
 1 

Black text: B. Guse’s comments 1 

Red text: S. Markstrom’s response 2 

 3 

I added numbers to the comments so I could more easily refer to them. 4 

 5 

I apologize for misspelling Dr. Guse’s name in a previous version of this response to his comments. 6 

 7 

Major comments: 8 

I encourage the authors to improve the readibility of the abstract to present the idea of 9 

this study in a clearer way. 10 

 11 

Yes, I accept your specific comments below related to the abstract. In addition, I have rewritten much of the 12 
text. 13 

 14 

1. Please think about the use of the notation "objective function“ for mean, CV,... . In my 15 

understanding, these are statistical values describing different model outputs without 16 

giving information of the model performance. The use of the term "objective function“ 17 

indicates an evaluation of the model performance according its common use in hydrological 18 

modelling. I propose to use "fundamental daily streamflow statistics (FDSS)“ as 19 

mentioned in the text instead of "objective function“. 20 

 21 

Accepted. Yes, I agree that confusion may arise from the non-standard use of “objective function.” I 22 
changed to the term “performance measure” as I want to emphasize that this is really a measure of how the 23 
model preforms in relation to the parameter values. Also, “performance measure” seems to make the text 24 
flow better. 25 

 26 

2. A table with the model parameters and their corresponding processes is missing. I see 27 

that you refer to another article. However, this manuscript would be more readable, if 28 

the reader has an idea of the parameter used for this study. When stating that a certain 29 

number of parameters is required "to account for 90% of the parameter sensitivity“ is 30 

necessary to know how many parameters for this process are included in the model 31 

structure. For example, assuming that there are only two snow parameters, then it is 32 

not surprising when the number of required parameters is two. However, let’s say that 33 

are eight parameters for the snow process then it is interesting to know that only two 34 

parameters are required. 35 

 36 

Yes, I added a table (table 1) that lists all of the calibration parameters, description, and what I called 37 
“PRMS module type”. This PRMS module type is what I believe you are asking for in your comment. I did 38 
not want to call this “process” because I did not want to confuse the reader with the sensitivity analysis 39 
based “process identification” the is performed on the PRMS output. 40 

 41 



 2 

Now, table 2 does show the parameters and the corresponding identified processes, but this was 1 
determined by the sensitivity analysis. Processes identified here make no a priori assumptions about which 2 
parameters may affect any particular process. For instance, PRMS uses a potential evapotranspiration 3 
coefficient parameter. Clearly, this parameter can be directly associated with the “transpiration process”, but 4 
to what degree is this parameter associated with the “snowmelt process”? PRMS does simulate snow 5 
sublimation, but a priori, should the potential ET coefficient be considered a “snow melt parameter”? 6 
Because of the unknown relationships in model structure, this must be determined with the global 7 
parameter sensitivity analysis, and that is the point of table 1. 8 

 9 

3. Furthermore, in chapter 4.2, you should mention whether the parameters (accounting 10 

for 90%) are identical for a certain process or vary (P. 10, L.5-6). 11 

 12 

That is the information I try to convey in table 2. The problem is that spatially (on an HRU-by-HRU basis), 13 
which specific parameters make up the 90% could vary. Table 2 summarizes this across all HRUs for the 14 
CONUS. The idea that I was trying to get across is that the number of parameters needed to characterize a 15 
process is some measure of the complexity of that process, and that complexity varies by process and 16 
spatially by region of the CONUS. Table 2 summarizes this in a general way so that PRMS modelers could 17 
have some idea about which parameters to actually use in their models. 18 

 19 

To address this, I added he percent of the CONUS HRUs in which that parameter is part of the set that 20 
accounts for 90 percent of the cumulated sensitivity on an HRU-by-HRU basis to the parameter names 21 
listed in table 2. I hope this addresses comment 3 by showing which ones vary the most. 22 

 23 

4. It is really interesting to see a systematic in the number of parameters as stated on P. 24 

10, L.20-23. Could you explain it? At best in relation to the model structure? Are you 25 

expect a different result for different models (structures)?. While this result is reasonable 26 

for snowmelt, it is really surprising that you only need a small number of parameters 27 

to explain the soil moisture behaviour. 28 

 29 

Yes, I added the sentence: “An analysis of theses parameter counts and how they relate to their respective 30 
process is beyond the scope of this article, but it could relate to the structure of PRMS and possibly indicate 31 
that some processes are over parameterized.” 32 

 33 

5. I think that the article would benefit if you could relate the results (e.g. P.10, L.24-30) 34 

to the process heterogenity in the different parts of the CONUS. There are certainly regions 35 

with very complex process patterns and other with a clear dominance of a single 36 

process. Are there other studies looking at process dominance or process heterogeneity 37 

in the CONUS? Maybe you can make a comparison with these studies? 38 

 39 

I am unaware of studies which classify watersheds (regions, HRUs, etc.) necessarily by process (e.g. 40 
“snowmelt watersheds”). Some studies that I am aware of tend to classify space by mappings of soil, 41 
geology, vegetation, etc. or properties of driving climate data. These tend to use a principle components 42 
type analysis, so there are distinct classifications, but these classifications can not necessarily be related to 43 
a dominate process. Other studies tend to be based on streamflow statistics for dendritic grouping. This 44 
method seems to be effective for classification, but not necessarily classes that are associated with 45 
obviously identifiable processes. 46 

 47 

6. It is certainly required to discuss the relationship of model parameters and the corresponding 48 



 3 

processes. The stronger this relationship is, the more sensitive a parameter 1 

might be for this process. Could you mention how the parameter-process relationship 2 

affect your results? 3 

 4 

Yes, the other reviewer suggested that I focus more on “parameter identification” and “process 5 
identification.” I think this is related to your comment here. I rewrote the Introduction with this in mind. 6 

 7 

7. By summing up the first-order partial variance and using this value as indicator to estimate 8 

the dominant process, you do not consider the parameter interactions (second 9 

and higher order sensitivities). However, the parameter interaction depends (among 10 

others) on the parameter selection. Could you explain how this aspect affect you results? 11 

 12 

Yes, to section 3, I added: “An important caveat is that these higher order variances are not accounted for 13 
in the analysis. It is assumed that first-order partial variance is sufficient to identify sensitive parameters. 14 
This same assumption, as applied to process identification, may be more problematic. If there are sets of 15 
interactive sensitive parameters that have not been identified, then the associated process(es) will not be 16 
identified as such.” 17 

 18 

8. The interpretation of table 1 needs to be reworked. I do not agree at least with the 19 

sentence on P. 11, L.16-18 that a count of dominant parameters shows how important 20 

a parameter is. Assuming that a parameter is strongly related to a certain process, e.g. 21 

snowmelt, and is thus relevant for the three objective functions related to snowmelt, but 22 

not to the other processes (maybe except of runoff), it is still an important parameter for 23 

this specific process. This interpretation and also of the fig. 5 aggregates the results 24 

in my opinion in a strong way. It might be more interesting to look at the relationship 25 

of model parameters to the processes. To how many processes you can related a 26 

parameter? Are these results reasonable when looking at the model structure? An 27 

idea of how to relate model parameters and corresponding processes is given in the 28 

figures and tables in Pfannerstill et al. (2015). 29 

 30 

Yes, I think the problem is my use of the word “important.” This is not the right word. I have rewritten these 31 
sentences. Hopefully it is clearer. Figure 5 does show how many processes are identified (related to) a 32 
parameter. I hope that my rewritten description makes this issue clearer. 33 

 34 

9. Concerning the discussion of the spatial heterogeneity in parameter sensitivity (subchapter 35 

5.1), it might worth looking at the expert knowledge on dominant processes in 36 

the CONUS. It is not surprising when a HRU with a complex hydrological situation with 37 

relevant contributions from different runoff components provides a different results as 38 

a HRU with a strong dominance of one hydrological component. Here, I think that a 39 

general discussion of process dominance is missing and a discussion in the context of 40 

former studies on dominant processes in the CONUS (if existing). 41 

 42 

See response to comment 5 about other studies. 43 



 4 

 1 

10. Maybe you can think about presenting the results in Tab. 1 and Figs. 4 and 5 in a 2 

different way, so that the most important outputs are more emphasized. It is rather 3 

difficult to extract information of the relationship of parameter and processes from Tab. 4 

1 and a counting how often a parameter occurs is also time-consuming. But in my 5 

opinion this information is required to make Fig. 5 more informative. 6 

 7 

I’m not sure how to do this. The most important outputs, in my opinion, are to give the modeler versions of 8 
the table and figures exclusively for the area that he is modeling. And I have been doing this for the people 9 
that I work with. For this article, the problem is that I have to keep it general for all of CONUS. 10 

 11 

Fig. 4: Is it maybe relevant thinking about the variability, e.g. in the snowmelt subplot? 12 

It is stated that on average 2.25 parameters are required to explain 90%. The map 13 

(subplot 4M) shows that in most of the HRUs only 2 or 3 parameters are required. 14 

However in the snow-dominated northern parts up to 10 parameters are required. It 15 

might be worth thinking about extracting additional information from this idea. One way 16 

would be to add an additional line in the subplots 4A-4H which is only related to HRUs 17 

which have certain relevance of this process (kind of threshold exceedance approach 18 

or something similar). 19 

 20 

I believe that I have addressed this issue of HRU parameter variability in table 2 and the text I added in 21 
relation to figure 5. 22 

 23 

11. Fig. 6: Could you explain why infiltration is the inferior process in many HRUs. I cannot 24 

imagine a hydrological situation in which the infiltration process is less relevant than 25 

total runoff, all runoff components, ETP, soil moisture. 26 

 27 

It’s not that infiltration is not important, it’s just that the sensitivity analysis indicates that there are no 28 
parameters that can be changed to affect the model output. Also, there are often multiple processes that 29 
are pretty much at the same level of “inferiorness” and one has to be the most. In a very preliminary draft I 30 
had version of these maps that showed, for each HRU, the two most inferior process, the three most, etc. 31 
These maps really confused my co-authors and in the end, I dropped them. 32 

 33 

 34 

12. It might be interesting to think about the following results of the Fig 4-5: According to 35 

Fig. 4 only 4.15 parameters are required to explain soil moisture, which is a relative low 36 

value keeping in mind that the soil moisture interacts with almost all other processes. 37 

Furthermore, there are 7.05 parameters needed for infiltration. Then, it is stated in 38 

Fig. 5 that soil_moist_max is overall the most important parameter. Do this mean that 39 

the relationship between soil_moist_max and soil moisture is extremely high so that 40 

only a few additional parameters (about 3) are needed to reproduce the soil moisture 41 

conditions? 42 

 43 



 5 

Yes, I think this interpretation is correct. A source of confusion could be my use of the word “important.” In 1 
retrospect, that is a loaded word. See my response to your comments number 8 and 11. 2 

 3 

Minor comments: 4 

Abstract: 5 

Page 2, Line 2: The first sentence of the abstract could be written more clearly. Why 6 

not only writing: "The Precipitation-Runoff Modeling System as a distributed-parameter 7 

hydrologic model has been applied to the conterminous United States. 8 

 9 

Yes, accepted. 10 

 11 

P. 2, L. 4-5: Whilst it is certainly clear that the number of parameters is an aspect of 12 

model complexity, this is not fully clear for the "interpretation of the model output“. Is 13 

this really an aspect of complexity? Do you assume that the model which provides a 14 

higher number of model outputs is more complex? 15 

 16 

Yes, rewritten. I’m trying to establish the point that by identifying the dominate processes (with respect to 17 
PRMS), users can focus on the output variables related to those processes. 18 

 19 

P. 2, L. 5-8: To make the abstract more readable, I would suggest to subdivide this sentence 20 

into two separate ones. There are too many aspects in this sentence (parameter 21 

sensitivity for simplification, parameter identification and its relationship to dominant 22 

processes, spatial patterns) 23 

 24 

Yes, accepted. 25 

 26 

P. 2, L. 9-10: I do not think that this sentence is understandable when reading the 27 

abstract at first before knowning the whole article. What do you mean with "processes 28 

correspond to variables“? Which type of variables? 29 

 30 

Yes, changed this sentence. 31 

 32 

P. 2, L. 11: The notation "categories“ is not clearly described in the abstract. 33 

 34 

Yes, changed. 35 

 36 

P. 2, L. 12-13: How do you estimate the "model performance“ by visualizing categories? 37 

This part needs to be improved. 38 

 39 

Yes, changed. 40 

 41 



 6 

P. 2, L. 16: The benefit of a reduction of the dimensionality of output variables or 1 

objective functions is not clear. 2 

 3 

Yes. changed. 4 

 5 

P. 2, L. 22: I would encourage the authors to add a final sentence to emphasise the 6 

general advantage of this study. 7 

 8 

Yes, added. 9 

 10 

Introduction: 11 

P. 2, L. 28: The article would be benefit from a clear definition of "input parameters“. 12 

Is an input parameter related to a driver of the hydrologic cycle such as precipitation 13 

or solar radiation or more to a real model parameter? In all cases, it is better to avoid 14 

potential misunderstandings. 15 

 16 

Yes, added. 17 

 18 

P. 3, L. 1: References are missing such as for constraining parameter in models, e.g. 19 

Hrachowitz et al. (2014) and for stating that different parameter good have a comparable 20 

impacts on the model results. 21 

 22 

Yes, added. 23 

 24 

P. 3, L. 6: The three references are related to studies which investigate performance 25 

measures more precisely. It might be good to also have a reference to studies which 26 

are directly investigating the model output. 27 

 28 

Yes, added. 29 

 30 

P. 3, L. 11-12: Please also add the study from Reusser et al. (2009). 31 

 32 

Yes, added. 33 

 34 

P. 3, L. 14: Please indicate that you consider uncertainty in this study only on input 35 

parameter uncertainty and not on structural uncertainty in the model. 36 

 37 

These lines were deleted in response to comments by another reviewer. 38 

 39 

P. 3, L. 18-28: It might be good to mention here that it is at least at this scale impossible 40 



 7 

to support the results with adequate measurements in addition to the total discharge. 1 

