
We would like to thank the reviewer for the very thorough review and for the constructive comments 
which help us to improve the manuscript. Our replies are listed point-by-point below. 

General comment 

In general, the presented work is a novel and promising new method for small scale aquifer 
characterization. The manuscript is written in a well structured, easy understandable, clear and precise 
style, with a few exceptions (in sections 2 and 4, see below). The citation style - not distinguishing 
between "citep" and "citet" - is slightly confusing. Furthermore, the discussion on the limitation of the 
method could be outlined in a more elaborate way (spatial limitation of the method due to experimental 
conditions, "bias" of method to highly conductive material). Finally, given that the authors improve the 
few passages of their manuscript considering the remarks listed below, I highly recommend the 
manuscript for publication in HESS. 

Specific Comments  

line 38: aspect of conservativeness should be mentioned in this context  

We include this aspect now in line 38 as follows:  

“Main attributes of ideal tracers are their good detectability, their lack of influence on the flow regime, 
conservativeness, and nontoxicity to the environment.” 

line 144: The line integral appears from nowhere. A short introduction of the fundamental (transport) 
equation and a general/physical explanation of the line integral would be beneficial for the reader, who 
is not familiar with previous papers (e.g. Vasco and Gupta, 1999).  

To keep our study focused we are hesitant in rephrasing the work by Vasco and Gupta, which provides a 
detailed description of the fundamentals underlying our approach. We add a detailed deduction of the 
eikonal equation into the appendix of the manuscript, which can be also found below in the appendix of 
this reply. For better comprehensibility, a short explanation is added to the presentation of the line 
integral in the manuscript:  

“The line integral relates the tracer breakthrough time to the mean tracer velocity, and thus to the 
hydraulic conductivity along the transport trajectory.” 

line 155: The sentence is quite unspecific. The solution refers to what, the line integral? Is it the goal or a 
step of the method to find a solution? What exactly is determined, ttt(xr) or K?  

The goal of the inversion is to find the K distribution. The revised sentence reads:  

“With these assumptions and the use of standard tomography algorithms, the K distribution can be 
reconstructed on a pre-defined grid.” 

line 157: The sentence is hard to understand in this context: "The presented method" refers to what? To 
the calculation of the line integral or the experimental setup of the procedure ("step-function injection 



temperature signal"), which was not yet introduced. I cannot see the link between the content of the 
paragraph and the previous subsection on the line integral. 

The introduction of a step-function signal is required in this section because the following data 
processing is built upon it. For clarification, we modified the text to:   

“In this study, a step-function injection temperature signal is used for the active thermal tracer test.” 

line 176 ff: Most of the variables in Eq. 4 are not formally introduced: T, u, t, x, D. The same for T0 and 
erfc-function in Eq. 5. Please give short explanations.  

Revised accordingly. 

line 178-179: Please specify why the breakthrough time is associated with the peak in T 0 . Please state 
explicitly how tpeak is determined analytically from T 0 (respectively from T 00; is it T 00(x, tpeak) = 0?).  

Reference added: (Vasco et al., 2000) 

New equation added:  𝑇𝑇′′(𝑥𝑥, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) = 0 

line 179-181: Is the sentence a general statement or an announcement of experimental adaption to the 
analyzing procedure?  

This is a general statement that during this section, the BTC is the first derivative of temperature. Travel 
times of step-function signals are generally calculated using the first derivative of the observed signal 
(Brauchler et al., 2003; He et al., 2006; Vasco et al., 2000; Ward et al., 1994). 

lines 183-186: For the understanding of the derivation, it would be beneficial to introduce the 
proportionality factor α, the relative time to the peak time τα and the transformation factor fα at the 
beginning, give the reader an impression on their physical meaning and then derive the explicit 
expressions.  

Revised accordingly. 

“Early time characteristic values can be described proportionally to the peak value: 

 𝑇𝑇′(𝑥𝑥, 𝑡𝑡) = 𝛼𝛼𝑇𝑇′(𝑥𝑥, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) (8) 
which can be related to the relative peak time (𝜏𝜏𝛼𝛼) as: 

 
𝛼𝛼 =

𝑇𝑇′(𝑥𝑥, 𝑡𝑡)
𝑇𝑇′(𝑥𝑥, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

=
𝑇𝑇′(𝑥𝑥, 𝜏𝜏𝛼𝛼𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)
𝑇𝑇′(𝑥𝑥, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

 (9) 

By relating these two expressions, the time of proportional value can be used to calculate the timing of 
any value of the signal.” 

line 187-190: This is a statement, which requires a certain proof. Please give a mathematical or visual 
argument for the validity of the simplification. 



