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Abstract 1 

The Precipitation-Runoff Modeling System (PRMS), a distributed-parameter hydrologic 2 

model, has been applied to the conterminous United States.  Parameter sensitivity analysis 3 

was used to identify:  (1) the sensitive input parameters and (2) the model output associated 4 

with dominate hydrologic process(es).  Sensitivity values of 35 PRMS calibration parameters 5 

were computed using the Fourier Amplitude Sensitivity Test procedure, on the basis of 6 

geographic location, and then summarized to process (baseflow, evapotranspiration, runoff, 7 

infiltration, snowmelt, soil moisture, surface runoff, and interflow) and model performance 8 

measure (mean, coefficient of variation, and autoregressive lag 1).  Identified parameters and 9 

processes provide insight into model performance by location and allow the modeler to 10 

identify dominate process on the basis of which processes are associated with the most 11 

sensitive parameters.   12 

The results of this study indicate that: (1) the choice of performance measure and output 13 

variables have a strong influence on parameter sensitivity, (2) the apparent model complexity 14 

to the modeler can be reduced by focusing on those processes that are associated with 15 

sensitive parameters and disregarding those that are not, (3) different processes require 16 

different numbers of parameters for simulation, and (4) some sensitive parameters influence 17 

only one hydrologic process, while others may influence many. 18 

1 Introduction 19 

It has long been recognized that distributed-parameter hydrology models (DPHMs) are 20 

complex because of the subtlety and diversity of the hydrologic cycle which they aim to 21 

simulate (Freeze and Harlan, 1969; Amorocho and Hart, 1964).  In this study, two different 22 

aspects of this complexity are addressed: 23 

(1) DPHMs have too many input parameters (Jakeman and Hornberger, 1993; Kirchner et al., 24 

1996; Brun et al., 2001; Perrin et al., 2001; McDonnell et al., 2007).  In this article, 25 

distributed parameters are defined as model inputs that remain constant through time, but can 26 

vary spatially across the landscape.  Those who apply these models often have difficulty 27 

understanding what these parameters are and how they are used in the model.  Regularly, 28 

there are several parameters that may have similar effect on the computations or may 29 

constrain the model in unintended ways (Hrachowitz et al., 2014).  Despite the developer’s 30 

claims that these DPHMs are more or less physically based, often there are not measurements 31 
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or data sources available for reliable development of all of the input parameters.  These 1 

unmeasured parameters, ostensibly tangible, are really empirical coefficients when it comes to 2 

application and calibration.  3 

(2) The output produced by DPHMs is difficult to interpret (Schaefli and Gupta et al., 2008; 4 

Gupta et al., 2009; Gupta et al., 2012; Mayer and Butler, 1993; Ewan, 2011). Often, the 5 

meaning of output variables is not always intuitive and results sometimes can seem 6 

contradictory (e.g. when streamflow does not seem to correlate with climate information).  7 

The result of these complex issues has led to the study of parameter interaction (Clark and 8 

Vrugt, 2006) and equifinality (Beven, 2006). 9 

Developing effective DPHM applications require that the modeler address these two aspects 10 

of complexity at the same time (i.e. the uncertainty problem: “If I am uncertain when 11 

estimating input parameters, due to either incomplete or inaccurate information, what affect 12 

does it have on the output?”, and the calibration problem: “I know the output I want, which 13 

parameters should I change and how much should I change them?”) (Chaney et al., 2015; 14 

Reusser and Zehe, 2011). While, the user of a DPHM can do nothing about the complexity of 15 

the model’s internal structure, the apparent complexity can be reduced by limiting the 16 

parameters and the affected output under consideration.  17 

Global parameter sensitivity analysis can determine the degree to which different values of 18 

parameters can affect the simulation of certain model outputs. Furthermore, parameter 19 

sensitivity can be evaluated with respect to selected output variables, each representing a 20 

different aspect of the hydrologic cycle (hereafter referred to as “processes”). Sensitivity 21 

analysis of this form can be used to both identify the input parameters that are the most 22 

sensitive (i.e. the parameters that affect the simulation the most) and the dominate process(es) 23 

(i.e. those processes which are affected most, by the most sensitive parameters) according to 24 

the DPHM. 25 

Results of parameter sensitivity analysis can vary spatially. Certain parameters can be more or 26 

less sensitive at different locations on the landscape. For example, parameters related to 27 

simulation of snow can become more sensitive at higher elevations, while parameters related 28 

to evaporation can become less sensitive at locations where capacity for soil water storage 29 

decreases. Consequently, the dominate process(es), as identified by parameter sensitivity 30 

analysis of the DPHM, will vary across the landscape as well.  31 
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Any particular DPHM must necessarily be able to simulate any and all hydrological processes 1 

that may occur anywhere on the landscape.  However, with the application of a DPHM to a 2 

specific site, it can become much less complex when the dominant hydrological process(es) 3 

are identified, as not all processes are active to the same degree.  The modeling problem 4 

becomes less complex to the modeler when hydrological processes not relevant to the 5 

modeled domain or watershed are removed from consideration (Wagener et al., 2003; Reusser 6 

et al., 2011; Guse et al., 2014; Bock et al., 2015).  Dominant process concepts have been 7 

explored as a way to classify watersheds and natural hydrologic systems for the purpose of 8 

simplifying DPHMs by several researchers (Sivakumar and Singh, 2012; Sivakumar et al., 9 

2007).  Some have suggested the approach for use as a possible classification framework (e.g. 10 

Woods, 2002; Sivakumar, 2004).  Pfannerstill et al. (2015) developed a framework for 11 

identification and verification of hydrologic process in simulation models on the basis of 12 

temporal sensitivity analysis. McDonnell et al. (2007) discuss the possibility of simplifying 13 

hydrologic modeling by identifying “fundamental laws” so that overparameterized models are 14 

not needed.  However, in our opinion we have not made much progress on that front and 15 

DPHMs are, in many ways and for many reasons, more complex than ever. 16 

This article describes an approach for identification of sensitive parameters and processes for 17 

a modeling application of the conterminous United States (CONUS, Fig 1.).  Identification 18 

and simulation of regional CONUS sub-watersheds is determined by the resolution of the 19 

available information and how the DPHM responds to geophysical (e.g., topography, 20 

vegetation and soils) and climatological variation.  Specifically, we propose to identify the 21 

sensitive parameters and dominant hydrologic process(es), thereby reducing the amount of 22 

input and output to consider (Chaney et al., 2015).   23 

2 Methods 24 

2.1 Distributed-parameter hydrology model 25 

The U.S. Geological Survey’s Precipitation-Runoff Modeling System (PRMS) is the DPHM 26 

used in this study.  PRMS is a modular, deterministic, distributed-parameter, physical-process 27 

watershed model used to simulate and evaluate the effects of various combinations of 28 

precipitation, climate, and land use on watershed response.  Each hydrologic process 29 

simulated by the model is represented within PRMS by an algorithm that is based on a 30 

physical law (i.e. balance of energy required to melt the ice in a snowpack) or empirical 31 
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relation with measured or estimated characteristics (i.e. a tank model used to simulate 1 

interflow).  The reader is referred to Markstrom et al. (2015) for a complete description of 2 