 2 

These lines were deleted in response to comments by another reviewer. 3 

 4 

P. 4, L. 1: References are here missing, e.g. Wagener et al. (2003), Reusser et al. 5 

(2011), Guse et al. (2014). 6 

 7 

Yes, added. 8 

 9 

P. 4, L. 11: Reference of Reusser et al. (2011) is missing. 10 

 11 

Yes, added. 12 

 13 

P. 4, L. 20-22: As mentioned before, it is not clear why you aimed "to reduce the number 14 

of inputs and outputs“. I think the overall aim should be a clearer characterization of 15 

the model parameters and to focus on the dominant processes. 16 

 17 

Yes, I reworded this sentence. 18 

 19 

Methods: 20 
1. P. 4, L.29- P. 6, L.7: Please check carefully if you could reduce the subchapter 2.1 in 21 

length. Do you really need this information for this article? 22 

 23 

Yes, this section has been reorganized. 24 

 25 

P. 6, L.8-25: The selection of the eight output variables is reasonable and seems to be 26 

representative for hydrological studies with distributed models. Maybe you can emphasize 27 

this to give the article a more general character.  28 

 29 

Yes, added. 30 

 31 

P. 7., L. 18: Please also add the reference of Guse et al., 2014, since it is the initial 32 

study for Pfannerstill et al. 2015. 33 

 34 

Yes, added. 35 

 36 

Results: 37 
1. P. 8, L. 17: Please think about a more precise title for the subchapter 4.1. 38 

 39 

Yes, changed it to “Parameter sensitivity by process and performance measure” 40 

 41 



 8 

2. P. 8, L. 20-23: This sentence is not understandable. It is understandable that you have 1 

calculated the sum of the first-order partial variance. However, it is not clear how you 2 

can estimate an average value (average of what?). 3 

 4 

Yes, the meaning of the text here is not clear to you. I have added several sentences here to make this 5 
clearer. 6 

 7 
3. P. 8, L. 23: The total sensitivity is one, is it? Why do you need to scale the sum of the 8 

sensitivities to the total sensitivity? 9 

 10 

The sum of the individual sensitivities is not necessarily one. If none of the parameters are sensitive than 11 
the sum of the parameter sensitivities will be closer to zero. 12 

 13 
4. P. 8, L. 23: "category of modeled process“instead of "category of process“. 14 

Yes, accepted. 15 

 16 
5. P. 8, L.28-30: I recommend to be more precisely here: You have calculated the sum of 17 

All partial sensitivities for a certain HRU for each process. Then, the process with the 18 

Highest sum of the first-order sensitivity is indicated as "dominant process“. To make 19 

This clear, you should add that the dominant process is the process with the largest sum 20 

Of all first-order partial variances (sensitivities). This is required since the sensitivity of 21 

A single parameter is not shown here. 22 

 23 

Yes, reworded these sentences. 24 

 25 

P. 9, L.17-18: Can you extract a systematic pattern in these results? 26 

 27 

Yes, added “, and humid versus arid climates.” to the previous sentence. 28 

 29 

P. 10, L.24-25: Please add that this statement is not valid (or only to a low extent) to fig 30 

4J and 4N. 31 

 32 

Yes, added this. 33 

 34 

P. 11, L. 6-9: Do you see a general systematic why the spatial patterns of parameter 35 

Sensitivity are different for the different objective functions. It might be interesting to 36 

Give further statements on this. 37 

 38 

There are certainly patterns here and I very much agree that they are interesting. I have not had time to 39 
investigate this properly and would prefer to leave statements about this out of this article rather than 40 
speculate. 41 

 42 



 9 

There is clearly a swath of sensitivity that goes through the Great Plains. Many hydrologic modelers in the 1 
US have noted that this area is notoriously difficult to model with physical, statistical, etc. models – and no 2 
one is really sure why this is. Our group has a PhD student who is looking into this. Maybe a subsequent 3 
article can address this further.  4 

 5 

P.11, L. 28-32: When stating that the parameter "soil_moist_max“ is the most important 6 

and a model calibration should be focused on it, then it is required to know for which 7 

process this parameter is relevant. Assuming that a typical calibration uses discharge 8 

as target variable, a focus on "soil_moist_max“ helpful in the case of a dominance of 9 

"soil_moist_max“ on runoff. However, to include this information in a calibration in the 10 

case of a dominance on other process but not on runoff? 11 

 12 

Yes, I rewrote this paragraph based on comments from the other reviewer. I believe my revision addresses 13 
this comment as well.  14 

 15 

P. 12, L.2-8: The part on the least sensitive parameter can be removed since the reader 16 

does not receive any details about the parameters. Or could you extract some further 17 

information from the fact that these parameters have a low sensitivity? 18 

 19 

Yes, I now say that modelers should leave them at default values because there is limited information to 20 
calibrated them. 21 

 22 

P. 12, L. 9-14: I think that the authors should add here some more details. It is really 23 

helpful if a parameter can be precisely characterized by saying that it is only dominant 24 

in a very specific case (e.g. for one process). But this information cannot currently not 25 

be extracted from article. 26 

 27 

This varies by HRU/geographic region, so it is difficult to provide specific calibration instructions for the 28 
whole of the CONUS. I do provide exactly this type of information on an application site by application site 29 
basis to the modelers that I work with. I’m uncertain how to put this information into this article. 30 

 31 

P. 13, L.8-12: I like this part. Maybe you can in addition relate it to the concept of 32 

vertical water redistribution (Yilmaz et al., 2008, Pfannerstill et al., 2015). 33 

 34 

Yes, I added a sentence about this. 35 

 36 

P. 14, L. 22-23, Step 1: Summed in time? 37 

 38 

Yes, added. 39 

 40 

P. 14, L. 24-25, Step 2: How to you obtain a score for each process? Do you assign 41 

each parameter to a certain process? If yes, then you have to mention somewhere 42 

which parameter is related to which process. 43 



 10 

 1 

Please see my response to your comments 2 and 3 (“Major” comments section), and 2 and 3 in the 2 
“Results” comments section. 3 

 4 

P. 16, L. 31: Spelling error: Mishra (2009) 5 

 6 

On recommendation of other reviewer, I removed this paragraph. 7 

 8 

Figures: 9 

Fig. 1: Could be removed. I do not see an advantage of it. Maybe you can transfer it 10 

to the supplementary material. 11 

 12 

Yes, removed. 13 

 14 

Fig. 2: Does the last row and column present the average values along the 15 

row/column? Do you maybe have to change "process average“ and "objective function 16 

average“? 17 

 18 

Please see response to “Major” comments 2 and 3. 19 

 20 

I recommend to show the figure 3 before the figure 2, since fig. 3 provide a general 21 

map of the USA whilst, fig. 2 already show the distributed results. 22 

 23 

Yes, moved figure 3 to figure 1 (after deleting old figure 1). 24 

 25 

Figure 4 would benefit from knowing which parameters are within the 90% and how 26 

variable the parameters belonging to this 90% are? 27 

 28 

Yes, see my response to comment 10. 29 

 30 

Fig. 4: The legend needs to be graphically improved. 31 

 32 

Yes. 33 

 34 

I do not really see a real benefit of fig. 5. Maybe you can extract the results in a 35 

better way. One point might be that the model parameters are not explained and even 36 

the related processes are not highlighted in Fig. 5. In particular, it is not clear which 37 

information you can derive from the last place occurrence. 38 

 39 

Please see my response to your comment 8. 40 

 41 



 11 

It is not fully clear which information you can derived from investigating the most inferior 1 

process. It seems to be that this is either clear such as snowmelt parameter for 2 

California or related to the model structure. 3 

 4 

The idea here is that modelers should not calibrate parameters associated with inferior processes in their 5 
watershed. If there are 35 calibration parameters, make sure to include the ones associated with the more 6 
dominate processes, and exclude the ones associated with the more inferior ones. I hope this idea comes 7 
across in the article. 8 

 9 

Reference list: 10 

Guse, B., Reusser, D. E., and Fohrer, N.: How to improve the representation of 11 

hydrological processes in SWAT for a lowland catchment – Temporal analysis of 12 
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doi:10.1002/hyp.9777, 2014. 14 

Hrachowitz, M., O. Fovet, L. Ruiz, T. Euser, S. Gharari, R. Nijzink, J. Freer, H. H. G. 15 

Savenije, and C. Gascuel-Odoux: Process consistency in models: The importance of 16 

system signatures, expert knowledge, and process complexity, Water Resour. Res., 17 

50, doi:10.1002/2014WR015484, 2014 18 

Pfannerstill, M., Guse, B., Reusser, D., and Fohrer, N.: Process verification of a hy- 19 

drological model using a temporal parameter sensitivity analysis. Hydrology and Earth 20 

System Sciences 19: 4365–4376, 2015. 21 

Reusser, D. E., Blume, T., Schaefli, B., and Zehe, E.: Analysing the temporal dynamics 22 

of model performance for hydrological models, Hydrol. Earth Syst. Sci., 13, 999–1018, 23 

doi:10.5194/hess-13-999-2009, 2009. 24 
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dynamics of model performance and parameter sensitivity. Water Resources Research 26 

47(7): W07550. DOI:10.1029/2010WR009946, 2011. 27 

Wagener, T., McIntyre, N., Lees, M.J., Wheater, H.S., Gupta, H.V.: Towards reduced 28 

uncertainty in conceptual rainfall–runoff modelling: dynamic identifiability analysis. Hydrological 29 

Processes 17: 455–476, 2003. 30 

Yilmaz, K. K., Gupta, H. V., and Wagener, T.: A process-based diagnostic approach to 31 

model evaluation: Application to the NWS distributed hydrologic model, Water Resour. 32 

Res., 44, W09417, doi:10.1029/2007WR006716, 2008. 33 

 34 

Thank you for this reference list. I added citations to all of these references. 35 

36 
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 1 

 2 

Black text: S. Hoellering’s comments 3 

Red text: S. Markstrom’s response 4 

 5 

General comments 6 

The authors presented an interesting idea of a methodological framework wherein 7 

parameters of the HRU based Precipitation-Runoff Modeling System (PRMS) can 8 

be identified as influencial in terms of essential hydrological model based processes 9 

and statistical streamflow indices serving as objective functions. Parameter influence 10 

on model output was evaluated by parameter senstivity index values originating 11 

from global sensitivity analysis with the Fourier Amplitude Sensitivity Test (FAST). 12 

The approach aims at reducing the number of model input parameters to focus on 13 

conceptualised processes assumed as hydrologically relevant within the watersheds 14 

of the conterminous United States. 15 

 16 

I generally agree with the concept of referencing model response functioning in 17 

form of derived objective functions with dependent partial parameter sensitivities for 18 

region specific model parameter identification. This is one of the aspects which would 19 

be really worth publishing. 20 

Apart from that, fundamental assumptions underlying this study are not sufficiently 21 

clarified to address the discussed issues effectively, which are certainly 22 

topical and relevant for model based catchment hydrology. The paper is technically 23 

well-structured, exhibiting findings of the presented concept concisely but it lacks 24 

the required presentation quality at too many different points. However, I found 25 

some serious shortcomings and recommend to revise a number of major and minor 26 

specific and technical points before the manuscript can be reconsidered for publication. 27 

 28 

Specific comments 29 
1. What is the main purpose of your paper? 30 

You mention a number of issues e.g. “parameter identification”, “process identification”, 31 

“calibration advise for modelers” or “identification of [model] structural 32 

inadequacies”. A better focus on one or two of these issues, preferably on the first 33 

and second is advisable here. 34 

 35 

Yes, the other review suggested that I discuss more the relationship between parameters and processes. I 36 
think this is related to your comment here. I rewrote the introduction, with a focus on parameter and process 37 
identification. 38 

 39 



 14 

As uncertainty analysis is not the issue here, I furthermore 1 

suggest to remove the part starting from P16L29, which is also rather speculative. 2 