The insensitive parameters are either have higher orders, or multiplied by velocities at higher orders. By 
neglecting the terms with higher orders of velocities, all of these parameters are cancelled out. 

“Although Eq. (10) has three additional parameters, velocity (u), distance (x) and dispersion coefficient 
(D), the function is not sensitive to these values because they are all at higher orders or multiplied with 
higher orders of velocity. So, by neglecting the terms with higher orders of velocity, they are cancelled 
out.” 

line 192 : At this stage there is no solution for τα presented, so the statement in brackets should be 
postponed to the according position.  

The statement is postponed after Eq. 12. 

line 194: Please introduce the Lambert Omega function and give reference how LambertW(..,..) is 
calculated in Eq. 12.  

A short description and reference is added:  

“The Lambert Omega function is the inverse function of 𝑓𝑓(𝑊𝑊) = 𝑊𝑊𝑒𝑒𝑊𝑊 (Weisstein, 2002).” 

Eq. 12: If the authors announce a solution for τα they should give it in line with fα or at least as 1/fα.  

Revised accordingly. 

line 201 - 212: the paragraph should be re-structured with respect to (i) the purpose of early time 
diagnostic, (ii) the procedure and (iii) the reasoning for the procedure.  

For defining the reasoning for the procedure, the following sentence is added to the end of the 
paragraph: 

“Step 3 allows the travel time to be related with the transport process, and equips the method to return 
a real and scaled K value instead of just information about the heterogeneity contrasts.” 

line 270: Please specify the "expansion" of the original data set (procedure of extension, new 
dimensions etc.) 

Wrong wording in the manuscript. Expansion in this case did not mean spatial expansion, only the 
extension of the original dataset with thermal properties (Bayer et al., 2015). In the revised sentence 
“expansion” is replaced by “extension”. 

line 284 - 298: see comment to line 507 - 515.  

Clarification is added to line 306:  

“Note that independent of the dimensions of the reconstructed sections, the full 3-D analog model was 
always used to simulate the thermal tracer propagation and the travel times, considering buoyancy and 
viscosity effects.” 



line 362: Please specify the upscaling procedure.  

For upscaling, arithmetic mean values of the cells were used. This is added to the revised text. 

line 414-417: It should be shortly stated, why a factor of 2 is regarded as good match. 

A factor of 2 fits in the same range as those found in several studies from hydraulic tomography 
(Brauchler et al., 2007; Cardiff et al., 2013; Jiménez et al., 2013). 

line 498: Subtitel "Sensitivity Analysis" suggest a rather strict mathematical analysis of the methods 
parameters. See also the general statement on section 4.3 below.  

After revision, the new section title reads: “Role of injection rate and temperature”  

line 507-515 in combination with line 284 - 298: Simulating viscosity and density effects of heated water 
on flow requires a coupling of the flow and heat transport processes. It renders the system non-linear 
and makes simulations more complicated and error prone. The sentence in line 284 suggests, that these 
effects are taken into account, but I see a need for further explanations, especially a few more words on 
the density model used. It would be beneficial to convince the reader that the reported low sensitivity of 
the method on temperature differences is properly tested and not due to an incomplete simulation 
setup. 

See the answer to your comment on line 284-298. A full physics finite element (FEFLOW) model was 
used, including variable density and viscosity effects in the simulations. The model was fully coupled. 

line 564-570: Why was this quantitative analysis not already used in the previous sections 4.1 and 4.3. A 
separate introduction of the two analyzing strategies (visual inspection and quantitative analysis) and 
the use - especially in section 4.3 - would be beneficial to substantiate the sensitivity analysis. 

In the previous sections, the reconstructed tomograms are visualized, and by this, direct visual 
comparison of the entire tomograms is facilitated. In our opinion, this is favorable to a quantitative 
analysis of the individual architectural elements and including such analysis already at this stage of the 
manuscript would not improve the readability. Instead, quantitative criteria are used when examining 
the applicability of the tomographic method under a broad range of alternative conditions, which 
however cannot be visualized in such detail. 

line 569: The specification of the quantity for evaluating the result quality is quite unspecific. Maybe give 
a mathematical statement of how the difference between the connectivity time of the original model 
and the inverted results is used as measure. Are there thresholds defined or are the scenario results all 
compared relative to each other?  