PRMS. 3 

A fundamental assumption of this study is that PRMS is able to simulate and differentiate 4 

hydrologic signals from all the different processes at the scale of the CONUS. Two possible 5 

ways to evaluate this are: (1) an analysis of PRMS’s internal structure, and (2) the history of 6 

PRMS applications.  A detailed analysis of PRMS’s structure is beyond the scope of this 7 

article (see Markstrom et al., 2015); however, PRMS is implemented in a very linear fashion. 8 

Each parameter is clearly identified with an equation that is related to simulation of a specific 9 

process. Equations are solved sequentially, generally in the order that is defined by water 10 

moving through the hydrologic cycle, starting from the atmosphere as precipitation and 11 

moving through the rivers as streamflow.  The outputs of one equation may be used as inputs 12 

to subsequent equations. All of the inputs for a particular equation are required before that 13 

equation can be solved.  This interdependency in equations can lead to parameter interaction 14 

in the simulation of subsequent processes.  For example, parameters related to distribution of 15 

temperature and solar radiation may show correlation with each other when evaluated with 16 

respect to simulation of evapotranspiration despite these parameters not being explicit terms 17 

in the evapotranspiration equations.  Past studies indicate that PRMS has been very useful in 18 

water-resource and research studies across the CONUS (Battaglin et al., 2011; Boyle et al., 19 

2006; Hay et al., 2011; Markstrom et al., 2012) and is capable of matching measured data 20 

(Bower, 1985; Cary, 1991; Dudley, 2008; Koczot et al., 2011) in a variety of geophysical and 21 

climatological settings. 22 

To define the spatial domain for the CONUS application of PRMS, the locations of major 23 

river confluences, water bodies, and stream gages have been georeferenced.  Approximately 24 

56,000 stream segments are used to connect these locations.  Using these stream segments, 25 

the left and right bank areas that contribute runoff directly to each segment have been 26 

identified, resulting in approximately 110,000 irregularly shaped hydrologic response units 27 

(HRUs) of various sizes (500 m2 to 14,000 km2) (Viger and Bock, 2014).   These stream 28 

segments and HRUs and derived by their geographic and topographic location, affecting their 29 

extent and resolution.  The CONUS application is forced with values of daily precipitation 30 

and daily maximum and minimum air temperature from the DAYMET data set (Thornton et 31 

al., 2014).  The climate information covers a time period from 1980-2013 on a daily time step, 32 
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but a shorter period (1987 – 1989 used for warmup and 1990 – 2000 used for evaluation) was 1 

used in this study. 2 

2.2 Calibration Parameters 3 

The version of PRMS used in this study has 108 input parameters.  A parameter is defined as 4 

an input value that does not change over the course of a simulation run.  Of these parameters, 5 

most would never be modified from their initial values (hereafter referred to as non-6 

calibration parameters, see Viger, 2014) because they are (1) computed directly from digital 7 

data sets through the use of a geographic information system (e.g. land-surface 8 

characterization parameters), (2) boundary conditions (e.g. parameters to adjust daily 9 

precipitation and daily air temperature forcings), or (3) model configuration options (e.g. unit 10 

conversions and model output options).  This leaves 35 parameters under consideration for 11 

improved model performance, hereafter referred to as calibration parameters (Table 1).  Each 12 

parameter is used within a PRMS code module that simulates a single hydrologic process in 13 

PRMS.  The output variables of one module may be used as input variables to other modules.  14 

It is through these connections that calibration parameters associated with a PRMS module 15 

type may affect the results of other modules. 16 

2.3 Hydrologic processes 17 

PRMS produces more than 200 output variables that indicate the simulated hydrologic 18 

response of a watershed through time (Markstrom et al., 2015, see Table 1-5).  In this study, 19 

eight of these output variables have been selected to represent the response of major 20 

hydrologic processes at the HRU resolution.  These processes are:  (1) baseflow (PRMS 21 

output variable gwres_flow) – the component of flow from the saturated zone to the connected 22 

stream segment; (2) evapotranspiration (hru_actet) – the total actual evapotranspiration lost 23 

from canopy interception, snow sublimation, and soil and plant losses from the root zone; (3) 24 

runoff (hru_outflow) – the total flow from the HRU contributing to streamflow in the 25 

connected stream segment; (4) infiltration (infil) – the sum of rain and snowmelt that passes 26 

into the soil zone of the HRU; (5) snowmelt (snowmelt) – the amount of water that has 27 

changed from ice to liquid and becomes either surface runoff or infiltrates into the soil zone of 28 

the HRU; (6) soil moisture (soil_moist) – the storage state that represents the amount of soil 29 

water in the soil zone above wilting point and below total saturation in the HRU; (7) surface 30 

runoff (sroff)  – water from a rainfall or snowmelt event that travels quickly over the land 31 
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surface from the HRU to the connected stream segment; and (8) interflow (ssres_flow) – 1 

shallow lateral flow in the unsaturated zone to the connected stream segment.  It is assumed 2 

that these eight output variables are representative of the processes typically considered in 3 

hydrological studies with DPHMs.  Details of how these processes are simulated by PRMS 4 

are described by Markstrom et al. (2015). 5 

2.4 Performance measures 6 

For DPHMs, there are many different performance measures that have been developed for 7 

different purposes (Krause et al., 2005; Gupta et al., 2008; Gupta et al., 2009; Mendoza et al., 8 

2015a; Mendoza et al., 2015b).  Because this study is an analysis of model sensitivity, the 9 

performance measures need only track changes in model output and do not necessarily need 10 

to include observed measurements.  Consequently, performance measures can be developed 11 

for processes that are not normally evaluated by performance measures.  Archfield et al. 12 

(2014) demonstrated that seven fundamental daily streamflow statistics (FDSS) can be used to 13 

group streams by similar hydrologic response and tend to provide non-redundant information.  14 

In this study, all seven FDSS were computed for each of the eight PRMS time series output 15 

variables corresponding to the processes.  For the purpose of illustration, this article focuses 16 

on three of the FDSS: (1) mean; (2) coefficient of variation (CV); and (3) the autoregressive 17 

lag-one correlation coefficient (AR-1).  In an intuitive sense, performance measures based on 18 

these three statistics can be thought to represent changes in total volume, “spikiness” or 19 

“flashiness”, and day-to-day timing, respectively.  These performance measures are computed 20 

on the daily time series of the process variables for the 10-year evaluation period. 21 