 3 

Yes, that paragraph has been removed. 4 

 5 
2. Please also name your assumptions more precisely! 6 

The fundamental assumption of this study is, that the conceptualisation of PRMS 7 

is structurally adequate to reproduce all hydrological processes of the CONUS. It is 8 

however not adressed, whether this assumption is valid or not or if the study doesn’t 9 

claim to be transferable to real world processes and consequently stays a pure virtual 10 

PRMS experiment. Conclusions on the dominant hydrological processes are only valid 11 

if it is shown that PRMS actually is a good representation of hydrological processes. 12 

Processes in the study purely originate from and are defined by the PRMS structure 13 

whereby a comparison with observational data might be helpful in this application to 14 

show potential deficiencies or justify the fundamental assumption. 15 

 16 

Yes, I restructured the PRMS methods section to include more about the calibration parameters and 17 
assumption and less detail about how the application was set up.  18 

 19 
3. P2L19/P10L20: As you similarly found out, more complex processes such as 20 

the reproduction of streamflow and its components as well as mountainous regions 21 

require more calibration parameters. The general rather small remaining subset of 22 

sensitive parameters explaining the majority of the model output variance of processes 23 

might be predefined by the conceptual structure of PRMS and a hint to overparameterization. 24 

 25 

Yes, I added a sentence essentially saying this. 26 

 27 

The number of parameters required in a process is also predetermined by 28 

the model/process concept and its complexity. Maybe be a bit more specific and less 29 

general or sketchy in stating your findings i.e. in the sense of the influence a parameter 30 

exerts on a process which might not be purely predetermined by the concept of a 31 

model. 32 

 33 

Yes. Based on the suggestion of another reviewer, I have added another table (table 1) that lists the 34 
parameters used in this study. In this table, I specify which “module type” each parameter is associated with 35 
in the source code. So, without bogging down this article with too many model structure issues, maybe this 36 
give the reader some idea of how the calibration parameters relate to the model structure.  37 

 38 
4. P3L13: (How) do these two aspects of complexity correspond to the ones stated in the 39 

abstract and explained directly above these lines? Maybe you should be more precise 40 

here! 41 

 42 



 15 

Yes. I added some text about using sensitivity analysis to reduce the complexity to the model user. That is 1 
my point. Obviously, SA does nothing about model structure, but the model can appear less complex to the 2 
modeler by focusing on those parameters and processes in the model that can be affected. 3 

 4 

5. P3L32: This issue has also been partly discussed e.g. by Reusser and Zehe 5 

(2011). 6 

 7 

Yes, added this reference. 8 

 9 
5. P5L8: HRUs are purely derived and defined by their geographic and topographic 10 

location. Process identification and catchment classification might be hampered 11 

by this definition e.g. by mingling of processes leading to a complex interplay and 12 

location specific response behaviour which cannot be always captured by one HRU. In 13 

addition to your discussed points a redefinition of HRUs based on dominant hydrologic 14 

processes instead of the applied discretisation based on geographic position might be 15 

a conceivable outcome and a consequence of your study maybe helpful for calibration. 16 

 17 

Yes, added to discussion section. 18 

 19 
6. P5L20: Here a more precise explanation might be helpful. Is simulated streamflow 20 

at locations with stream gauges evaluated differently from streamflow at sites 21 

without observations? 22 

 23 

I removed this sentence/section. The other reviewer felt this was too much detail about this aspect. 24 

 25 
7. P7L1: Here more attention to further studies with streamflow indices could be 26 

given (see e.g. Yadav et al. (2007)). Please discuss your choice in some more details. 27 

 28 
8. P9L25: I suggest to start this chapter with the sentence “To identify the expected count 29 

of parameters ... (P9L28)” first the theory, then a specific example. 30 

 31 

Yes, I moved the text preceeding “To identify…” down to a subsequent summary paragraph. 32 
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streamflow processes (surface runoff, interflow and baseflow), hence involved process 37 

parameters add up to a larger number suggesting more complexity? Maybe you can 38 

be a bit more precise in the explanations (P13L13). 39 

 40 
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P15L25: To my knowledge PRMS offers different modules for PET calculations. 1 

(How) do sensitivity results and parameter identificaton change by replacing one 2 

module by another? This might be subject of future studies and worth mentioning. 3 

 4 

Yes, added to “Further study” section. 5 

 6 

P16L3: Someone who is interested in modelling the selected catchment is probably 7 

better advised to have a look at historical meteorological observations. From 8 

these it should be obvious that snowmelt might not be of any interest here. 9 

 10 

Yes, that’s an obvious one. 11 

 12 

Technical corrections 13 

Typing errors: 14 

The spelling and writing needs improvement and proofreading. To mention several of 15 
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guidelines for authors e.g. Figure, Fig. 18 

 19 

Yes, fixed Table, Fig., and Figure. 20 

 21 

P2L15: indicate instead of indicates 22 

 23 

Yes, fixed. 24 

 25 

P4L3/P16L14: watersheds 26 

 27 
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 29 

P8L15: Here poor comprehensibility can be better avoided by changing three to 30 

seven objective functions: “... 56 combinations of three objective functions and eight 31 

processes (plus totals).” 32 

 33 

Yes, fixed. 34 

 35 

P11L7: “...is surprising...” 36 

 37 

Yes, fixed. 38 
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P15L12: “This is probably because it is a major component of the hydrologic cycle 40 
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 2 
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 4 

P15L21: than 5 

 6 
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P16L7: used 9 
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Yes, fixed. 11 
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P16L11: “...is defined...” 13 

 14 

Yes, fixed. 15 
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P16L14: processes 17 
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Yes, fixed. 19 
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Reference/citation errors: 21 

Citations in the manuscript are correct while the year 2014 in complete reference is 22 

not: 23 

Markstrom, S. L., Regan, R. S., Hay, L. E., Viger, R. J., Webb, R. M. T., Payn, 24 

R. A., and LaFontaine, J. H.: PRMS-IV, the precipitation-runoff modeling system, 25 

version 4, U.S. Geological Survey Techniques and Methods, book 6, chap. B7, 158, 26 
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 28 
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Figures: 31 

General remarks: 32 

Resolution and quality of the presented figures and maps seem to be generally 33 

not high enough or pixelated and need substantial improvement. Unfortunately, the 34 

labeling of latitudinal and longitudinal lines are not readable at all. Please improve 35 

the legibility or remove it or incorporate it in only one figure which might be enough to 36 

show it once. 37 

 38 
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this continues to be a problem, perhaps I can work with someone at HESS to ensure that the figures are 1 
high resolution. 2 

 3 

Some of the shortcomings are listed here: 4 

Figure 1: This map lacks both sufficient quality and a valuable information content. 5 

In my oppinion a different form of presentation such as histograms or kernel 6 

density estimates for selected attributes of HRUs could be beneficial. 7 

 8 

Yes, this figure has been removed. 9 

 10 
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across tables and figures. Please explain the additional column “Process average” in 12 

the results section 4.1 and the meaning of the legend. 13 

The caption should also provide more information. 14 

 15 

Yes, figure 2 has been remade with the same labels as table 2 (used to be table 1). I have also added a few 16 
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 18 
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 21 
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 25 
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 27 
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This list describes the major changes made to the manuscript in 2 

response to the reviewer’s comments. This list is organized by the 3 

sections of the manuscript. 4 

 5 

1. Rewrote the abstract to address: (1) Guse’s comment 1 and that knowing the dominate 6 

process allows the modeler to focus on output that is related to those processes. 7 

2. Introduction: (1) defined “distributed parameters”; (2) added reference to Hrachowitz 8 

et al., 2014; (3) rewrote the sections about “difficulty of interpreting model output” 9 

and complexity; (4) added references to Wagener et al., 2003; Reusser et al., 2011; 10 

Guse et al., 2014; (5) simplified last paragraph by cutting. 11 

3. Methods: (1) added a paragraph stating limitations of PRMS, particularly within this 12 

study; (2) Added short paragraph with citations to previous applications of PRMS to 13 

similar studies; (3) removed the old figure 1; 14 

4. Added a “Calibration parameters” section with a new table listing parameters and 15 

added text about how parameters associated with one process may end up effecting 16 

subsequent processes. 17 

5. Change the words “objective functions” to “performance measures” throughout the 18 

document. 19 

6. FAST analysis: added a few sentences about limitations of FAST with respect to 20 

higher order variances and parameter interaction. 21 

7. Parameter sensitivity by process and performance measure: (1) added text to better 22 

describe figure 2; (2) added some text about limitations due to model structure; (3) 23 

added text to describe table 2 (formerly table 1) better. 24 

8. Parameter count required to parameterize each process: (1) generally reorganized; (2) 25 

added more text about model structure; (3) improved description of figure 3; (4) 26 

improved discussion of table 2; (5) improved description of figure 4; (6) added a few 27 

sentences about “vertical routing order.” 28 
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9. Further study: removed several of the more speculative paragraphs and added text 1 

about HRU definition and PRMS module selection. 2 

10. Added the references suggested by the reviewers. 3 

11. Tables: (1) added table describing the calibration parameters, (2) improved the 4 

captions on most tables. 5 

12. Figures: (1) improved the captions to make them more descriptive; (2) increased the 6 

resolution of all map figures. 7 
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Abstract 1 

The Precipitation-Runoff Modeling System, a distributed-parameter hydrologic model, has 2 

been applied to the conterminous United States.An application of the Precipitation-Runoff 3 

Modeling System, a distributed-parameter hydrologic model, has been developed for the 4 

conterminous United States.  In this study, two different aspects of the complexity in applying 5 

this model has been addressed:  (1) the number of input parameters and (2) the interpretation 6 

of model output.  Parameter sensitivity analysis was used to simplify the application of the 7 

hydrologic model. through Iidentification of parameters related to dominant hydrologic 8 

processes (baseflow, evapotranspiration, runoff, infiltration, snowmelt, soil moisture, surface 9 

runoff, and interflow) at various geographic scaleslocations.  These processes mave been 10 

identified with correspond to model output variables for which objective functionsperfomance 11 

measures (mean, autoregressive lag 1, and coefficient of variation) are computed. 12 

Categories of parameter Parameter sensitivity values  were developed computed in various 13 

ways, on the basis of geographic location, hydrologic process and model response.  14 

Visualization of these categoriesIdentified parameters and processes provide insight into 15 

model performance and useful information about how to structure the modeling application to 16 

take advantage of as much local information as possible. The results of this study indicates 17 

that (1) the choice of objective function performace measure and output variables have a 18 

strong influence on parameter sensitivity, (2) the dimensionality of distributed-parameter 19 

hydrology models can be reduced by removing input parameters, output variables and 20 

objective functionsperformace measures from consideration on the basis of selection by 21 

hydrological process, (3) different hydrological processes require different numbers of 22 

parameters for simulation, and (4) some model sensitive parameters influence only one 23 

hydrologic process, while others may influence many. This article describes how this 24 

complexity can be addressed by focusing on parameter and hydrologic process identification 25 

through global parameter sensitivity analysis. 26 

 27 

1 Introduction 28 

It has long been recognized that distributed-parameter hydrology models (DPHMs) are 29 

complex because of the subtlety and diversity of the hydrologic cycle which they aim to 30 
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simulate (Freeze and Harlan, 1969; Amorocho and Hart, 1964).  In this study, two different 1 

aspects of this complexity are addressed: 2 

(1) DPHMs have too many input parameters (Jakeman and Hornberger, 1993; Kirchner et al., 3 

1996; Brun et al., 2001; Perrin et al., 2001; McDonnell et al., 2007).  In this article, 4 

distributed parameters are defined as model inputs that remain constant through time, but can 5 

vary spatially across the landscape.  Those who apply these models often have difficulty 6 

understanding what these parameters are and how they are used in the model.  Regularly, 7 

there are several parameters that may have similar effect affect on the computations or may 8 

constrain the model in unintended ways (Hrachowitz et al., 2014).  Despite the developer’s 9 

claims that these DPHMs are more or less physically based, often there are not measurements 10 

or data sources available for reliable development of all of the input parameters.  These 11 

unmeasured parameters, ostensibly tangible, are really empirical coefficients when it comes to 12 

application and calibration.  13 

(2) The output produced by DPHMs is difficult to interpret (Schaefli and Gupta et al., 2008; 14 

Gupta et al., 2009; Gupta et al., 2012). Often, the meaning of output variables is not always 15 

intuitive and results sometimes can seem contradictory (e.g. when streamflow does not seem 16 

to correlate with climate information). Consequently, development of objective measures of 17 

model performance (hereafter referred to as objective functions) is often a subjective exercise 18 

that can lead to different interpretation depending on the choices made (Krause et al., 2005; 19 

Mendoza et al., 2015b; Mendoza et al., 2015a). The result of these complex issues has led to 20 

the study of parameter interaction (Clark and Vrugt, 2006) and equifinality (Beven, 2006). 21 