As a misfit, the root mean squared error between measured and predicted connectivity times was used. 
The quantification was only used to identify relative trends between the different results (see answer to 
line 584). In Figure 10, this relative trend is represented by the dashed line. The solid lines represent 



thresholds, where a) there is not enough breakthrough time to perform the inversion or b) where a zone 
on the tomogram is not properly reconstructed (see line 589-609).  

571ff: What is the motivation to use these two parameters and not other? Why are they useful, 
especially with regard to the fact, that they are not independent?  

The effective injection power contains the technical parameters describing the experimental setup, 
whereas the thermal Péclet number is the standard parameter to describe the thermal transport 
behavior. These two parameters are independent if the assumption that the distribution of the hydraulic 
head gradient is uniform is valid. Using a high injection rate affects the head gradient distribution, 
increases the groundwater velocity, and increases the role of advection (see line 595). 

Line 576: It would be helpful to state again what Cw is.  

Revised accordingly. 

Line 584-585: It is not clear to me, how the application window was constructed from connectivity time 
in combination with P et and P 0 . Furthermore, please specify what marks feasible and unfeasible 
regions and how boundaries between them were de- fined. 

The following figure contains all the data points of the investigation. 

 



The values are the normalized connectivity time differences between the original analog profile and the 
tomogram.  

Red circles represent non reconstructed zones. Darker blue circles mean smaller differences. This 
comparison was only used to inspect the results relative to each other, and to identify trends related to 
the parameters. 

The presented boundaries were defined arbitrarily through visual inspection of the resulting points. 
Solid lines show boundaries where the investigated zones are not reconstructed anymore. The dashed 
line represents trends where results start to weaken – the connectivity times start to move apart. 

Line 589: How was the critical value for P et determined and what is the value/range (reference to Fig. 
10)? 

The critical value was defined where the zone is not reconstructed anymore. See previous figure.  

 General statement on section 4.3: After reading section 4.4, I wonder why the authors separate this two 
sections? The basic parameters tested in section 4.3 (injection rate and temperature difference) seem to 
mark the most important factors in section 4.4 as well. Furthermore, in section 4.4 qualitative and 
quantitative criteria are introduced, which would be beneficial to substantiate the sensitivity analysis in 
section  

We found it important to emphasize the non-sensitiveness of the method with respect to the injection 
temperature, which is one of the most useful features of the method. Also, see our answer to your 
comment on line 498. 

line 616: "of K" - Please, avoid or explain abbreviation in conclusion.  

Revised accordingly. 

line 623-625: The sentence is not fully clear: Do the three and five orders of magnitude for P et and P 0 
refer to the tested parameters or the appropriate parameters for method application?  

The application window refers to the tested parameters. Revised as: 

“The presented application window of tested parameters of thermal tracer tomography is wide, and it 
covers three orders of magnitude for thermal Péclet numbers and five orders of magnitude for injection 
power.” 

line 632: Specify "the values of K". State clearly what is "closely matched".  

Figures and Tables  

The figures should be at best comprehensible only with the aid of the legend and caption (without the 
running text). In this line, the following comments should be understand as advises for improving the 
readability.  



 

Table 1: Superscript "1" and "2" for reference to Hyöng et al, 2014 and Bayer et al., 2015 might lead to 
confusion with exponents of units.  

Revised accordingly. 

Table 2: Leave the value of groundwater temperature out, since this parameter was not varied.  

Revised accordingly. 

Figure 1: State what ETD means or leave the abbreviation out.  

Explanation of abbreviation is added to caption. 

Figure 3, Caption: Specify "Distribution of hydraulic conductivity K", since K in the legend is currently not 
defined in the caption.  

Revised accordingly. 

Figure 5, Caption: The figure contains only to 50% reconstructed hydraulic conductivity profiles. 
Generally, hydraulic conductivity profiles are shown. The formulation "original" is misleading, better 
specify as "aquifer analogue" and "reconstructed tomograms".  

Revised accordingly. 

Figure 6, Caption, the same as in caption of Figure 5: Specify "3D distribution of hydraulic conductivity K: 
a)...b) reconstructed tomograms".  

Revised accordingly. 