3 FAST analysis 22 

Parameter sensitivity analysis measures the variability of model output given variability of 23 

calibration parameter values.  This is determined by partitioning the total variability in the 24 

model output or change in performance measure values to individual calibration parameters 25 

(Reusser et al., 2011).  The Fourier Amplitude Sensitivity Test (FAST) (Schaibly and Shuler, 26 

1973; Cukier et al., 1973; Cukier et al., 1975; Saltelli et al., 2006) was selected for this study 27 

because it has been demonstrated that it can efficiently estimate non-linear hydrologic model 28 

parameter sensitivity (Guse et al., 2014; Pfannerstill et al., 2015; Reusser et al., 2011).  FAST 29 

is a variance-based global sensitivity algorithm that estimates the first-order partial variance 30 

of model output explained by each calibration parameter (hereafter referred to as parameter 31 
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sensitivity).  Specifically, this first-order variance is the variability in the output that is directly 1 

attributable to variations in any one parameter and is distinguishable from higher order 2 

variances associated with parameter interactions.  An important caveat is that these higher 3 

order variances are not accounted for in the analysis.  It is assumed that first-order partial 4 

variance is sufficient to identify sensitive parameters.  This same assumption, as applied to 5 

process identification, may be more problematic. If there are sets of interactive sensitive 6 

parameters that have not been identified, then the associated process(es) will not be identified 7 

as such.  8 

Selected parameters are varied within defined ranges at independent frequencies among 9 

different model runs.  FAST identifies the variability of parameter sensitivities and their 10 

ranks, by means of their contribution to total power in the power spectrum.  FAST has been 11 

implemented as the ‘fast’ library in the statistical software R (Reusser et al., 2011; Reusser, 12 

2013; R Core Team, 2015) in two parts.  In the first part, the user identifies the calibration 13 

parameters and respective value ranges for the test, then FAST generates sets of test 14 

calibration parameter values (hereafter referred to as trials).  Calibration parameter values are 15 

varied across the trials according to non-harmonic fundamental frequencies.  The user then 16 

runs the DPHM for each trial and computes corresponding performance measures.  Then the 17 

user runs the second part of the FAST package that performs a Fourier analysis of the 18 

performance measures over the trial space looking for the frequency signatures associated 19 

with each calibration parameter. 20 

The FAST methodology results in a simple procedure for computing parameter sensitivities 21 

on an HRU basis for all the CONUS.  The steps in this process are as follows: 22 

1. Assign appropriate ranges for the 35 calibration parameters (Markstrom et al., 2015; as 23 

in LaFontaine et al., 2013). 24 

2. Run the first part of the FAST procedure (as described above) to develop over 9000 25 

unique parameter sets, comprised of value combinations for the calibration 26 

parameters. These parameter sets in the trial space are independent of each other so 27 

they can run in parallel on a computer cluster. 28 

3. Compute the FDSS based performance measure (mean, CV, and AR-1) values for 29 

each process. 30 
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4. Run the second part of the FAST procedure (as described above) using output from 1 

step 3, resulting in PRMS parameter sensitivities, at each HRU, for the 56 2 

combinations of seven performance measures and eight processes (plus totals). 3 

4 Results 4 

4.1 Parameter sensitivity by process and performance measure 5 

Figure 2 shows parameter sensitivity as a set of maps ordered by process and performance 6 

measure.  This illustrates the spatial variability in parameter sensitivity and the importance 7 

that choice of performance measure can make in terms of evaluation of hydrologic response.  8 

In these maps, the HRUs are colored according to the parameter sensitivity, which is 9 

computed by summing the first-order sensitivity for all 35 parameters, which do not 10 

necessarily sum to one, and then scaling (by average) each individual category of modeled 11 

process and performance measure to total sensitivity.  Parameter sensitivity associated with 12 

process (column labeled “Process average” in Figure 2) are averaged across all of the 13 

parameter sensitivity values computed for the different performance measures, while 14 

parameter sensitivity associated with the performance measures (last row labeled 15 

“Performance measure average” in Figure 2) are averaged across all of the parameter 16 

sensitivity values computed for the different processes.  These categories are indicated by 17 

their position in the rows and columns in Figure 2.  When looking at a single performance 18 

measure for a single process, the cumulative parameter sensitivity can vary from near 0.0 19 

(white colored HRUs) to near 1.0 (black colored HRUs).  Low values in these maps indicate 20 

that there are no parameters that can be changed in any way to affect the performance 21 

measure (this situation is hereafter referred to as an inferior process).  Likewise, each HRU 22 

has a cumulative sensitivity value (i.e. the sum of all of the partial sensitivities for each 23 

process). The process with the largest sum on an HRU is referred to as the dominant process 24 

for that HRU. 25 

An example of an inferior process is clearly seen in the case of the mean of the snowmelt 26 

process in the southern CONUS HRUs.  This is because the occurrence of snow in these areas 27 

is very infrequent.  Also, there were HRUs for which the value of some performance 28 

measures were mathematically undefined for certain processes (e.g. AR-1 and CV for the 29 

baseflow and snowmelt processes).  These cases occur when the output variable representing 30 

the process does not change at all through time, regardless of the parameter values, and are 31 
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extreme examples of inferior processes.  Likewise, a clear example of a dominant hydrologic 1 

process is the CV of interflow in the Intermountain West region of the CONUS (Figs. 1 and 2 

2).  This means that for these HRUs, there exist some calibration parameters that can be 3 

varied that affect this process to a very high degree. 4 

Also apparent from Figure 2 is that there are clear spatial patterns in the parameter sensitivity 5 

on the basis of the geographical features of the CONUS.   Generally, many of the maps show 6 

a sharp break in parameter sensitivity between mountain ranges and comparatively lower 7 

elevations, northern contrasted with southern latitudes, and humid versus arid climates.  8 

Specific contrasts can be seen in several maps such as when examining the Humid Midwest 9 

as opposed to the Great Plains regions and the Pacific Coastal areas and the Desert Southwest 10 

region of the CONUS (Fig. 1).   Additionally, topographic features of the landscape are 11 

prominent (e.g. elevation for interflow), while in other maps, climate considerations seem to 12 

dominate (e.g. snowmelt).  Another specific example is that the mean of each process, which 13 

indicates the ability of any parameter(s) to change the total volume of water during a 14 

simulation, seems to have a low sensitivity band in the Great Plains region for all processes 15 

except for snowmelt (Fig. 1).  This band of low sensitivity has been noted in other modeling 16 

studies (Newman et al., 2015; Bock et al., 2015). 17 

4.2 Parameter count required to parameterize each process 18 

To identify the expected count of parameters required to parameterize a particular process, 19 

cumulative parameter sensitivity across all HRUs of the CONUS has been computed and 20 

plotted (Fig. 3(a)—(h)). The sensitivity level accounted for by the most sensitive parameter, 21 

regardless of which parameter it is, for all HRUs across the CONUS is plotted in position 1 on 22 

the X axis of each of these plots  (Fig. 3(a)—(h)).  Then, cumulative sensitivity is plotted for 23 

the parameter in rank 2, and so on, until the cumulative sensitivity of all 35 calibration 24 

parameters is accounted for.  The plots in Figure 3(a)—(h) show that far fewer than the full 35 25 

parameters, on average, are needed to account for most of the parameter sensitivity.  In fact, 26 

to account for 90% of the parameter sensitivity, this count varies from an average low value 27 

of just over two for snowmelt to an average high value of over 9 for runoff in selected HRUs. 28 