 Developing effective DPHM applications require that the modeler address these two aspects 22 

of complexity at the same time (i.e. the uncertainty problem: “If I am uncertain when 23 

estimating input parameters, due to either incomplete or inaccurate information, what affect 24 

does it have on the output?”, and the calibration problem: “I know the output I want, which 25 

parameters should I change and how much should I change them?”) (Cheney et al., 2015; 26 

Reusser and Zehe (2011). While, the user of a DPHM can do nothing about complexity 27 

associated with that model’s internal structure, the apparent complexity to that user can be 28 

reduced by identifing those parameters and process that affect the DPHM in a particular 29 

application.  30 

This article describes how this complexity can be addressed by focusing on parameter and 31 

hydrologic process identification through global parameter sensitivity analysis (SA). The 32 
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degree to which different values of model parameters can affect the simulation of certain 1 

model outputs can be identified (G). Furthermore, parameter sensitivity can be evaluated with 2 

respect to selected output variables, each representing different aspects of the hydrologic 3 

cycle (hereafter refered to as “processes”). Sensitivity analysis of this form can be used to 4 

both identify the input parmeters that are the most sensitive (i.e. the parameters that affect the 5 

simulation the most) and the dominate process(es) (i.e. those processes which are affected 6 

most, by the most sensitive parameters). 7 

Results of SA can vary spatially and must be accounted for as such. Specifically, DPHM 8 

parameters can be more or less sensitive at different locations on the landscape. For example, 9 

parameters related to simulation of snow can become more sensitive at higher elevations, 10 

while parameters related to evaporation can become less sensitive at locations where capacity 11 

for soil water storage decreases. Consequently, this means that the dominate process(es), as 12 

identified by SA, will vary across the landscape as well. These two issues are compounded as 13 

the spatial domain of the DPHM application expands.  A common problem is that at large 14 

scale and with limited information, the effects of different hydrological processes can be 15 

indistinguishable from each other.  For instance, groundwater recession and snowmelt from a 16 

receding snowpack can cause similar response in a streamflow hydrograph.  If the prevailing 17 

hydrological process is not identified by the modeler, and subsequently parameterized in the 18 

model, the result can be “the right answer for the wrong reason” (Kirchner, 2006; McDonnell 19 

et al., 2007).  This type of misunderstanding compounds both of the problems identified 20 

above as the modeler wastes resources working with insensitive input parameters and 21 

evaluating objective functions that do not relate with the real world physical processes.  The 22 

result of these complex issues has led to study of parameter interaction (Clark and Vrugt, 23 

2006) and equifinality (Beven, 2006).  24 

Any particular DPHM must necessarily be complex because it must be able to simulate any 25 

and all hydrological process that may occur anywhere on the landscape.  However, with the 26 

application of a DPHM to a specific site, it can become much less complex when the 27 

dominant hydrological process(es) are identified, as not all processes are active or at the same 28 

level of importance.  The problem becomes less complex when hydrological processes not 29 

relevant to the modeled domain (or watershed) are removed from consideration (Wagener et 30 

al., 2003; Reusser et al., 2011; Guse et al., 2014; Bock et al., 2105; Bock et al., 2105).  31 

Dominant process concepts have been explored as a way to classify watersheds and natural 32 
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hydrologic systems for simplifying DPHMs by several researchers (Sivakumar and Singh, 1 

2012; Sivakumar et al., 2007).  Some have suggested the approach for use as a possible 2 

classification framework (e.g. Woods, 2002; Sivakumar, 2004).  Pfannerstill et al. (2015) 3 

developed a framework for identification and verification of hydrologic process in simulation 4 

models on the basis of temporal sensitivity analysis. McDonnell et al. (2007) discuss the 5 

possibility of simplifying hydrologic modeling by identifying “fundamental laws” so that over 6 

parameterized models are not needed.  However, in our opinion we have not made much 7 

progress on that front and DPHMs are, in many ways and for many reasons, more complex 8 

than ever. 9 

This article describes an SA for a modeling DPHM approach application  to that has been 10 

applied to the conterminous United States (CONUS, Fig 1.).  Specifically, byThe large 11 

domain is simulated by an aggregating aggregated a large collection of many small domain 12 

DPHMs scale watershed applications., the large domain can be simulated.  This has the 13 

advantage of being able to use all local information and match local conditions.  The 14 

disadvantage is that all of these DPHMs must be set up in a uniform way or the result is a 15 

“patchwork quilt” of parameter values.  Identification and simulation of these small-scale 16 

catchmentswatersheds is determined by the resolution of the available information and how 17 

the DPHM responds to geophysical (e.g., topography, vegetation and soils) and climatological 18 

variation.  Specifically, we propose to reduce the complexity of the DPHM approach through 19 

identification ofidentify the sensitive parmaters and dominant hydrologic process(es), thereby 20 

identifying a reduced amount of and reduce the number of  inputs and outputs to considered 21 

(Chaney et al., 2015).  This is accomplished by relating a hydrologic process directly to 22 

parameters and objective functions.  The questions addressed by this study are: (1) can 23 

DPHM application be simplified by reducing the dimensionality of the input, and (2) can 24 

geographic areas (regions, watersheds, HRUs, etc.) be categorized by hydrological process to 25 

aid identification of meaningful output? 26 

2 Methods 27 

2.1 Distributed-parameter hydrology model Hydrologic model 28 

The U.S. Geological Survey’s (USGS) Precipitation-Runoff Modeling System (PRMS) is the 29 

DPHM used in this study.  PRMS is a modular, deterministic, distributed-parameter, physical-30 

process watershed model used to simulate and evaluate the effects of various combinations of 31 
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precipitation, climate, and land use on watershed response.  Each hydrologic process 1 

simulated by the model is represented within PRMS by an algorithm that is based on a 2 

physical law (i.e. balance of energy required to melt the ice in a snowpack) or empirical 3 

relation with measured or estimated characteristics (i.e. a tank model used to simulate 4 

interflow).  The reader is referred to Markstrom et al., (2015) for a complete description of 5 

PRMS. 6 

A fundamental assumption of this study is that PRMS is able to simulate and differienate 7 

hydrologic signals from all the different processes at the scale of the CONUS. Two possible 8 

ways to evaluate this are: (1) an analysis of PRMS’s internal structure, and (2) the history of 9 

PRMS applications. A detailed analysis of PRMS’s structure is beyond the scope of this 10 

article (see Markstrom et al., 2015); however, PRMS is implemented in a very linear fashion. 11 

Each parameter is clearly identified with an equation that is related to simulation of a specific 12 

process. Equations are solved sequentially, generally in the order that is defined by water 13 

moving through the hydrologic cycle, starting from the atmosphere as precipitation and 14 

moving through the rivers as streamflow. The outputs of one equation maybe used as inputs to 15 

subquent equations. All of the inputs for a particular equation are required before that 16 

equation can be solved. This interdependancy in equations can lead to parameter interaction in 17 

the simulation of subsequent processes. For example, parameters related to distribution of 18 

temperature and solar radiation may show correlation with each other when evaluated with 19 

respect to simulation of evapotranspiration despite these parameters not being explicit terms 20 

in the evapotranspiration equations. 21 

 Past studies indicate that PRMS has been very useful useful in water resource and research 22 

studies across the CONUS (cite them) and is capable of matching measured data (cite them) 23 

in a variety of geophysical and climatological settings. 24 

 25 

To define the spatial domain for the CONUS application of PRMS, the locations of major 26 

river confluences, water bodies and stream gages have been located as georeferenced points. 27 

These Approximately 56,000 stream segments are used to connect these pointslocations are 28 

mapped onto the natural river network of the entire CONUS, breaking the network into 29 

approximately 56,000 stream segments, which vary in length from approximately 1 meter to 30 

175 kilometers, with 10 kilometers being typical. Using these stream segments, the left and 31 

right bank areas that contribute runoff directly to each segment have been identified, resulting 32 
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in approximately 110,000 irregularly shaped hydrologic response units (HRUs) of various 1 

sizes (500 m2 to 14,000 km2) (Viger and Bock, 2014) (fig. 1).  These HRUs as defined by the 2 

real world points represent the conceptualization of areal space within the DPHM and vary in 3 

size from approximately 500 square meters to 14,000 square kilometers, with 100 square 4 

kilometers being typical. HRUs in PRMS are simulated as homogenous units and tend to be 5 

finer in areas that have more information (i.e. stream gages) and produce more streamflow 6 

(i.e. denser stream network). This topological network of stream segments and HRUs allows 7 

for evaluation of streamflow simulation at almost 60,000 specific locations on rivers, 8 

including nearly 8000 stream gages. These stream segments and HRUs and derived by their 9 

geographic and topographic location, affecting their extent and resolution. 10 

This The CONUS application is forced with values of daily precipitation and daily maximum 11 

and minimum air temperature from the DAYMET data set (Thorton et al., 2014).  The one 12 

square kilometer gridded DAYMET data has been processed to provide mean daily HRU 13 

values on the basis of area weighted averaging using the USGS Geo Data Portal (Blodgett et 14 

al., 2011).  The climate information covers a time period from 1980-2013 on a daily time step, 15 

but a shorter period (1987 – 1989 used for warmup and 1990 – 2000 used for evaluation) was 16 

selected used for in this study. 17 

2.1 Calibration Parameters 18 

The version of PRMS used in this study has 108 input parameters.  For this study, aA 19 

parameter is defined as an input value that does not change over the course of a simulation 20 

run.  Of these parameters, most would never be modified from their initial values (hereafter 21 

referred to as non-calibration parameters) because they are (1) computed directly from digital 22 

data sets through the use of a geographic information system (e.g. land-surface 23 

characterization parameters) (Viger, 2014), (2) boundary conditions (e.g. parameters to adjust 24 

daily precipitation and daily min/max air temperature forcings), or (3) model configuration 25 

options (e.g. unit conversions and model output options).  This leaves 35 parameters under 26 

consideration for improved model performance, hereafter referred to as calibration 27 

parameters (listed below in table 1 and described fully by Markstrom et al. (2015) in table 1-28 

3).(Table 1). Each parameter is used within a PRMS code module that simulates a single 29 

hydrologic process in PRMS. The ouput variables of one module may be used as input 30 

variables to other modules. It is through these connections that calibration parameters 31 

associated with a PRMS module type may affect the results of other modules. 32 
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2.2 Hydrologic processes 1 

PRMS produces more than 200 output variables that indicate the simulated hydrologic 2 

response of the simulation of a watershed through time (Markstrom et al., 2015, see table 3 

Table 1-5).  In this study, eight of these output variables have been selected to represent the 4 

response of major hydrologic processes at the HRU resolution.  These processes are:  (1) 5 

baseflow (PRMS output variable gwres_flow) – the component of flow from the saturated 6 

zone to the connected stream segment; (2) evapotranspiration (hru_actet) – the total actual 7 

evapotranspitation lost from canopy interception, snow sublimation and soil and plant losses 8 

from the root zone; (3) runoff (hru_outflow) – the total flow from the HRU contributing to 9 

streamflow in the connected stream segment; (4) infiltration (infil) – the sum of rain and 10 

snowmelt that passes into the soil zone of the HRU; (5) snowmelt (snowmelt) – the amount of 11 

water that has changed from ice to liquid and becomes either surface runoff or infiltrates into 12 

the soil zone of the HRU; (6) soil moisture (soil_moist) – the storage state that represents the 13 

amount of soil water in the soil zone above wilting point and below total saturation in the 14 

HRU; (7) surface runoff (sroff)  – water from a rainfall or snowmelt event that travels quickly 15 

over the land surface from the HRU to the connected stream segment; and (8) interflow 16 

(ssres_flow) – shallow lateral flow in the unsaturated zone to the connected stream segment. It 17 

is assumed that these eight output variables are representitive of hydrological studies with 18 

distributed models Details of how these processes are simulated by PRMS are described by 19 

Markstrom et al. (2015). 20 

2.3 Objective functionsPerformance measures 21 

For DPHMs, there are many different objective functionsperformance measures that have 22 

been developed for different purposes (Krause et al., 2005; Gupta et al., 2008; Gupta et al., 23 

2009).  Because this study is an analysis of model sensitivity, the objective 24 

functionsperformace measures need only track changes in model output and do not 25 

necessarily need to include observed measurements. Consequently, objective 26 

functionsperformance measures can be developed for processes that are not normally 27 

evaluated by objective functionsperformance measures.  Archfield et al.  (2014) demonstrated 28 

that seven fundamental daily streamflow statistics (FDSS) can be used to group streams by 29 

similar hydrologic response and tend to provide non-redundant information.  In this study, all 30 

seven FDSS were computed for each of the eight PRMS time series output variables 31 

corresponding to the processes.  For the purpose of illustration, this paper article focuses on 32 
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three of the FDSS: (1) mean; (2) coefficient of variation (CV); and (3) the autoregressive lag-1 

one correlation coefficient (AR-1).  In an intuitive sense, performance measuresobjective 2 

functions based on these three statistics can be thought to represent changes in total volume, 3 