Figure 7, Results are difficult to see due to figure size/visualization of results. Maybe chose different 
scale/range (e.g. broken y axis). Caption: Specify plot type as Histogram plot; state the total number of 
samples.  

An additional scatter plot is added to this figure and the number of samples is stated. 

Figure 8, Caption: Specify "injection temperature differences ∆T”.  

Revised accordingly. 

Figure 9, Caption: Specify "injection rates Q".  

Revised accordingly. 

Figure 10, The caption description is not appropriate: Instead of generally stating what is seen an 
explanation of the figure construction is given. The figure shows the method performance with respect 
to the dimensionless parameters thermal Peclet number P et and effective injection power P 0 (state in 



word, not only using the abbreviations P 0 and P et), including the favourable application window. The 
explanations on how the figure was created and the other regions should be transferred to running text 
and omitted from the caption.  

Revised accordingly. 

Update reference of Doro et al., 2015  

There are multiple typos as well as inconsistency in the use of upper and lower case letters in the 
references. Please check. 

Revised accordingly. 

Appendix - Transforming the transport equation into the eikonal equation 

In the following, we present the mathematical procedure to transform the transport equation of a 
thermal tracer into the eikonal equation based on (Vasco and Datta-Gupta, 1999). First the solution of 
the transport equation is written as a series of wave functions. After neglecting the low frequency 
components, the transport equation is turned into the eikonal equation. Lastly, the travel time equation 
is presented as a solution to the eikonal problem. The procedure is presented on heat transport. 

The transport equation of heat reads as follows (Stauffer et al., 2013): 

 𝜕𝜕𝑇𝑇(𝒙𝒙, 𝑡𝑡)
𝜕𝜕𝑡𝑡

= ∇[𝐷𝐷(𝒙𝒙)∇𝑇𝑇(𝒙𝒙, 𝑡𝑡)] −
𝐶𝐶𝑤𝑤
𝐶𝐶𝑚𝑚

∇�𝒒𝒒𝑇𝑇(𝒙𝒙, 𝑡𝑡)� (1) 

 

where  𝑇𝑇(𝒙𝒙, 𝑡𝑡) is the evolution of temperature distribution, 𝐷𝐷(𝒙𝒙) is the thermal diffusivity tensor, 𝐶𝐶𝑤𝑤 
and 𝐶𝐶𝑚𝑚 are the heat capacity of the water and the aquifer matrix, 𝒒𝒒 is the Darcy velocity and 𝜙𝜙(𝒙𝒙) is the 
porosity distribution. Assuming that 𝐷𝐷(𝒙𝒙) is a single scalar value and separating the velocity to a 
direction (𝒖𝒖) and a magnitude (𝑎𝑎(𝒙𝒙)) term, the equation simplifies to: 

 𝑅𝑅𝑡𝑡
𝜕𝜕𝑇𝑇(𝒙𝒙, 𝑡𝑡)
𝜕𝜕𝑡𝑡

= 𝐷𝐷∇2𝑇𝑇(𝒙𝒙, 𝑡𝑡) − 𝑎𝑎(𝒙𝒙)𝒖𝒖 ∙ ∇𝑇𝑇(𝒙𝒙, 𝑡𝑡) (2) 

 

where 𝑅𝑅𝑡𝑡 is the thermal retardation coefficient. The solution to this equation can be formulated as a 
series of wave equations (Fatemi et al., 1995). Using the complex wave functions as an asymptotic 
expansion, the solution becomes: 

 
𝑇𝑇(𝒙𝒙, 𝑡𝑡) = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖(𝒙𝒙,𝑡𝑡) � 𝜏𝜏𝑛𝑛

∞

𝑛𝑛=0

(𝒙𝒙, 𝑡𝑡)(𝑖𝑖𝑖𝑖)−𝑛𝑛 (3) 

 



where 𝜔𝜔 is the frequency and 𝜎𝜎 is the phase of the wave. Fast changes are represented in the initial 
terms of the series, and thus can be used ideally to describe tracer fronts. Keeping the first order terms 
and neglecting dispersion; after substitution Eq. (2) simplifies to: 

 𝑅𝑅𝑡𝑡𝜏𝜏0(𝒙𝒙, 𝑡𝑡)𝜎𝜎𝑡𝑡(𝒙𝒙, 𝑡𝑡) = −𝜏𝜏0(𝒙𝒙, 𝑡𝑡)[𝑎𝑎(𝒙𝒙)𝒖𝒖∇𝜎𝜎(𝒙𝒙, 𝑡𝑡)] (4) 
 