The actual count of calibration parameters required to account for 90% of the parameter 29 

sensitivity varies by process and region, as shown by the maps in Figure 3(i)—(p).  These 30 

maps were generated by counting the number of parameters required to obtain the 90% 31 



 11 

cumulative sensitivity level for each HRU.  For example, Figure 3(i) indicates that for the 1 

baseflow process between three and nine parameters are needed to account for 90% of the 2 

parameter sensitivity in the various HRUs across the CONUS, with the higher count needed 3 

in mountainous, Great Lakes, and New England regions.  The maps also indicate that between 4 

four and six parameters are required for parameterization of evapotranspiration (Fig. 3(j)), 5 

five to 13 parameters are required for parameterization of runoff (Fig. 3(k)), four to 13 6 

parameters are required for parameterization of infiltration (Fig. 3(l)), two to eight are 7 

required for parameterization of snowmelt (Fig. 3(m)), three to six parameters are required for 8 

parameterization of soil moisture (Fig. 3(n)), five to eight parameters are required for 9 

parameterization of surface runoff (Fig. 3(o)), and two to 13 parameters are required for 10 

parameterization of interflow (Fig. 3(p)).  This analysis indicates that more parameters are 11 

needed to simulate the components of streamflow (e.g. baseflow, interflow, and groundwater 12 

flow) than processes that do not result directly in flow (e.g. snowmelt, evapotranspiration, and 13 

soil moisture). A full analysis of theses parameter counts and how they relate to their 14 

respective process is beyond the scope of this article, but it could relate to the structure of 15 

PRMS and possibly indicate that some processes are overparameterized. In addition, 16 

simulated processes that are identified as being sensitive to parameters with which they are 17 

not normally associated with, may indicate that these processes are a convolution of other 18 

processes, consequently making parameters sensitive that are not normally sensitive. 19 

Visually, these maps (Fig. 3(i)—(p)) indicate that HRU calibration parameter counts vary 20 

regionally.  For most processes, higher parameter counts are seen in the more mountainous 21 

regions of the Cascade, Sierra Nevada, Rocky, Ozark, and Appalachian mountains, although 22 

this is true to a much lesser extent for the evapotranspiration and soil moisture processes 23 

(Figs. 3(j) and 3(n)).  Higher values also seem prevalent in the New England and Great Lake 24 

regions (Fig. 1).  This result seems to indicate that, no matter which part of the hydrologic 25 

cycle is simulated, more parameters are required in these regions.  In contrast, low parameters 26 

counts seem prevalent in the Great Plains and Desert Southwest regions.   27 

Finally, Figure 3 illustrates the extent to which it is possible to decompose the parameter 28 

estimation problem into a sub-set of independent problems, and hence reduce the 29 

dimensionality of the inference problem and avoid the troublesome nature of parameter 30 

interactions.  It also illustrates that there is a strong spatial component to this decomposition.  31 

In order to make the information presented in Figure 3 more useful for DPHM application, the 32 
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particular sensitive parameters have been determined for each HRU by ranking the calibration 1 

parameters by sensitivity for each category of process and performance measure for each 2 

individual HRU (not shown).  A summary of this information is produced by counting the 3 

occurrence of each parameter across the HRUs and ranking them within their respective 4 

category of process and performance measure (Table 2). To address the issue of the spatial 5 

variability of these parameters, the percentage of the total number of HRUs for which that 6 

parameter is sensitive is shown as the number in parentheses after the parameter name in 7 

Table 2.  Higher percentage values would indicate that the corresponding parameter is 8 

sensitive across more of the CONUS.   Refer to Table 1 for a complete description of these 9 

parameters. 10 

When looking at the categorical parameter lists of Table 2, it is expected that different 11 

parameters would associate with different processes (i.e. along a column), but it is surprising 12 

to see how different the parameter lists are for different performance measures (moving across 13 

a row) for the same process.  An example of this is the baseflow process: the baseflow 14 

coefficient (PRMS parameter gwflow_coef) is the most sensitive parameter for performance 15 

measures CV and AR1, but is not even in the list of sensitive parameters for the performance 16 

measure related to the mean of the process.  This implies that this parameter is influential for 17 

affecting the timing of baseflow, while it does not have any effect on the total volume of 18 

baseflow. 19 

Further inspection of Table 2 indicates that some calibration parameters occur in many of the 20 

24 categories (8 processes times 3 performance measures), while some parameters do not 21 

occur at all.  A count of how many times each parameter occurs provides insight into how 22 

many process/performance measure combinations that particular parameter influences.  To 23 

investigate this for the CONUS application, another view of the information in Table 2 is 24 

shown in Figure 4.  The 25 sensitive calibration parameters from Table 2 are listed on the y-25 

axis of Figure 4, ranked by order of the number of times that they appear in the 26 

process/performance measure categories.  Furthermore, each appearance is indicated by an 27 

adjacent circle. Independent of the number of times a parameter occurs within a category 28 

(number of circles), the color of the circle visually indicates the proportion of the CONUS 29 

HRUs that are affected by that parameter. Specifically, a red circle indicates that more HRUs 30 

are affected, while blue indicates that fewer HRUs are affected. 31 
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Figure 4 shows that three specific parameters affect 18 or more process/performance measure 1 

categories; seven parameters affect seven to 14 categories, and 15 specific parameters affect 2 

one to five categories.  Finally, of the 35 parameters studied, 10 are never used for any 3 

combination of process and performance measure (Table 2 and Fig. 4).  It is apparent from 4 

Figure 4, that for the CONUS application of PRMS, the parameters affecting the most process 5 

categories are soil_moist_max (maximum available water holding capacity), jh_coef  (Jensen-6 

Haise air temperature coefficient), and dday_intcp (intercept in degree-day solar radiation 7 

equation).  Because these parameters affect so many categories, modelers would be wise to 8 

invest their resources in developing the best values possible for these parameters to avoid 9 

unintended parameter interaction during calibration.   Ideally, these parameters could be 10 

estimated from reliable external data and set for the model and not calibrated.  The parameters 11 

that affect the least number of process categories (aside from the parameters that are never 12 

sensitive) are cecn_coef (convection condensation energy coefficient), ssr2gw_exp 13 