“spikiness” or “flashiness”, and day-to-day timing, respectively.  These performance 4 

measuresobjective functions are computed on the daily time series of the process variables for 5 

the 10 year evaluation period. 6 

3 FAST analysis 7 

Global parameter sensitivity analysis measures the variability of model output given 8 

variability of calibration parameter values.  This is determined by partitioning the total 9 

variability in the model output or change in performance measureobjective function values to 10 

individual calibration parameter (Reusser et al., 2011).  The Fourier Amplitude Sensitivity 11 

Test (FAST) (Schaibly and Shuler, 1973; Cukier et al., 1973; Cukier et al., 1975; Saltelli et 12 

al., 2006) was selected for this study because it has been demonstrated that it can efficiently 13 

estimate non-linear hydrologic model parameter sensitivity (Guse et al., 2014; Pfannerstill et 14 

al. 2015; Reusser et al., 2011). FAST is a variance-based global sensitivity algorithm that 15 

estimates the first-order partial variance of model output explained by each calibration 16 

parameter (hereafter referred to as parameter sensitivity).  Specifically, this first-order 17 

variance is the variability in the output that is directly attributable to variations in any one 18 

parameter and is distinguishable from higher order variances associated with parameter 19 

interactions.  . An important caveat is that these higher order variances are not accounted for 20 

in the analysis. It is assumed that first-order partial variance is sufficient to identify sensitive 21 

parameters. This same assumption, as applied to process identification, may be more 22 

problematic. If there are sets of interactive sensitive parameters that have not been identified, 23 

then the associated process(es) will not be identified as such.  24 

Selected parameters are varied within defined ranges at independent frequencies among 25 

different model runs. FAST identifies the variability of parameter sensitivities and their ranks, 26 

by means of their contribution to total power in the power spectrum. FAST has been 27 

implemented as the ‘fast’ library in the statistical software R (Reusser et al., 2011; R Core 28 

Team, 2015) in two parts.  In the first part, the user identifies the calibration parameters and 29 

respective value ranges for the test, then FAST generates sets of test calibration parameter 30 

values (hereafter referred to as trials).  Calibration parameter values are varied across the 31 

trials according to non-harmonic fundamental frequencies.  The user then runs the DPHM for 32 
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each trial and computes corresponding performance measuresobjective function values.  Then 1 

the user runs the second part of the FAST package that performs a Fourier analysis of the 2 

performance measuresobjective function values over the trial space looking for the frequency 3 

signatures associated with each calibration parameter. . 4 

The FAST methodology results in a simple procedure for computing parameter sensitivities 5 

on an HRU basis for all the CONUS (see fig. 1).  The steps in this process are as follows: 6 

1. Assign appropriate ranges for the 35 calibration parameters (Markstrom et al., 2015; as 7 

in LaFontaine et al., 2013). 8 

2. Run the first part of the FAST procedure (as described above) to develop over 9000 9 

unique parameter sets, comprised of value combinations for the calibration 10 

parameters. These parameter sets in the trial space are independent of each other so 11 

they can run in parallel on a computer cluster. 12 

3. Compute the FDSS based performance measureobjective function (mean, CV, and 13 

AR-1) values for each process. 14 

4. Run the second part of the FAST procedure (as described above) using output from 15 

step 3, resulting in PRMS parameter sensitivities, at each HRU, for the 56 16 

combinations of three seven performance measuresobjective functions and eight 17 

processes (plus totals). 18 

4 Results 19 

4.1 Paramseter sSensitivity by process and performance measureobjective 20 

function 21 

Figure 2 shows parameter sensitivity as a set of maps ordered by process and performance 22 

measureobjective function.  This illustrates the spatial variability in parameter sensitivity and 23 

the importance that choice of performance measureobjective function can make in terms of 24 

evaluation of hydrologic response.  In these maps, the HRUs are colored according to the 25 

parameter sensitivity, which is computed by summing the first order sensitivity for all 35 26 

parameters and then scaling (by average) each individual category of modeled process and 27 

performance measureobjective function to total sensitivity.  Parameter sensitivity associated 28 

with process (column labeled “Process average” in Figure 2) are averaged across all of the 29 

parameter sensitivity values computed for the different performace measures; while parameter 30 
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sensitivity associated the performance measues (last row labeled “Preformance measures” in 1 

Figure 2) are averaged across all of the parameter sensitivity values computed for the different 2 

processes. These categories are indicated by their position in the rows and columns in figure 3 

Figure 2.  When looking at a single performance measureobjective function for a single 4 

process, the cumulative parameter sensitivity can vary from near 0.0 (white colored HRUs) to 5 

near 1.0 (black colored HRUs).  Low values in these maps indicate that there are no 6 

parameters that can be changed in any way to affect the performance measureobjective 7 

function value (this situation is hereafter referred to as an inferior process).  Likewise, each 8 

HRU has a cumulative sensitivity value (i.e. the sum of all of the parital sensitivities for each 9 

process). which is highest for a particularThe process with the largest sum, on an HRU,  is 10 

referred to as the dominant process. for that HRU. 11 

An example of an inferior process is clearly seen in the case of the mean of the snowmelt 12 

process in the southern CONUS HRUs.  This is because the occurrence of snow in these areas 13 

is very infrequent.  Also, there were HRUs for which the value of some performance 14 

measuresobjective functions were mathematically undefined for certain processes (e.g. AR-1 15 

and CV for the baseflow and snowmelt processes).  These cases occur when the output 16 

variable representing the process does not change at all through time and are extreme 17 

examples of inferior processes.  Likewise, a clear example of a dominant hydrologic process 18 

is the CV of interflow in the Intermountain West region of the CONUS (figsFigs. 2 1 and 32).  19 

This means that for these HRUs, there exist some calibration parameters that can be varied 20 

that affect this process to a very high degree. 21 

Also apparent from figure Figure 2 is that there are clear spatial patterns in the parameter 22 

sensitivity on the basis of the geographical features of the CONUS.   Generally, many of the 23 

maps show a sharp break in parameter sensitivity between mountain ranges and 24 

comparatively lower elevations, and northern contrasted with southern latitudes, and humid 25 

versus arid climates.  Specific contrasts can be seen in several maps such as when examining 26 

the Humid Midwest as opposed to the Great Plains regions and the Pacific Coastal areas and 27 

the Desert Southwest region of the CONUS (figFig. 31).   Additionally, topographic features 28 

of the landscape are prominent (e.g. elevation for interflow), while in other maps, climate 29 

considerations seem to dominate (e.g. snowmelt).  Another specific example is that the mean 30 

of each process, which indicates the ability of any particular parameter to change the total 31 

volume of water during a simulation, seems to have a low sensitivity band in the Great Plains 32 
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region for all processes except for snowmelt (figFig. 31).  This band of low sensitivity has 1 

been noted in other modeling studies (Newman et al., 2015; Bock et al., 2015). 2 

4.2 Parameter count required to parameterize each process 3 

Figure 4 illustrates the extent to which it is possible to decompose the parameter estimation 4 

problem into a sub-set of independent problems, and hence reduce the dimensionality of the 5 

inference problem and avoid the troublesome nature of parameter interactions.  It also 6 

illustrates that there is a strong spatial component to this decomposition.  To identify the 7 

expected count of parameters required to parameterize a particular process, cumulative 8 

parameter sensitivity across all HRUs of the CONUS has been computed and plotted (figFig. 9 

4A3(a-)—H(h)). The sensitivity level accounted for by the most sensitive parameter, 10 

regardless of which parameter it is, for all HRUs across the CONUS is plotted in position 1 on 11 

the X axis of each of these plots  (figFig. 4A3(a)— -H(h)).  Then, cumulative sensitivity is 12 

plotted for the parameter in rank 2, and so on, until the cumulative sensitivity of all 35 13 

calibration parameters is accounted for.  The plots in figure Figure 4A3(a)—(h)-H show that 14 

far fewer than the full 35 parameters, on average, are needed to account for most of the 15 

parameter sensitivity.  In fact, to account for 90% of the parameter sensitivity, this count 16 

varies from an average low value of just over two for snowmelt to an average high value of 17 

over 9 for runoff in selected HRUs. 18 

The actual count of calibration parameters required to account for 90% of the parameter 19 

sensitivity varies by process and region, as shown by the maps in figure Figure 4I3(i)—(p)-P.  20 

These maps were generated by counting the number of parameters required to obtain the 90% 21 

cumulative sensitivity level for each HRU.  For example, figure Figure 4I 3(i) indicates that 22 

for the baseflow process between three and nine parameters are needed in specific HRUs to 23 

account for 90% of the parameter sensitivity in the HRUs across the CONUS, with the higher 24 

count needed in mountainous, Great Lakes and New England regions.  The maps also indicate 25 

that between four and six parameters are required for parameterization of evapotranspiration 26 

(figFig. 4J3(j)), five to 14 parameters are required for parameterization of runoff (figFig. 27 

4K3(k)), four to 13 parameters are required for parameterization of infiltration (figFig. 28 

4L3(l)), two to eight are required for parameterization of snowmelt (figFig. 4M3(m)), three to 29 

six parameters are required for parameterization of soil moisture (figFig. 4N3(n)), five to 30 

eight parameters are required for parameterization of surface runoff (figFig. 4O3(o)), and two 31 

to 13 parameters are required for parameterization of interflow (figFig. 4P3(p)).  This analysis 32 
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indicates that more parameters are needed to simulate the components of stream flow (e.g. 1 

baseflow, interflow, and groundwater flow) than processes that do not result directly in flow 2 

(e.g. snowmelt, evapotranspiration, and soil moisture). An analyis of theses parameter counts 3 

and how they relate to their respective process is beyond the scope of this article, but it could 4 

relate to the structure of PRMS and possibly indicate that some processes are 5 

overparameterized. In addition, simulated process that are identified as being sensitive to 6 

parameters with which they are not normally associated with, may indicate that these process 7 

are a convolution of other processes, conseq uently making parameters sensitive that are not 8 

normally sensitive. 9 

Visually, these maps (figFig. 4I-P3(i)—(p)) indicate that HRU calibration parameter counts 10 

vary regionally.  For most processes, higher parameter counts are seen in the more 11 

mountainous regions of the Cascade, Sierra, Rocky, Ozark, and Appalachian mountains, 12 

although this is true to a much lesser extent for the evapotranspiration and soil moisture 13 

processes (Figs. 3(j) and 3(n)).  Higher values also seem prevalent in New England and Great 14 

Lake regions (figFig. 31).  This result seems to indicate that, no matter which part of the 15 

hydrologic cycle is simulated, more parameters are required in these regions.  In contrast, low 16 

parameters counts seem prevalent in the Great Plains and Desert Southwest of the United 17 

States.   18 

Finally, Figure 3 illustrates the extent to which it is possible to decompose the parameter 19 

estimation problem into a sub-set of independent problems, and hence reduce the 20 

dimensionality of the inference problem and avoid the troublesome nature of parameter 21 

interactions.  It also illustrates that there is a strong spatial component to this decomposition.  22 

In order to make the information presented in figure Figure 4 3 more useful for DPHM 23 

application, the particular sensitive parameters have been determined for each HRU by 24 

ranking the calibration parameters by sensitivity for each category of process and 25 

performance measureobjective function for each individual HRU (not shown).  A summary of 26 

this information is produced by counting the occurrence of each parameter across the HRUs 27 

and ranking them within their respective category of process and performance 28 

measureobjective function (table Table 12). To address the issue of the spatial variability of 29 

these parameters, the percentage of the total number of CONUS HRUs that would include the 30 

respective parameter as one of those that that account for 90% of the cumulative sensitivity. 31 

Higher values would indicate that the corresponding parameter is sensitive across more of the 32 
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CONUS.   Refer to Markstrom et al. (2015, table 1-3)Table 1 for a complete description of 1 

these parameters. 2 

When looking at the categorical parameter lists of table Table 12, it is expected that different 3 

parameters would associate with different processes (i.e. along a column), but it is surprising 4 

to see how different the parameter lists are for different performance measuresobjective 5 

functions (moving across a row) for the same process.  An example of this is the baseflow 6 

process: the baseflow coefficient (PRMS parameter gwflow_coef) is the most sensitive 7 

parameter for performance measures objective functions CV and AR1, but is not even in the 8 

list of sensitive parameters for the performance measureobjective function related to the mean 9 

of the process.  This implies that this parameter is the most important for effecting the timing 10 

of baseflow, while it does not have any effect on the total volume of baseflow. 11 

Further inspection of table Table 1 2 indicates that some calibration parameters occur in many 12 

of the 24 categories (8 processes times 3 OFs), while some parameters do not occur at all.  A 13 

count of how many times each parameter occurs provides insight into how important many 14 

process/performance measure combinations that particular parameter is to the DPHM 15 

simulationinfluences.  To investigate this for the CONUS application, another view of the 16 

information in table Table 1 2 is shown in figure Figure 54.  The 25 sensitive calibration 17 

parameters identified as sensitive in some category from table Table 1 2 are listed on the y-18 

axis of figure Figure 54, ranked by order of the number of times that they appear.  19 

