at: http://ensemblesrt3.dmi.dk/.
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Table 1. A summary of the drought indices used in this study.

Indices Acro- Input Chosen Reference

nym time scale

Standardized precipitation index SPI P 12 months Svoboda et al. (2012)

Standardized precip. evapo. index SPEI P, ET0 12 months Vicente-Serrano et al. (2009)

Rainfall anomaly index RAI P 12 months Keyantash and Dracup (2002)

Effective drought index EDI P 12 months Byun and Wilhite (1999)

Palmer drought severity index PDSI P, ET0 ∼ 9 months Palmer (1965)

Palmer hydrological drought index PHDI P, ET0 ∼ 9 months Palmer (1965)

Reconnaissance drought index RDI P, ET0 12 months Tsakiris and Vangelis (2005)

Table 2. Name and acronym of the regional climate models used in this study. - Adapted from Herrera et al. (2010) and von Gunten et al.

(2015).

Acronym RCM GCM Reference

ETHZ CLM HadCM3 Jaeger et al. (2008)

METO HadRM3 HadCM3 Collins et al. (2006)

MPI M- REMO ECHAM5 Jacob et al. (2001)

UCLM PROMES HadCM3 Sánchez et al. (2004)
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Figure 1. Surface elevation of the Lerma catchment (masl.). The observation wells drilled in 2010 are indicated by blue circles and the ones

drilled in 2008 are indicated by white circles. The gray line represents the limits of the surface flow domain. Vertical exaggeration: 5:1.

Modified from von Gunten et al. (2014, 2015).

Figure 2. Soil and hydrogeological zones for the year 2009. Vertical exaggeration: 5:1. Modified from von Gunten et al. (2014, 2015).
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Figure 3. Empirical cumulative distribution function (ecdf ) of drought indices based on measurement time series (in blue) and based on the

outputs from the weather generator (in black). The gray area represents the boundaries of the 15 ecdf of drought indices based on the outputs

from the weather generator when these outputs are cut at the same length that the measurement time series (23 years).
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Figure 4. Empirical cumulative distribution functions of daily precipitation for present and future climate scenarios.
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Figure 5. Correlation coefficient r between the drought indices and discharge. The irrigation scenarios are PIRR in the present climate and

FUTIRR in the future climate. In future climate (bottom panel), the plotted bars are the average of the outputs of the four regional climate

models. See Table 2 for information about the four regional climate models.
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Figure 6. Performance of SPEI in future climate for annual discharge. The blue line is the linear regression between SPEI and discharge in

present climate. Top panel: NOIRR scenario, large model bias. Second panel: FUTIRR scenario, no significant model bias. Bottom panel:

the two coefficients of the linear regression between Q and SPEI in each climate.
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Figure 7. Relative model bias and NRMSE in the NOIRR and PIRR/FUTIRR irrigation scenarios. The results are based on the average of

the outputs of the four regional climate models (Table 2).
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Figure 8. Present and future (2040-2050) droughts predicted by the seven drought indices, using the outputs from the weather generator. See

Table 2 for information about the four regional climate models.
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Figure 9. Average hydrological impacts of present and future (2040-2050) droughts. From left to right: Relative changes in mean annual

precipitation, ET0, discharge, actual evapotranspiration, and water-table depth at the observation wells Po8 and Po10. For simplicity, droughts

are here defined as years with a SPEI- and a SPI-value lower than one. Future conditions are based on the average of the outputs of the four

regional climate models (Table 2).
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