(coefficient in equation used to route water from the soil to the groundwater reservoir), 14 

emis_noppt (emissivity of air on days without precipitation), potet_sublim (fraction of 15 

potential evapotranspiration that is sublimated), and slowcoef_lin (slow interflow routing 16 

coefficient).  Ideally, these parameters could be set to default values since there is limited 17 

value in calibrating them.  Also apparent from Figure 4 is that there are many parameters 18 

between these two extreme groups.  Parameters like smidx_coef (soil moisture index for 19 

contributing area calculation) can appear in several process categories, without any high 20 

rankings, while there are other parameters like slowcoef_sq (slow interflow routing 21 

coefficient) that appear in relatively few process categories, but have high rankings.  This 22 

behavior may be due to the vertical routing order (i.e. processes that occur nearer to the 23 

surface happen before the deeper ones) of the associated processes (Yilmaz et al., 2008; 24 

Pfannerstill et al., 2015). These parameters may be the best candidates for calibration because 25 

they are sensitive, while at the same time interaction across processes is perhaps limited. 26 

5 Discussion 27 

5.1 Causes of parameter sensitivity 28 

There are regions where parameter sensitivity is typically high for a particular performance 29 

measure (e.g. New England region [Fig. 1] for performance measure based on mean of 30 

processes) or typically low (e.g. Great Plains region [Fig. 1] for mean of processes) regardless 31 

of the process (Fig 2).  Why do the HRUs of some regions exhibit parameter sensitivity to 32 
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almost all processes, while others exhibit parameter sensitivity to almost none?  All other 1 

things being equal, there can only be two sources of these spatial patterns:  2 

1. The physiography that is used to define the non-calibration parameters (e.g. elevation, 3 

vegetation type, soil type) renders all calibration parameters insensitive.  A theoretical 4 

example of this could be if an HRU is characterized as entirely impervious, resulting 5 

in the non-existence of any simulated soil water.  6 

2. Patterns in the climate data used to drive the model (e.g. daily temperature and 7 

precipitation) could control model response.  A theoretical example of this could be an 8 

HRU that receives no precipitation.  The hydrologic response of the HRUs in either 9 

case would always remain unchanged, regardless of changes in any parameter value. 10 

In either case, these sources of information are independent of the DPHM and could lead to 11 

the conclusion that the dominant processes identified by the methods outlined in this article 12 

could correspond to perceptible dominant processes in the physical world (i.e. how the “real 13 

world” works). 14 

The number of unique calibration parameters for each process in Table 2 (i.e. counting the 15 

parameters across each row) may provide some insight into the complexity of each process as 16 

represented in the model structure of PRMS.  In theory, more “complicated” hydrologic 17 

processes would require more parameters for parameterization than the “simpler” ones.  18 

According to this view, runoff (16 calibration parameters), infiltration (12 calibration 19 

parameters), and interflow (12 calibration parameters) are the most complex processes to 20 

simulate, with soil moisture (4) being the simplest. Baseflow (11 calibration parameters), 21 

snowmelt (11 calibration parameters), surface runoff (10 calibration parameters), and 22 

evapotranspiration (8 calibration parameters) are in between.  This reflects the fact that in 23 

PRMS, runoff is a much more complicated calculation with many of the other processes 24 

directly contributing information.  Also apparent is that more parameters are needed to 25 

simulate the components of streamflow (e.g. baseflow, interflow, and surface runoff) than 26 

processes that do not result directly in flow (e.g. snowmelt, evapotranspiration, and soil 27 

moisture).  The only process that does not follow this pattern is infiltration.  Storm-event 28 

based infiltration is typically simulated with sub-daily time steps to account for the 29 

time/intensity variability of this process.  It is possible that PRMS must compensate for this 30 

shortcoming in structure with a more complex parameterization of the process. 31 
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Table 2 indicates that there are 10 calibration parameters that are never sensitive regardless of 1 

the process or performance measure.  This indicates that these parameters should always be 2 

set to the default value, with minimal resources used to estimate them, and never be 3 

calibrated.  Additional modeling studies could reveal situations where these parameters 4 

actually do exhibit some sensitivity, perhaps in situations with smaller geographical domains 5 

or over different time periods.  It is also possible that these parameters are never sensitive, 6 

indicating some structural problem or unwarranted complexity in the DPHM and the removal 7 

of some algorithms from the source code of the DPHM is advised.   Additional study is 8 

required of these 10 non-sensitive calibration parameters and upon further review of the 9 

PRMS source code, a structural problem (e.g. unintended constraint, non-differentiable 10 

behavior, or software bug) might be revealed.  Alternatively, the problem could be related to 11 

invalid parameter ranges in the FAST analysis or problems with the climate data used to drive 12 

the model.  Finally, it could be that alternative or improved performance measures could 13 

resolve this issue. 14 

5.2 Choice of performance measure 15 

The maps of Figure 2 clearly illustrate the importance that choice of performance measure can 16 

make in terms of evaluation of hydrologic response.  When the maps of performance 17 

measures within a single hydrologic process are compared (i.e. the maps across a single row), 18 

the spatial patterns and magnitude of the parameter sensitivity can be very different.  This 19 

could indicate that the performance measures based on the FDSS truly are non-redundant and 20 

are accounting for different aspects of the processes. 21 

Table 2 indicates that the baseflow coefficient (PRMS parameter gwflow_coef, Markstrom et 22 

al., 2015) is the most sensitive parameter for performance measures CV and AR1, but not 23 

sensitive to the mean of the baseflow process performance measures.  This indicates that 24 

despite knowledge of parameters being associated with the computations of simulation of a 25 

certain process, sensitivity analysis can reveal that the response of the simulation is 26 

completely different when the performance measure changes.  It also indicates that sensitivity 27 

analysis might be an important step in selection of an appropriate performance measure and 28 

that uncritical application of performance measures may be misleading. 29 
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5.3 Identification of dominant and inferior processes by geographic area 1 

To identify the dominant and inferior process(es) by geographic area, the following procedure 2 

is done for each HRU: 3 

1. The parameter sensitivity scores are summed for each parameter, resulting in a score 4 

for each parameter for each time series output variable and performance measure. 5 