Furthermore, each appearance is indicated by an adjacent circle, . Independent of the number 20 

of times a parameter occures withing a category (number of circles), the color of the circle 21 

indicates the proportion of the CONUS HRUs that are affected by that parameter. with the 22 

color indicating the rank within the category in which it appeared.  Specifically, a red circle 23 

indicates a first place appearancethat more HRUs are affected, while blue indicates a last 24 

place appearance, and shades of purple indicate something in betweenthat fewer HRUs are 25 

affected. 26 

Figure 5 4 shows that three specific parameters affect 18 or more process/objective function 27 

categories; seven parameters affect seven to 14 categories, and 15 specific parameters affect 28 

one to five categories.  Finally, of the 35 parameters studied, 10 are never used for any 29 

combination of process/ and performance measureobjective function (table Table 1 2 and 30 

figFig. 54).  It is apparent from figure Figure 54, that for the CONUS application of PRMS, 31 

the most important parameters affecting the most process categories are soil_moist_max 32 
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(maximum available water holding capacity), jh_coef (Jensen-Haise air temperature 1 

coefficient), and dday_intcp (intercept in degree-day equation). Because these parameters 2 

affect so many process categoies, Modelers modelers would be wise to invest their resources 3 

in developing the best values possible for these parameters to avoid unintended parameter 4 

interaction.   Ideally, these parameters could be estimated from reliable external data and set 5 

for the model and not calibrated.  The least importantparameters that affect the least number 6 

of process categories parameters (aside from the parameters that are never sensitive) are 7 

cecn_coef (convection condensation energy coefficient), ssr2gw_exp (coefficient in equation 8 

used to route water from the soil to the groundwater reservoir), emis_noppt (emissivity of air 9 

on days without precipitation), potet_sublim (fraction of potential evapotranspiration that is 10 

sublimated), and slowcoef_lin (slow interflow routing coefficient).  Ideally, these parameters 11 

could be set to default values since there is limited calibration information for them. and only 12 

calibrated if necessary.  Also apparent from figure Figure 5 4 is that there are many 13 

parameters between these two extreme groups.  Parameters like smidx_coef (soil moisture 14 

index for contributing area calculation) can appear in several process/objective function 15 

categories, without any high rankings, while there are other parameters like slowcoef_sq (slow 16 

interflow routing coefficient) that appear in relatively few process/objective function 17 

categories, but have high rankings.  This behavior may be due to the vertical routing order 18 

(i.e. processes that occure nearer to the surface happen before the deeper ones) of the 19 

associated processes (Yilmaz et al., 2008; Pfannerstill et al., 2015). These parameters may be 20 

the best candidates for calibration because they are sensitive, while at the same time 21 

interaction across processes is perhaps limited. 22 

5 Discussion 23 

5.1 Causes of parameter sensitivity 24 

There are regions where parameter sensitivity is typically high for a particular performance 25 

measureobjective function (e.g. New England region (figFig. 31) for performance 26 

measureobjective function based on mean of processes) or typically low (e.g. Great Plains 27 

region (figFig. 31) for mean of processes) regardless of the process (fig Fig 2).  Why do the 28 

HRUs of some regions exhibit parameter sensitivity to almost all processes, while others 29 

exhibit parameter sensitivity to almost none?  All other things being equal, there can only be 30 

two sources of these spatial patterns:  31 
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1. The physiography that is used to define the non-calibration parameters (e.g. elevation, 1 

vegetation type, soil type) renders all calibration parameters insensitive.  A theoretical 2 

example of this could be if an HRU is characterized as entirely impervious, resulting 3 

in the non-existence of any simulated soil water.  4 

2. Patterns in the climate data used to drive the model (e.g. daily temperature and 5 

precipitation) could control model response.  A theoretical example of this could be an 6 

HRU that receives no precipitation.  The hydrologic response of the HRUs in either 7 

case would always remain unchanged, regardless of changes in any parameter value. 8 

In either case, these sources of information are independent of the DPHM and could lead to 9 

the conclusion that the dominant processes identified by the methods outlined in this paper 10 

article could correspond to perceptible dominant processes in the physical world (i.e. how the 11 

“real world” works). 12 

The number of unique calibration parameters for each process in table Table 1 2 (i.e. counting 13 

the parameters across each row) may provide some insight into the complexity of each 14 

process.  In theory, more “complicated” hydrologic processes would require more parameters 15 

for parameterization than the “simpler” ones.  According to this view, runoff (17 calibration 16 

parameters) and infiltration (14 calibration parameters) are the most complex processes to 17 

simulate, with soil moisture (4) being the simplest.  Interflow (12 calibration parameters), 18 

baseflow (11 calibration parameters), surface runoff, (10 calibration parameters), snowmelt (9 19 

calibration parameters) and Evapotranspiration (8 calibration parameters) are in between.  20 

This reflects the fact that in PRMS, runoff is a much more complicated calculation with many 21 

of the other processes directly contributing information.  Also apparent is that more 22 

parameters are needed to simulate the components of stream flow (e.g. baseflow, interflow, 23 

and surface runoff) than processes that do not result directly in flow (e.g. snowmelt, 24 

evapotranspiration, and soil moisture).  The only process that does not follow this pattern is 25 

infiltration.  Storm-event based infiltration is typically simulated with sub-daily time steps to 26 

account for the time/intensity variability of this process.  It is possible that PRMS must 27 

compensate for this shortcoming in structure with a more complex parameterization of the 28 

process. 29 

Table 1 2 indicates that there are 10 calibration parameters that are never sensitive regardless 30 

of the process or performance measureobjective function.  This indicates that these parameters 31 

should always be set to default value, with minimal resources used to estimate them, and 32 
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never be calibrated.  Additional modeling studies could reveal situations where these 1 

parameters actually do exhibit some sensitivity, perhaps in situations with smaller 2 

geographical domains or over different time periods.  It is also possible that these parameters 3 

are never sensitive, indicating some structural problem or unwarranted complexity in the 4 

DPHM and the removal of some algorithms from the source code of the DPHM is advised.   5 

Additional study is required of these 10 non-sensitive calibration parameters and upon further 6 

review of the PRMS source code, a structural problem (e.g. unintended constraint, non-7 

differentiable behavior, or software bug) might be revealed.  Alternatively, the problem could 8 

be related to invalid parameter ranges in the FAST analysis or problems with the climate data 9 

used to drive the model.  Finally, it could be that alternative or improved performance 10 

measuresobjective functions could resolve this issue. 11 

5.2 Choice of performance measureobjective function 12 

The maps of figure Figure 2 clearly illustrate the importance that choice of performance 13 

measureobjective function can make in terms of evaluation of hydrologic response.  When the 14 

maps of performance measuresobjective functions within a single hydrologic process are 15 

compared (i.e. the maps across a single row), the spatial patterns and magnitude of the 16 

parameter sensitivity can be very different.  This could indicate that the performance 17 

measuresobjective functions based on the FDSS truly are non-redundant and are accounting 18 

for different aspects of the hydrological processes. 19 

Table 1 2 indicates that the baseflow coefficient (PRMS parameter gwflow_coef) (Markstrom 20 

et al., 2015) is the most sensitive parameter for performance measuresobjective functions CV 21 

and AR1, but not sensitive to the mean of the baseflow process performance 22 

measuresobjective function.  This indicates that despite knowledge of parameters being 23 

associated with the computations of simulation of a certain process, sensitivity analysis can 24 

reveal that the response of the simulation is completely different when the performance 25 

measureobjective function changes.  It also indicates that sensitivity analysis might be an 26 

important step in selection of an appropriate performance measureobjective function and that 27 

uncritical application of performance measuresobjective functions may be misleading. 28 
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5.3 Identification of dominant and inferior processes by geographic area 1 

To identify the dominant and inferior process(es) by geographic area, the following procedure 2 

is done for each HRU: 3 

1. The parameter sensitivity scores are summed for each parameter, resulting in a score 4 

for each parameter for each time series output variable and performance 5 

measureobjective function. 6 

2. The parameter scores are averaged by performance measuresobjective functions, 7 

resulting in a score for each process. 8 

3. The process scores are ranked for each HRU. 9 

4. The top (and bottom) ranked process determines the most dominant (and most 10 

inferior) single process as shown in figure Figure 65. 11 

When the sensitivities are computed this way, it is possible that certain parameters are 12 

included in both the most dominate and most inferior processes at the same time.  This 13 

apparent contradiction is not necessarily a conflict but indicates that the calibration 14 

parameters must work in concert with the evaluation method. For example, there exist HRUs 15 

where the evapotranspiration process is dominant and at the same time the runoff or 16 

infiltration processes are inferior (figFig. 6A 5(a) and 6B5(b)).  The parameter soil_moist_max 17 

is indicated as being sensitive for all three of these processes (table Table 12). This parameter 18 

would demonstrate equifinality if evaluated within the context of the inferior processes (i.e. 19 

those output variables and performance measuresobjective functions) but would be a very 20 

effective calibration parameter resulting in optimal values when viewed within the context of 21 

the dominate process. 22 

Generally, figure Figure 6A 5(a) shows that evapotranspiration is the most prevalent dominant 23 

process for the CONUS.  This is probably because it is a major component of the hydrologic 24 

cycle that is importantand sensitive parameters are available to affect it in every HRU.  25 

However, this is not universal, and the dominant process varies by geographic region, with 26 

snowmelt being the dominant process in the northern Great Planes and northern Rocky 27 

Mountains, total runoff being the most important in the Pacific Northwest, and with interflow 28 

important in bands across the Intermountain West (figFig. 31).  Each process is dominant 29 

somewhere depending on local conditions.  Equally informative are the locations of the most 30 

inferior processes (figFig. 6B5(b)).  This clearly shows that PRMS snowmelt parameters are 31 
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not sensitive across the Central Valley of California, and in the Deep South and the 1 

Southwestern United States (figFig. 31).  Areas where runoff is more dominate that than 2 

evapotranspiration, as in the Cascade and coastal areas of the Pacific Northwest, are locations 3 

where the runoff is a substantially greater part of the water budget. Interestingly, infiltration 4 

and baseflow appear to be equally inferior across most of CONUS, with pockets of HRUs that 5 

are insensitive to soil moisture, surface runoff, and interflow, depending on local conditions.  6 

There are no HRUs that rank evapotranspiration as the most inferior process. 7 

Dominant and inferior process can be identified for HRUs at the watershed scale as well.  8 

Figure 6C 5(c) shows the most dominant process by HRU for the Apalachicola – 9 

Chattahoochee – Flint River watershed in the Southeastern United States.  This watershed has 10 

been the subject of previous PRMS modeling studies (LaFontaine et al. 2013).  When using 11 

this information at a finer resolution, it shows that evapotranspiration is the most dominant 12 

process watershed wide, but with pockets of HRUs in the northern part of the watershed 13 

where runoff is the most dominant and a pocket in the southern part of the watershed where 14 

infiltration is most dominant.  Likewise, the most inferior process for each HRU is identified 15 

in figure Figure 6D5(d). This clearly indicates that parameters and performance 16 

measuresobjective functions related to snowmelt, and to a lesser degree baseflow do not need 17 

to be considered when modeling this watershed.  Figure 6D 5(d) also indicates, that in the 18 

northern part of the watershed, infiltration and runoff are inferior processes as well, which 19 

could in part be due to impervious conditions around the Atlanta metropolitan area. This 20 

information could be used, in conjunction with table Table 1 2 to develop the most effective 21 

parameter estimation and performance measureobjective function selection strategy when 22 

modeling this watershed. 23 

This method of identification of inferior and dominate processes for a specific geographical 24 

location are is defined within the context of the application of the DPHM and may not have 25 

the same meaning within a different context.  This method of using the PRMS watershed 26 

hydrology model as the context resolves problems that researchers have had classifying 27 

watersheds by dominate processes. Indicating that classification not only depends on the 28 

physiographic nature of the watershed, but also, the scale, resolution, and purpose for 29 

classification. 30 
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5.4 Further study 1 

Providing modelers with reduced lists of calibration parameters on an HRU-by-HRU, 2 

watershed-by-watershed, or region-by-region basis is the first step in the path of this research.  3 