This assumption is weaken if the dispersion is stronger. The equation for the thermal front, where 
𝜏𝜏0(𝒙𝒙, 𝑡𝑡) = 1 reads: 

 𝑅𝑅𝑡𝑡 𝜎𝜎𝑡𝑡(𝒙𝒙, 𝑡𝑡) = −[𝑎𝑎(𝒙𝒙)𝒖𝒖∇𝜎𝜎(𝒙𝒙, 𝑡𝑡)] (5) 
 

Taking absolute values: 

 |𝑅𝑅𝑡𝑡 𝜎𝜎𝑡𝑡(𝒙𝒙, 𝑡𝑡)| = |𝑎𝑎(𝒙𝒙)𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)||∇𝜎𝜎(𝒙𝒙, 𝑡𝑡)| (6) 
 

where 𝜃𝜃 is the angle between the flow direction and ∇𝜎𝜎(𝒙𝒙, 𝑡𝑡). By introducing 𝑠𝑠(𝒙𝒙) = |𝑎𝑎(𝒙𝒙)𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)|−1 
the velocity vector perpendicular to the tracer front, the Eq. (6) gives: 

 𝑅𝑅𝑡𝑡 𝑠𝑠(𝒙𝒙)|𝜎𝜎𝑡𝑡(𝒙𝒙, 𝑡𝑡)| = |∇𝜎𝜎(𝒙𝒙, 𝑡𝑡)| (7) 
 

Separating the temporal and spatial phase function the phase can be expressed as 𝜎𝜎(𝒙𝒙, 𝑡𝑡) = 𝜓𝜓(𝒙𝒙) − 𝑡𝑡 
(Kline and Kay, 1965). After substitution and squaring Eq. (7) transforms to: 

 |∇𝜓𝜓(𝒙𝒙)|2 = 𝑠𝑠2(𝒙𝒙)𝑅𝑅𝑡𝑡2 (8) 
where if we relate 𝑠𝑠(𝒙𝒙) to Darcy velocity: 

 
𝑠𝑠(𝒙𝒙) =

𝜙𝜙(𝒙𝒙)
𝑅𝑅𝑡𝑡𝑞𝑞

=
𝜙𝜙(𝒙𝒙)

(𝑅𝑅𝑡𝑡𝐾𝐾(𝒙𝒙)|𝑖𝑖(𝒙𝒙)|)
 (9) 

 

if the temperature gradient is perpendicular to the tracer front (𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) = 1). Equation 8 is known as the 
eikonal equation (Nolet, 1987). Solution methodologies for eikonal problems are available from seismic 
or electromagnetic wave propagation applications. 𝜓𝜓(𝒙𝒙) = 𝑡𝑡 describes the thermal front and because 
its gradient is parallel to the local transport direction, we can relate it to the transport trajectories: 

 𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝜆𝜆
𝜕𝜕𝜕𝜕(𝒙𝒙)
𝜕𝜕𝑥𝑥𝑖𝑖

 (10) 

 

where r is the distance along the trajectory and 𝜆𝜆  is a scaling factor. The value of 𝜆𝜆 can be chosen 
arbitrarily, and if we choose 𝜆𝜆 = 𝑠𝑠(𝒙𝒙)−1 , Eq. (10) returns the eikonal equation. With this substitution, 
Eq. (10) reads: 



 ∇𝜓𝜓(𝒙𝒙) = 𝑠𝑠(𝒙𝒙)
𝑑𝑑𝒙𝒙
𝑑𝑑𝑑𝑑

  (11) 

 

Because 𝑑𝑑𝑑𝑑(𝒙𝒙) is equal to 𝑑𝑑𝑑𝑑, after integration, the total travel time of the thermal front along the 
trajectory can be written as: 

 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �𝑑𝑑𝑑𝑑 = �𝑠𝑠(𝒙𝒙)𝑑𝑑𝑑𝑑 = �

𝜙𝜙(𝒙𝒙)
(𝑅𝑅𝑡𝑡 𝐾𝐾(𝒙𝒙)|𝑖𝑖(𝒙𝒙)|)

𝑑𝑑𝑑𝑑 

 
(12) 

This is the travel time equation for a thermal tracer. 
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