2. The parameter scores are averaged by performance measures, resulting in a score for 6 

each process. 7 

3. The process scores are ranked for each HRU. 8 

4. The top (and bottom) ranked process determines the most dominant (and most 9 

inferior) single process as shown in Figure 5. 10 

When the sensitivities are computed this way, it is possible that certain parameters are 11 

included in both the most dominate and most inferior processes at the same time.  This 12 

apparent contradiction is not necessarily a conflict but indicates that the calibration 13 

parameters must work in concert with the evaluation method.  For example, there exist HRUs 14 

where the evapotranspiration process is dominant and at the same time the runoff or 15 

infiltration processes are inferior (Fig. 5(a) and 5(b)).  The parameter soil_moist_max is 16 

indicated as being sensitive for all three of these processes (Table 2).  This parameter would 17 

demonstrate equifinality if evaluated within the context of the inferior processes (i.e. those 18 

output variables and performance measures) but would be a very effective calibration 19 

parameter resulting in optimal values when viewed within the context of the dominate 20 

process. 21 

Generally, Figure 5(a) shows that evapotranspiration is the most prevalent dominant process 22 

for the CONUS.  This is probably because it is a major component of the hydrologic cycle 23 

and sensitive parameters are available to affect it in every HRU.  However, this is not 24 

universal, and the dominant process varies by geographic region, with snowmelt being the 25 

dominant process in the northern Great Planes and northern Rocky Mountains, total runoff 26 

being the most important in the Pacific Northwest, and with interflow important in bands 27 

across the Intermountain West (Fig. 1).  Each process is dominant somewhere depending on 28 

local conditions.  Equally informative are the locations of the most inferior processes (Fig. 29 

5(b)).  This clearly shows that PRMS snowmelt parameters are not sensitive across the 30 

Central Valley of California, and in the Deep South and the Southwestern United States (Fig. 31 
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1).  Areas where runoff is more dominate than evapotranspiration, as in the Cascade 1 

Mountains and coastal areas of the Pacific Northwest, are locations where the runoff is a 2 

substantially greater part of the water budget.  Interestingly, infiltration and baseflow appear 3 

to be equally inferior across most of CONUS, with pockets of HRUs that are insensitive to 4 

soil moisture, surface runoff, and interflow, depending on local conditions.  There are no 5 

HRUs that rank evapotranspiration as the most inferior process. 6 

Dominant and inferior processes can be identified for HRUs at the watershed scale as well.  7 

Figure 5(c) shows the most dominant process by HRU for the Apalachicola – Chattahoochee 8 

– Flint River watershed in the Southeastern United States.  This watershed has been the 9 

subject of previous PRMS modeling studies (LaFontaine et al. 2013).  When using this 10 

information at a finer resolution, it shows that evapotranspiration is the most dominant 11 

process watershed wide, but with pockets of HRUs in the northern part of the watershed 12 

where runoff is the most dominant and a pocket in the southern part of the watershed where 13 

infiltration is most dominant.  Likewise, the most inferior process for each HRU is identified 14 

in Figure 5(d). This clearly indicates that parameters and performance measures related to 15 

snowmelt, and to a lesser degree baseflow do not need to be considered when modeling this 16 

watershed.  Figure 5(d) also indicates, that in the northern part of the watershed, infiltration 17 

and runoff are inferior processes as well, which could in part be due to impervious conditions 18 

around the Atlanta metropolitan area.  This information could be used, in conjunction with 19 

Table 2, to develop the most effective parameter estimation and performance measure 20 

selection strategy when modeling this watershed. 21 

This method of identification of inferior and dominate processes for a specific geographical 22 

location is defined within the context of the application of the DPHM and may not have the 23 

same meaning within a different context.  This method of using the PRMS watershed 24 

hydrology model as the context resolves problems that researchers have had classifying 25 

watersheds by dominate processes, indicating that classification not only depends on the 26 

physiographic nature of the watershed, but also, on the scale, resolution, and purpose for 27 

classification. 28 

5.4 Further study 29 

Providing modelers with reduced lists of calibration parameters on an HRU-by-HRU, 30 

watershed-by-watershed, or region-by-region basis is the first step in the path of this research.  31 
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This approach could be developed into more sophisticated methods where orthogonal output 1 

variables and performance measures could provide much more insight into methods of 2 

effective model calibration.  Advancements in this approach may identify groups of 3 

parameters that effectively behave together, thus reducing the number of parameters and 4 

making specific model output respond more directly to a single or a few parameters, reducing 5 

parameter interaction.  This suggests that model parameterization and calibration might 6 

benefit from a step-by-step strategy, using as much information as possible to set non-7 

interactive parameters and remove them from consideration before the more interactive 8 

parameters are calibrated, reducing the dimensionality of the problem (Hay et al., 2006; Hay 9 

and Umemoto, 2006). 10 

Another question for future research is: Does the classification of dominate hydrologic 11 

processes, both geographical and categorical, as described in this study apply to any other 12 

context?  Comparable findings from other modeling studies, such as those by Newman et al. 13 

(2015) and Bock et al. (2015), might indicate that there could be a connection.  These other 14 

studies use the same input information (i.e. being driven with the same climate data and using 15 

the same sources of information for parameter estimation), and thus simulation results and 16 

model sensitivity to this information might be similar.  Also, can real world watersheds be 17 

classified by sensitivity analysis using DPHMs?  Based on the findings of the work presented 18 

so far, the answer is inconclusive.  Clearly there are some results that indicate that it might be 19 

possible.  For example, the methods described here effectively identify “snowmelt 20 

watersheds” in the mountainous and northern latitudes, but, is all of this necessary to 21 

accomplish this?  Might simpler methods (e.g. an isohyetal snowfall map) identify snowmelt 22 

watersheds just as effectively? 23 

Questions remain about using parameter sensitivity for identification of structural 24 

inadequacies within the CONUS application and specifically, the PRMS model itself.  In this 25 

application, certain hydrologic processes (e.g. depression storage, streamflow routing, flow 26 

through lakes, and strong groundwater/surface-water interaction) were not considered because 27 

of additional data requirements and parameterization complexity.  The PRMS model also 28 

allows for selection of alternative methods for many of the module types.  Each of these 29 

modules uses different equations and calibration parameters.   Future work might be to 30 

determine the effect of using different modules or maybe even to determine the selection of 31 

the PRMS modules through sensitivity analysis.  Just as the spatial and temporal scope of any 32 
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modeling project must be defined, the scope of the hydrologic processes, and the detail to 1 

which these processes are simulated, must be likewise defined.  Also, alternative ways of 2 

defining HRUs (e.g. larger or smaller) could affect the analysis.  Perhaps sensitivity analysis 3 

could help define this in a more objective way.  Model development and application could 4 

perhaps proceed by first accounting for those factors that have the most effect. 5 

6 Conclusion 6 

Watersheds in the real world clearly exhibit hydrologic behavior determined by dominant 7 

processes based on geographic location (i.e. land surface conditions and climate forcings).  A 8 

methodology has been developed to identify regions, watersheds, and HRUs according to 9 

dominant process(es) on the basis of parameter sensitivity response with respect to a 10 

distributed-parameter hydrology model.  The parameters in this model were divided into two 11 

groups – those that are used for model calibration and those that were not.  A global 12 

parameter sensitivity analysis was performed on the calibration parameters for all HRUs of 13 

the conterminous United States.  Categories of parameter sensitivity were developed in 14 

various ways, on the basis of geographic location, hydrologic process, and model response.  15 