This approach could be developed into more sophisticated methods where orthogonal output 4 

variables and performance measuresobjective functions could provide much more insight into 5 

methods of effective model calibration.  Although assessment of parameter interactions is not 6 

possible with FAST, because the harmonic functions in a Fourier analysis are 7 

orthogonal,Advancements in this approach may identify groups of parameters that effectively 8 

behave together, thus reducing the number of parameters and making specific model output 9 

respond more directly to a single or a few parameters, reducing parameter interaction. This 10 

suggests that model parameterization and calibration might benefit from a step-by-step 11 

strategy, using as much information as possible to set non-interactive parameters and remove 12 

them from consideration before the more interactive parameters are calibrated, reducing the 13 

dimensionality of the problem (Hay et al., 2006; Hay and Umemoto, 2006). 14 

Another potential application is that it is possible that uncertainty maps related to the 15 

hydrological processes could be developed.  A simple relation between the uncertainties of 16 

model output and input based on sensitivity can be described according to (Mishra, 2009): 17 




output

input
sens  ,           (1) 18 

where sens is the parameter sensitivity, input is the uncertainty associated with the input 19 

parameters, and output is the uncertainty associated with the model output.  If this equation is 20 

applied, process by process, using uncertainty estimates associated with the parameter 21 

groupings listed in table 1 and the spatially distributed objective function values shown in 22 

figure 2, it would be possible to develop maps of estimates of uncertainty by process and 23 

objective function.  Developing estimates of spatially varying parameter uncertainty (input) 24 

may be possible as more remotely sensed data sets become available.  These maps of model 25 

output uncertainty, by process, could be an effective way to communicate DPHM uncertainty 26 

on the basis of geographic location and dominant process. 27 

Another question for future research is does the classification of dominate hydrologic 28 

processes, both geographical and categorical, as described in this study apply to any other 29 

context?  Comparable findings from other modeling studies, such as those by Newman et al. 30 
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(2015) and Bock et al. (2015) might indicate that there could be a connection.  These other 1 

studies use the same input information (i.e. being driven with the same climate data and using 2 

the same sources of information for parameter estimation) and thus simulation results and 3 

model sensitivity to this information might be similar.  Also, can real world watersheds be 4 

classified by sensitivity analysis using DPHMs? Based on the findings of the work presented 5 

so far, the answer is inconclusive.  Clearly there are some results that indicate that it might be 6 

possible.  For example, the methods described here effectively identify “snowmelt 7 

watersheds” in the mountainous and northern latitudes, but, is all of this necessary to 8 

accomplish this?  Might simpler methods (e.g. an isohyetal snowfall map) identify snowmelt 9 

watersheds just as effectively? 10 

Questions remain about using parameter sensitivity for identification of structural 11 

inadequacies within the CONUS application and specifically, the PRMS model itself.  In this 12 

application, certain hydrologic processes (e.g. depression storage, streamflow routing, flow 13 

through lakes, and strong groundwater/surface-water interaction) were not considered because 14 

of additional data requirements and parameterization complexity.  Just as the spatial and 15 

temporal scope of any modeling project must be defined, the scope of the hydrologic 16 

processes, and the detail to which these processes are simulated must be likewise defined.  17 

Perhaps sensitivity analysis could help define this in a more objective way.  Model 18 

development and application could perhaps proceed by first accounting for those processes 19 

that have the most effect. 20 

Effect of HRU definition on results. 21 

Effect of module selection on results. 22 

6 Conclusion 23 

Watersheds in the real world clearly exhibit hydrologic behavior determined by dominant 24 

processes based on geographic location (i.e. land surface conditions and climate forcings).  A 25 

methodology has been developed to identify regions, watersheds and HRUs according to 26 

dominant process(es) on the basis of parameter sensitivity response with respect to a 27 

distributed-parameter hydrology model.  The parameters in this model were divided into two 28 

groups – those that are used for model calibration and those that were not.  A global 29 

parameter sensitivity analysis was performed on the calibration parameters for all HRUs of 30 

the conterminous United States.  Categories of parameter sensitivity were developed in 31 

various ways, on the basis of geographic location, hydrologic process and model response.  32 
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Visualization of these categories provide insight into model performance and useful 1 

information about how to structure the modeling application should take advantage of as 2 

much local information as possible. 3 

By definition, an insensitive parameter is one that does not affect the output. Ideally, a 4 

distributed-parameter hydrology model would have just a few calibration parameters, all of 5 

them meaningful, each controlling the algorithms related to the corresponding process. This 6 

would result in low parameter interaction and a clear mapping between input and output.  7 

However, this is not always the case, and despite the fact that parameter interaction is 8 

unavoidable in these types of models, this behavior is also seen in the real world.  For 9 

instance, in watersheds where evaporation is very high, antecedent soil moisture is affected, 10 

which has a direct influence on infiltration.  The real world process of evaporation has an 11 

effect on infiltration, just as evaporation parameters have an effect on simulation of 12 

infiltration in watershed hydrology models. 13 

In conclusion, results of this study indicate that it is possible to identify the influence of 14 

different hydrologic processes when simulating with a distributed-parameter hydrology model 15 

on the basis of parameter sensitivity analysis.  Factors influencing this analysis include 16 

geographic area, topography, land cover, soil, geology, climate, and other unidentified 17 

physical effects.  Identification of these processes allow the modeler to focus on the more 18 

important aspects of the model input and output, which can simplify all facets of the 19 

hydrologic modeling application. 20 

21 
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Data availability 1 

The Precipitation-Runoff Modeling System software used in this study is developed, 2 

documented and distributed by the U.S. Geological Survey.  It is in the public domain and 3 

freely available from their web site (http://wwwbrr.cr.usgs.gov/prms). Data analysis and 4 

plotting is done with the R software package (http://www.r-project.org), which is freely 5 

available, subject to the GNU General Public License. 6 

The climate forcing data set used in this study came from the U.S. Geological Survey Geo 7 

Data Portal (http://cida.usgs.gov/climate/gdp).  The HRU delineation and default 8 

parameterization came from the U.S. Geological Survey GeoSpatial Fabric 9 

(http://wwwbrr.cr.usgs.gov/projects/SW_MoWS/GeospatialFabric.html). Finally, the 10 

parameter sensitivity output values that were used to make the maps and tables in this article 11 

are available at ftp://brrftp.cr.usgs.gov/pub/markstro/hess. 12 

13 

http://wwwbrr.cr.usgs.gov/prms
http://cida.usgs.gov/climate/gdp
http://wwwbrr.cr.usgs.gov/projects/SW_MoWS/GeospatialFabric.html
ftp://brrftp.cr.usgs.gov/pub/markstro/hess


 48 

References 1 

Amorocho, J. and Hart, W. E.: A critique of current methods in hydrologic systems 2 

investigation, Trans. Am. Geophys. Un., 45, 307-321, 1964. 3 

Archfield, S. A., Kennen, J. G., Carlisle, D. M., and Wolock, D. M.: An objective and 4 

parsimonious approach for classifying nature flow regimes at a continental scale, River 5 

Research and Applications, 30, 9, 1166-1183, 2014. 6 

Beven, K: A manifesto for the equifinality thesis, Journal of Hydrology, 320, 18-36, doi: 7 

10.1016/j.jhydrol.2005.07.007, 2006. 8 

Blodgett, D. L., Booth, N. L., Kunicki, T. C., Walker, J. L., and Viger, R. J.: Description and 9 

testing of the Geo Data Portal: Data integration framework and web processing services for 10 

environmental science collaboration, U.S. Geological Survey Open-File Report 2011–1157, 9, 11 

2011. 12 

Bock, A. R., Hay, L. E., McCabe, G. J., Markstrom, S. L., and Atkinson, R. D.: Parameter 13 

regionalization of a monthly water balance model for the conterminous United States. Hydrol. 14 

Earth Syst. Sci. Discuss., 12, 10023-10066, doi:10.5194/hessd-12-10023-2015, 2015. 15 

Brun, R., Reichert, P., and Kunsch, H. R.: Practical identifiability analysis of large 16 

environmental simulation models, Water Resources Research, 37, 1015-1030, doi: 17 

10.1029/2000wr900350, 2001. 18 

Chaney, N. W., Herman, J. D. Reed, P. M., and Wood, E. F.: Flood and drought hydrologic 19 

monitoring: the role of model parameter uncertainty, Hydrology and Earth System Sciences, 20 

19, 7, 3239-3251, 2015. 21 

Clark, M. P. and J. A. Vrugt: Unraveling uncertainties in hydrologic model calibration: 22 

Addressing the problem of compensatory parameters, Geophysical Research Letters, 33, doi: 23 

10.1029/2005gl025604, 2006. 24 

Cukier, R. I., Fortuin, C. M., and Shuler, K. E.:  Study of the sensitivity of coupled reaction 25 

systems to uncertainties in rate coefficients I, J. Chem. Phys., 59, 8, 3873–3878, 1973. 26 

Cukier, R. I., Schaibly, J. H., and Shuler, K. E.: Study of the sensitivity of coupled reaction 27 

systems to uncertainties in rate coefficients III, J. Chem. Phys., 63, 3, 1140–1149, 1975. 28 



 49 

Freeze, R. A. and Harlan, R. L.: Blueprint for a physically-based, digitally-simulated 1 

hydrologic response model, Journal of Hydrology, 9, 237-258, 1969. 2 

Gupta, H. V., Clark, M. P., Vrugt, J. A., Abramowitz, G., and Ye, M.: Towards a 3 

comprehensive assessment of model structural adequacy, Water Resources Research, 48, doi: 4 

10.1029/2011wr011044, 2012. 5 

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean 6 

squared error and NSE performance criteria: Implications for improving hydrological 7 

modelling, Journal of Hydrology, 377, 80-91, doi: 10.1016/j.jhydrol.2009.08.003. 2009. 8 

Gupta, H. V., Wagener, T., and Liu, Y. Q.: Reconciling theory with observations: elements of 9 

a diagnostic approach to model evaluation, Hydrological Processes, 22, 3802-3813, doi: 10 

10.1002/hyp.6989, 2008. 11 

Hay, L. E., Leavesley, G. H., Clark, M. P.,  Markstrom, S. L.,  Viger, R. J.,  and Umemoto, 12 

M.: Step-wise, multiple-objective  calibration of a hydrologic model for a snowmelt-13 

dominated basin, Journal of American Water Resources, 42, 4, 891-900, 2006. 14 

Hay, L. E. and Umemoto, M.: Multiple-objective stepwise calibration using Luca, U.S. 15 

Geological Survey Open-File Report 2006-1323, 25, 2006. 16 

Jakeman, A. and Hornberger, G.: How much complexity is warranted in a rainfall‐runoff 17 

model? Water Resources Research, 29, 2637-2649, 1993. 18 

Kirchner, J. W.: Getting the right answers for the wrong reasons, Water Resources Research, 19 

42, doi: 10.1029/2005wr004362, 2006. 20 

Kirchner, J. W., Hooper, R. P., Kendall, C., Neal, C., and Leavesley, G. H.: Testing and 21 

validating environmental models, Science of the Total Environment, 183, 33-47, 1996. 22 

Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different efficiency criteria for 23 

hydrological model assessment, Adv. Geosci., 5, 89–97, 2005. 24 

LaFontaine, J. H., Hay, L. E., Viger, R. J., Markstrom, S. L., Regan, R. S., Elliott, C. M., and 25 

Jones, J. W.: Application of the Precipitation-Runoff Modeling System (PRMS) in the 26 

Apalachicola–Chattahoochee–Flint River Basin in the southeastern United States, U.S. 27 

Geological Survey Scientific Investigations Report 2013–5162, 118, 2013. 28 

Markstrom, S. L., Regan, R. S., Hay, L. E., Viger, R. J., Webb, R. M. T., Payn, R. A., and 29 

LaFontaine, J. H.: PRMS-IV, the precipitation-runoff modeling system, version 4, U.S. 30 



 50 

Geological Survey Techniques and Methods, book 6, chap. B7, 158, 1 

http://dx.doi.org/10.3133/tm6B7, 20142015. 2 

Hrachowitz, M., O. Fovet, L. Ruiz, T. Euser, S. Gharari, R. Nijzink, J. Freer, H. H. G. 3 

Savenije, and C. Gascuel-Odoux: Process consistency in models: The importance of 4 

system signatures, expert knowledge, and process complexity, Water Resour. Res., 5 

50, doi:10.1002/2014WR015484, 2014 6 

Guse, B., Reusser, D. E., and Fohrer, N.: How to improve the representation of 7 

hydrological processes in SWAT for a lowland catchment – Temporal analysis of 8 

parameter sensitivity and model performance, Hydrol. Process., 28, 2651–2670, 9 

doi:10.1002/hyp.9777, 2014. 10 

McDonnell, J., Sivapalan, M., Vaché, K., Dunn, S., Grant, G., Haggerty, R., Hinz, C. Hooper, 11 

R., Kirchner, J., and Roderick, M.: Moving beyond heterogeneity and process complexity: a 12 

new vision for watershed hydrology, Water Resources Research, 43, doi: 13 

10.1029/2006wr005467, 2007. 14 

Mendoza, P. A., Clark, M. P., Barlage, M., Rajagopalan, B., Samaniego, L., Abramowitz, G., 15 

and Gupta, H. V.: Are we unnecessarily constraining the agility of complex process-based 16 

models? Water Resources Research, doi: 10.1002/2014WR015820, 2015a. 17 

Mendoza, P. A., Clark, M. P., Mizukami, N., Newman, A. J., Barlage, M. E., Gutmann, D.  18 

Rasmussen, R. M., Rajagopalan, B., Brekke, L. D., and Arnold, J. R.: Effects of hydrologic 19 

model choice and calibration on the portrayal of climate change impacts, Journal of 20 