Visualization of these categories provides insight into model performance, and useful 16 

information about how to structure the modeling application should take advantage of as 17 

much local information as possible. 18 

By definition, an insensitive parameter is one that does not affect the output. Ideally, a 19 

distributed-parameter hydrology model would have just a few calibration parameters, all of 20 

them meaningful, each controlling the algorithms related to the corresponding process. This 21 

would result in low parameter interaction and a clear correspondence between input and 22 

output.  However, this is not always the case, and despite the fact that parameter interaction is 23 

unavoidable in these types of models, this behavior is also seen in the real world.  For 24 

instance, in watersheds where evaporation is very high, antecedent soil moisture is affected, 25 

which has a direct influence on infiltration.  The real world process of evaporation has an 26 

effect on infiltration, just as evaporation parameters have an effect on simulation of 27 

infiltration in watershed hydrology models. 28 

In conclusion, results of this study indicate that it is possible to identify the influence of 29 

different hydrologic processes when simulating with a distributed-parameter hydrology model 30 

on the basis of parameter sensitivity analysis.  Factors influencing this analysis include 31 

geographic area, topography, land cover, soil, geology, climate, and other unidentified 32 
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physical effects.  Identification of these processes allows the modeler to focus on the more 1 

important aspects of the model input and output, which can simplify all facets of the 2 

hydrologic modeling application. 3 

4 
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Data availability 1 

The Precipitation-Runoff Modeling System software used in this study is developed, 2 

documented, and distributed by the U.S. Geological Survey.  It is in the public domain and 3 

freely available from their web site (http://wwwbrr.cr.usgs.gov/prms). Data analysis and 4 

plotting is done with the R software package (http://www.r-project.org), which is freely 5 

available, subject to the GNU General Public License. 6 

The climate forcing data set used in this study came from the U.S. Geological Survey Geo 7 

Data Portal (http://cida.usgs.gov/climate/gdp).  The HRU delineation and default 8 

parameterization came from the U.S. Geological Survey GeoSpatial Fabric 9 

(http://wwwbrr.cr.usgs.gov/projects/SW_MoWS/GeospatialFabric.html). Finally, the 10 

parameter sensitivity output values that were used to make the maps and tables in this article 11 

are available at ftp://brrftp.cr.usgs.gov/pub/markstro/hess. 12 

13 

http://wwwbrr.cr.usgs.gov/prms
http://cida.usgs.gov/climate/gdp
http://wwwbrr.cr.usgs.gov/projects/SW_MoWS/GeospatialFabric.html
ftp://brrftp.cr.usgs.gov/pub/markstro/hess
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Tables 1 

Table 1. Precipitation Runoff Modeling System (PRMS) calibration parameters used in this 2 

study. The values in the column labeled “PRMS module” identify the module type equation(s) 3 

from the PRMS source code (see Markstrom et al., 2015). 4 

Parameter 
name 

Description PRMS module 

adjmix_rain Factor to adjust rain proportion in a mixed rain/snow event climate  

carea_max 
Maximum area contributing to surface runoff surface 

runoff 
cecn_coef Convection condensation energy coefficient snow 

dday_intcp 
Intercept in degree-day equation  solar 

radiation 

dday_slope 
Slope in degree-day equation solar 

radiation 
emis_noppt Average emissivity of air on days without precipitation snow 
fastcoef_lin Linear coefficient in equation to route preferential-flow  soil-zone 
fastcoef_sq Non-linear coefficient in equation to route preferential-flow  soil-zone 
freeh2o_cap Free-water holding capacity of snowpack snow 
gwflow_coef Linear groundwater discharge coefficient groundwater  
jh_coef Coefficient used in Jensen-Haise potential ET computations Potential ET 
jh_coef_hru Coefficient used in Jensen-Haise potential ET computations  Potential ET 
potet_sublim Snow sublimation fraction of potential ET snow 

ppt_rad_adj 
Solar radiation adjustment threshold for precipitation days solar 

radiation 
pref_flow_den Fraction of the soil zone in which preferential flow occurs soil-zone 
rad_trncf Winter transmission coefficient for short-wave radiation snow 

radj_sppt 
Solar radiation adjustment on summer precipitation days solar 

radiation 

radj_wppt 
Solar radiation adjustment on winter precipitation days solar 

radiation 

radmax 
Maximum solar radiation due to atmospheric effects solar 

radiation 
sat_threshold Water capacity between field capacity and total saturation soil-zone 
slowcoef_lin Linear coefficient for interflow routing  soil-zone 
slowcoef_sq Non-linear coefficient for interflow routing soil-zone 

smidx_coef 
Non-linear contributing area coefficient  surface 

runoff 

smidx_exp 
Exponent in non-linear contributing area coefficient surface 

runoff 

soil2gw_max 
Maximum soil water excess that is routed directly to 
groundwater 

soil-zone 

soil_moist_max Maximum available water holding capacity of soil-zone soil-zone 
soil_rechr_max Maximum available water holding capacity of recharge zone soil-zone 
srain_intcp Summer rain interception storage capacity  interception 

ssr2gw_exp 
Non-linear coefficient in equation used to route soil-zone 
water to groundwater 

soil-zone 

ssr2gw_rate 
Linear coefficient in equation used to route soil-zone water to 
groundwater 

soil-zone 

tmax_allrain Maximum air temperature above which precipitation is rain climate 
tmax_allsnow Maximum air temperature below which precipitation is snow climate 
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tmax_index 
Temperature to determine precipitation adjustments to solar 
radiation 

solar 
radiation 

transp_tmax Temperature that determines start of the transpiration period evaporation 
wrain_intcp Winter rain interception storage capacity interception 

 1 

2 
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Table 2. Ordered list of most sensitive Precipitation-Runoff Modeling System calibration 1 

parameters by process and performance measure. The parameters listed in each cell of the 2 

table are those that are required to account for 90 percent of the cumulative sensitivity across 3 

all hydrologic response units (HRUs). The number in parentheses following the parameter 4 

name is the proportion of the CONUS HRUs, in percent, in which that parameter is part of the 5 

set that accounts for 90 percent of the cumulated sensitivity on an HRU-by-HRU basis. These 6 

parameters are described in Table 1.  7 

Process 
Performance Measure 

Mean 

 

CV 

 

AR 1 

 

Baseflow jh_coef (100), 
soil_moist_max (91), 
dday_intcp (81), 
soil2gw_max (74), 
radmax (64),  
carea_max (37, 
jh_coef_hru (36) 

gwflow_coef (48), 
soil_moist_max (40), 
jh_coef (28),  
soil2gw_max (28), 
smidx_coef(20), 
carea_max(16), 
tmax_allsnow(13), 
dday_intcp(12), 
smidx_exp (8) 

gwflow_coef (48), 
soil_moist_max (44), 
soil2gw_max (22),  
carea_max (18) 

Evapo-
transpiration 

jh_coef (100), 
soil_moist_max (96), 
dday_intcp (96), 
radmax (92), 
jh_coef_hru (62), 
smidx_coef (37), 
dday_slope (25) 

radmax(100),  
jh_coef (100), 
soil_moist_max (95), 
dday_intcp (73), 
dday_slope (67), 
soil_rechr_max (34) 

jh_coef(100), 
radmax(100), 
dday_slope(75), 
soil_moist_max(74), 
dday_intcp(67), 
soil_rechr_max(49) 

Runoff jh_coef(100), 
dday_intcp(96), 
soil_moist_max(96), 
radmax(93), 
jh_coef_hru(62), 
smidx_coef(37), 
dday_slope(26) 

gwflow_coef(97), 
soil_moist_max(81), 
fastcoef_lin(76), 
pref_flow_den(71), 
carea_max(58), 
jh_coef(54), 
smidx_exp(49), 
smidx_coef(42), 
soil2gw_max(36), 
tmax_allsnow(15) 

slowcoef_sq(90), 
soil2gw_max(90), 
gwflow_coef(82), 
carea_max(81), 
soil_moist_max(78), 
smidx_exp(72), 
smidx_coef(60), 
fastcoef_lin(36), 
pref_flow_den(35), 
jh_coef(30), 
slowcoef_lin(22) 

Infiltration smidx_exp(99), 
soil_moist_max(99), 
carea_max(99), 
smidx_coef(95), 
jh_coef(64), 
srain_intcp(50) 

carea_max(80), 
tmax_allsnow(69), 
jh_coef(63),  
smidx_exp(62), 
srain_intcp(54), 
smidx_coef(54), 
tmax_allrain(48), 
radmax(37), 

carea_max(72), 
soil_moist_max(64), 
smidx_exp(61), 
tmax_allsnow(60), 
srain_intcp(60), 
tmax_allrain(42), 
jh_coef(35), 
smidx_coef(24), 
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freeh2o_cap(36), 
soil_moist_max(35), 
dday_intcp(31), 
rad_trncf(18) 

freeh2o_cap(16), 
dday_intcp(16) 

Snowmelt tmax_allsnow(96), 
tmax_allrain(92) 

tmax_allsnow(39), 
tmax_allrain(38), 
rad_trncf(9), 
freeh2o_cap(8), 
dday_intcp(7) 

tmax_allsnow(34), 
dday_intcp(29), 
rad_trncf(28), 
radmax(24), 
tmax_allrain(17), 
jh_coef(15), 
freeh2o_cap(14), 
cecn_coef(14), 
emis_noppt(13), 
jh_coef_hru(13), 
potet_sublim(10) 

Soil moisture soil_moist_max(100), 
jh_coef(99), 
dday_intcp(94), 
radmax(82) 

jh_coef(98), radmax(98), 
soil_moist_max(97), 
dday_intcp(94) 

soil_moist_max(99), 
jh_coef(98), 
dday_intcp(89), 
radmax(35) 

Surface 
runoff 

smidx_exp(98), 
carea_max(98), 
soil_moist_max(98), 
smidx_coef(96), 
jh_coef(90), 
dday_intcp(33) 

carea_max(93), 
smidx_exp(82), 
jh_coef(64), 
tmax_allsnow(55), 
smidx_coef(52), 
srain_intcp(33), 
soil_moist_max(23), 
tmax_allrain(22) 

soil_moist_max(92), 
carea_max(83), 
jh_coef(65), 
smidx_exp(64), 
smidx_coef(42), 
tmax_allsnow(39), 
dday_intcp(25), 
srain_intcp(23), 
tmax_allrain(16), 
radmax(15) 

Interflow soil_moist_max(99), 
soil2gw_max(94), 
pref_flow_den(90), 
jh_coef(84), 
carea_max(65), 
smidx_exp(45), 
dday_intcp(31), 
smidx_coef(19) 

fastcoef_lin(100), 
soil_moist_max(87), 
pref_flow_den(71), 
jh_coef(61), 
carea_max(49), 
soil2gw_max(29), 
smidx_exp(25), 
tmax_allsnow(17), 
dday_intcp(16) 

soil_moist_max(96), 
fastcoef_lin(89), 
slowcoef_sq(83), 
carea_max(72), 
jh_coef(61), 
pref_flow_den(47), 
smidx_exp(47), 
ssr2gw_exp(40), 
soil2gw_max(26), 
dday_intcp(18), 
tmax_allsnow(16) 

Parameters not sensitive 

adjmix_rain, fastcoef_sq, ppt_rad_adj, radj_sppt, radj_wppt, sat_threshold, ssr2gw_rate, 
tmax_index, transp_tmax, wrain_intcp 

 1 

2 
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Figures 1 

 2 

Figure 1. Location Map of the conterminous United States showing the different geographic 3 

regions referred to this study. 4 

5 
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 1 

Figure 2. Maps of the conterminous United States showing Precipitation-Runoff Modeling 2 

System parameter sensitivity by Hydrologic Response Unit (HRU) by process and 3 

performance measure.  The HRUs parameter sensitivity is computed by summing the first-4 

order sensitivity for all parameters.   The process average maps are made by averaging the 5 

parameter sensitivity values computed for the different performance measures. The 6 

performance measure maps are made averaging the parameter sensitivity values computed for 7 

the different processes.   8 

9 
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 1 

Figure 3. Cumulative parameter sensitivity across all Hydrologic Response Units (HRUs) in 2 

the CONUS Precipitation-Runoff Modeling System application. The plots (a)—(h) show the 3 

parameter count necessary to account for 90% of the cumulative parameter sensitivity, 4 
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summarized across all HRUs. For this count, the parameters are ranked and summed until the 1 

90% level is reached.  The maps (i)—(p) show the count of ranked parameters required to 2 

reach the 90% level on an HRU-by-HRU basis. 3 

4 
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 1 

Figure 4. Summarizes the frequency of occurrence of the different calibration parameters in 2 

the process/performance measure categories of Table 2.  The circles in each row adjacent to a 3 

parameter name indicate how many times the respective parameter occurs in these different 4 

categories. The color of each circle indicates the ranking of that occurrence within the 5 

category, red corresponding to a higher ranking than blue.  Parameters with more circles are 6 

affecting more process categories.  Red circles (as opposed to blue) indicate that more 7 

Hydrologic Response Units are affected by the respective parameter. 8 

 9 

10 
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 17 

 18 

Figure 5. Precipitation-Runoff Modeling System parameter sensitivity organized by process 19 

ranked for each hydrologic response unit for the entire conterminous United States (maps (a) 20 

and (b)) and for the Apalachicola – Chattahoochee – Flint River basin (maps (c) and (d)). The 21 

maps on the top ((a) and (c)) show the most dominate process, while the maps on the bottom 22 

((b) and (d)) show the most inferior process. 23 
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