Hydrometeorology, 16, 762-780, 2015b. 21 

Mishra, S.: Uncertainty and sensitivity analysis techniques for hydrologic modeling, Journal 22 

of Hydroinformatics, 11, 3-4, 282-296, 2009. 23 

Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger, R. J., 24 

Blodgett, D., Brekke, L., Arnold, J. R.,  Hopson, T., and Duan Q.: Development of a large-25 

sample watershed-scale hydrometeorological data set for the contiguous USA: data set 26 

characteristics and assessment of regional variability in hydrologic model performance, 27 

Hydrology and Earth System Sciences, 19, 1, 209-223, 2015. 28 

http://dx.doi.org/10.3133/tm6B7


 51 

Perrin, C., Michel, C.,  and Andreassian, V.: Does a large number of parameters enhance 1 

model performance? Comparative assessment of common catchment model structures on 429 2 

catchments, Journal of Hydrology, 242, 275-301, doi: 10.1016/s0022-1694(00)00393-0, 2001. 3 

Pfannerstill, M., Guse, B., Reusser, D., and Fohrer, N.: Process verification of a hydrological 4 

model using a temporal parameter sensitivity analysis, Hydrol. Earth Syst. Sci., 19, 4365–5 

4376, 2015, doi:10.5194/hess-19-4365-2015. 6 

R Core Team: R: A language and environment for statistical computing, R Foundation for 7 

Statistical Computing, Vienna, Austria. URL http://www.R-project.org/, 2015. 8 

Reusser, D. E.: Implementation of the Fourier amplitude sensitivity test (FAST), R package 9 

version 0.63. http://CRAN.R-project.org/package=fast, 2013. 10 

Reusser, D. E., Buytaert, W., and Zehe E.: Temporal dynamics of model parameter sensitivity 11 

for computationally expensive models with the Fourier amplitude sensitivity test, Water 12 

Resour. Res., 47, W07551, doi:10.1029/2010WR009947, 2011. 13 

Reusser, D.E., and Zehe, E.: Inferring model structural deficits by analyzing temporal 14 

dynamics of model performance and parameter sensitivity. Water Resources Research 15 

47(7): W07550. DOI:10.1029/2010WR009946, 2011. 16 

Saltelli A., Ratto, Marco, Tarantola, Stefano: Sensitivity analysis practices: strategies for 17 

model-based inference, Reliability engineering & system safety, 10, 91, 1109-1125, 2006. 18 

Schaefli, B. and Gupta, H. V.: Do Nash values have value? Hydrological Processes, 21, 2075-19 

2080, 2007. 20 

Schaibly, J.H. and  Shuler, K.E.: Study of the sensitivity of coupled reaction systems to 21 

uncertainties in rate coefficients. II, applications, J. Chem. Phys., 59, 3879-3888, 1973. 22 

Sivakumar, B.: Dominant processes concept in hydrology: moving forward, Hydrological 23 

Processes, 18, 12, 2349-2353, 2004. 24 

Sivakumar, B., Jayawardena, A. W., and Li W. K.: Hydrologic complexity and classification: 25 

a simple data reconstruction approach, Hydrological Processes, 21, 20, 2713-2728, 2007. 26 

Sivakumar, B. and Singh, V. P.: Hydrologic system complexity and nonlinear dynamic 27 

concepts for a catchment classification framework, Hydrology and Earth System Sciences, 16, 28 

11, 4119-4131, 2012. 29 

http://www.r-project.org/
http://cran.r-project.org/package=fast


 52 

Thornton, P. E., Thornton, M. M., Mayer, B. W., Wilhelmi, N., Wei, Y., Devarakonda, R., 1 

and Cook. R.B.: Daymet: daily surface weather data on a 1-km grid for North America, 2 

version 2. data set, Available on-line [http://daac.ornl.gov] from Oak Ridge National 3 

Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. 4 

http://dx.doi.org/10.3334/ORNLDAAC/1219, 2014. 5 

Viger, R. J. and Bock, A.: GIS features of the geospatial fabric for national hydrologic 6 

modeling, U.S. Geological Survey, http://dx.doi.org/doi:10.5066/F7542KMD, 2014. 7 

Viger, R. J.: Preliminary spatial parameters for PRMS based on the geospatial fabric, 8 

NLCD2001 and SSURGO, U.S. Geological Survey, 9 

http://dx.doi.org/doi:10.5066/F7WM1BF7, 2014. 10 

Wagener, T., McIntyre, N., Lees, M.J., Wheater, H.S., Gupta, H.V.: Towards reduced 11 

uncertainty in conceptual rainfall–runoff modelling: dynamic identifiability analysis. 12 

Hydrological Processes 17: 455–476, 2003. 13 

Woods, R.: Seeing catchments with new eyes, Hydrological Processes, 16, 1111–1113, 2002. 14 

Yilmaz, K. K., Gupta, H. V., and Wagener, T.: A process-based diagnostic approach to 15 

model evaluation: Application to the NWS distributed hydrologic model, Water Resour. 16 

Res., 44, W09417, doi:10.1029/2007WR006716, 2008. 17 

18 

http://dx.doi.org/10.3334/ORNLDAAC/1219
http://dx.doi.org/doi:10.5066/F7542KMD


 53 

Tables 1 

Table 12. Ordered list of most sensitive Precipitation-Runoff Modeling System calibration 2 

parameters by process and performance measureobjective function. The parameters listed in 3 

each cell of the table are those that are required to account for 90 percent of the cumulative 4 

sensitivity across all hydrologic response units (HRUs). The number in parentheses following 5 

the parameter name is the percent of the CONUS HRUs in which that parameter is part of the 6 

set that accounts for 90 percent of the cumulated sensitivity on an HRU-by-HRU basis. These 7 

parameters are described by Markstrom et al. (2015, table 1-3) in Table 1. . 8 

Process 
Objective FunctionPerformance Measure 

Mean 

(i.e. total volume) 

CV 

(i.e. “flashiness”) 

AR 1 

(i.e. day-to-day timing) 

Baseflow jh_coef (100), 
soil_moist_max (91), 
dday_intcp (81), 
soil2gw_max (74), 
radmax (64), carea_max 
(37, jh_coef_hru (36) 

gwflow_coef (48), 
soil_moist_max (40), 
jh_coef (28), soil2gw_max 
(28), smidx_coef(20), 
carea_max(16), 
tmax_allsnow(13), 
dday_intcp(12), 
smidx_exp (8) 

gwflow_coef (48), 
soil_moist_max (44), 
soil2gw_max (22), 
carea_max (18) 

Evapo-
transpiration 

jh_coef (100), 
soil_moist_max (96), 
dday_intcp (96), 
radmax (92), 
jh_coef_hru (62), 
smidx_coef (37), 
dday_slope (25) 

radmax(100), jh_coef 
(100), soil_moist_max 
(95), dday_intcp (73), 
dday_slope (67), 
soil_rechr_max (34) 

jh_coef(100), 
radmax(100), 
dday_slope(75), 
soil_moist_max(74), 
dday_intcp(67), 
soil_rechr_max(49) 

Runoff jh_coef(100), 
dday_intcp(96), 
soil_moist_max(96), 
radmax(93), 
jh_coef_hru(62), 
smidx_coef(37), 
dday_slope(26) 

gwflow_coef(97), 
soil_moist_max(81), 
fastcoef_lin(76), 
pref_flow_den(71), 
carea_max(58), 
jh_coef(54), 
smidx_exp(49), 
smidx_coef(42), 
soil2gw_max(36), 
tmax_allsnow(15) 

slowcoef_sq(90), 
soil2gw_max(90), 
gwflow_coef(82), 
carea_max(81), 
soil_moist_max(78), 
smidx_exp(72), 
smidx_coef(60), 
fastcoef_lin(36), 
pref_flow_den(35), 
jh_coef(30), 
slowcoef_lin(22) 

Infiltration smidx_exp(99), 
soil_moist_max(99), 
carea_max(99), 
smidx_coef(95), 
jh_coef(64), 
srain_intcp(50) 

carea_max(80), 
tmax_allsnow(69), 
jh_coef, smidx_exp(63), 
srain_intcp(62), 
smidx_coef(54), 
tmax_allrain(48), 
radmax(37), 

carea_max(72), 
soil_moist_max(64), 
smidx_exp(61), 
tmax_allsnow(60), 
srain_intcp(60), 
tmax_allrain(42), 
jh_coef(35), 
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freeh2o_cap(36), 
soil_moist_max(35), 
dday_intcp(31), 
rad_trncf(18) 

smidx_coef(24), 
freeh2o_cap(16), 
dday_intcp(16) 

Snowmelt tmax_allsnow(96), 
tmax_allrain(92) 

tmax_allsnow(39), 
tmax_allrain(38), 
rad_trncf(9), 
freeh2o_cap(8), 
dday_intcp(7) 

tmax_allsnow(34), 
dday_intcp(29), 
rad_trncf(28), 
radmax(24), 
tmax_allrain(17), 
jh_coef(15), 
freeh2o_cap(14), 
cecn_coef(14), 
emis_noppt(13), 
jh_coef_hru(13), 
potet_sublim(10) 

Soil moisture soil_moist_max(100), 
jh_coef(99), 
dday_intcp(94), 
radmax(82) 

jh_coef(98), radmax(98), 
soil_moist_max(97), 
dday_intcp(94) 

soil_moist_max(99), 
jh_coef(98), 
dday_intcp(89), 
radmax(35) 

Surface 
runoff 

smidx_exp(98), 
carea_max(98), 
soil_moist_max(98), 
smidx_coef(96), 
jh_coef(90), 
dday_intcp(33) 

carea_max(93), 
smidx_exp(82), 
jh_coef(64), 
tmax_allsnow(55), 
smidx_coef(52), 
srain_intcp(33), 
soil_moist_max(23), 
tmax_allrain(22) 

soil_moist_max(92), 
carea_max(83), 
jh_coef(65), 
smidx_exp(64), 
smidx_coef(42), 
tmax_allsnow(39), 
dday_intcp(25), 
srain_intcp(23), 
tmax_allrain(16), 
radmax(15) 

Interflow soil_moist_max(99), 
soil2gw_max(94), 
pref_flow_den(90), 
jh_coef(84), 
carea_max(65), 
smidx_exp(45), 
dday_intcp(31), 
smidx_coef(19) 

fastcoef_lin(100), 
soil_moist_max(87), 
pref_flow_den(71), 
jh_coef(61), 
carea_max(49), 
soil2gw_max(29), 
smidx_exp(25), 
tmax_allsnow(17), 
dday_intcp(16) 

soil_moist_max(96), 
fastcoef_lin(89), 
slowcoef_sq(83), 
carea_max(72), 
jh_coef(61), 
pref_flow_den(47), 
smidx_exp(47), 
ssr2gw_exp(40), 
soil2gw_max(26), 
dday_intcp(18), 
tmax_allsnow(16) 

Parameters not sensitive 

adjmix_rain, fastcoef_sq, ppt_rad_adj, radj_sppt, radj_wppt, sat_threshold, ssr2gw_rate, 
tmax_index, transp_tmax, wrain_intcp 

 1 

2 
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Figures 1 

 2 

Figure 1. The Hydrologic Response Units defined for the conterminous United States. Each 3 

Hydrologic Response Unit is drawn in a different color to distinguish it from its neighbors. 4 
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 1 

Figure 1. Location Map of the conterminous United States showing the different geographic 2 

regions referred to this study. 3 

4 
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 1 

Figure 2. Maps of the conterminous United States showing Precipitation-Runoff Modeling 2 

System parameter sensitivity by Hydrologic Response Unit by process and selected 3 

performance measureobjective function. 4 

5 

Commented [MSL10]: Hoellering: The caption should also 
provide more information. 
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 1 

Figure 3. Location Map of the conterminous United States showing the different geographic 2 

regions referred to this study. 3 

4 
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 1 

Figure 43. Cumulative Precipitation-Runoff Modeling System parameter sensitivity across all 2 

HRUs in the continental Parameters Related to Processes. Parameter sensitivities have been 3 

averaged across all performance measuresobjective functions. The plots A-F H summarize the 4 

counts for all 110,000 HRUs shown in the corresponding maps (I – P). 5 
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 1 

Figure 54. Frequency of occurrence of the different parameter counts. The count of circles in 2 

the row adjacent to the parameter name indicates how many times the respective parameter 3 

occurs in the different categories in table Table 12. The color of each circle indicates the 4 

ranking of that occurrence within the category, red corresponding to a higher ranking than 5 

blue. 6 

7 

Commented [MSL12]: Hoillering: Please clarify the 
connection to the ordered listing of Table 1. 
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 18 

Figure 65. Precipitation-Runoff Modeling System parameter sensitivity organized by process 19 

have been ranked for each hydrologic response unit for the entire conterminous United States 20 

(maps A and B) and for the Apalachicola – Chattahoochee – Flint River basin (maps C and 21 

D). The maps on the top (A and C) show the most dominate process, while the maps on the 22 

bottom (B and D) show the most inferior process. 23 
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