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Abstract 8 

Evapotranspiration (ET) plays an important role in surface-atmosphere interactions and can be 9 

monitored using remote sensing data. However, surface heterogeneity, including the inhomogeneity 10 

of landscapes and surface variables, significantly affects the accuracy of ET estimated from satellite 11 

data. The objective of this study is to assess and reduce the uncertainties resulting from surface 12 

heterogeneity in remotely sensed ET using Chinese HJ-1B satellite data, which is of 30 m spatial 13 

resolution in VIS/NIR bands and 300 m spatial resolution in the TIR band. A temperature sharpening 14 

and flux aggregation scheme (TSFA) was developed to obtain accurate heat fluxes from the HJ-1B 15 

satellite data. The IPUS (input parameter upscaling) and TRFA (temperature resampling and flux 16 

aggregation) methods were used to compare with the TSFA in this study. The three methods repre-17 

sent three typical schemes used to handle mixed pixels from the simplest to the most complex. IPUS 18 

handles all surface variables at coarse resolution of 300 m in this study, TSFA handles them at 30 m 19 

resolution, and TRFA handles them at 30m and 300m resolution, which depends on the actual spatial 20 

resolution. Analyzing and comparing the three methods can help us to get a better understanding of 21 

spatial scale errors in remote sensing of surface heat fluxes. In situ data collected during HiWATER-22 

MUSOEXE (Multi-Scale Observation Experiment on Evapotranspiration over heterogeneous land 23 

surfaces of The Heihe Watershed Allied Telemetry Experimental Research) were used to validate 24 

and analyze the methods. ET estimated by TSFA exhibited the best agreement with in situ observa-25 

tions, and the footprint validation results showed that the R2, MBE, and RMSE values of the sensible 26 

heat flux (H) were 0.61, 0.90 W∙m-2 and 50.99 W∙m-2, respectively, and those for the latent heat flux 27 

(LE) were 0.82, -20.54 W∙m-2 and 71.24 W∙m-2, respectively. IPUS yielded the largest errors in ET 28 

estimation. The RMSE of LE between the TSFA and IPUS methods was 51.30 W∙m-2, and the 29 

RMSE of LE between the TSFA and TRFA methods was 16.48 W∙m-2. Furthermore, additional 30 

analysis showed that the TSFA method can capture the sub-pixel variations of land surface temper-31 

ature and the influences of various landscapes within mixed pixels. 32 

Index Terms: surface heterogeneity, temperature sharpening, area weighting, energy balance, evapo-33 

transpiration, spatial scale, HJ-1B satellite 34 

1. Introduction 35 

Five types of methods have been developed to estimate evapotranspiration (ET) or latent heat 36 

flux (LE) via remote sensing. (1) Surface energy balance models calculate LE as a residual term. 37 

According to the partitioning of the sources and sinks of the Soil-Plant-Atmosphere Continuum 38 

(SPAC), surface energy balance models can be classified as one-source (Bastiaanssen et al., 1998; 39 
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Su, 2002; Allen et al., 2007; Long and Singh, 2012a) or two-source models (Shuttleworth and Wal-1 

lace, 1985; Norman et al., 1995; Xin and Liu, 2010; Zhu et al., 2013). (2) Penman-Monteith models 2 

are used to calculate LE by using the Penman-Monteith equation and numerous surface resistance 3 

parameterization schemes that control the diffusion of evaporation from soil surfaces and transpira-4 

tion from plant canopies. These two-source Penman-Monteith models separate soil evaporation 5 

from plant transpiration (Cleugh et al., 2007; Mu et al., 2011; Leuning et al., 2008; Chen et al., 2013; 6 

Sun et al., 2013; Mallick et al., 2015). (3) Land surface temperature-vegetation index (LST-VI) space 7 

methods assign the dry and wet edges of the LST-VI feature space as minimum and maximum ET, 8 

respectively. These methods interpolate the media, and use the Penman-Monteith or Priestley-Taylor 9 

equation to calculate the LE (Jiang and Islam, 1999, 2001; Sun et al., 2011; Long and Singh, 2012b; 10 

Yang and Shang, 2013; Fan et al., 2015; Zhang et al., 2005). (4) Priestley-Taylor models expand the 11 

range of the Priestley-Taylor coefficient in the Priestley-Taylor equation (Jiang and Islam, 2003; Jin 12 

et al., 2011) or combine the physiological force factors with the energy component of ET (Fisher et 13 

al., 2008; Yao et al., 2013). (5) Additional methods include empirical/statistical methods (Wang and 14 

Liang, 2008; Yebra et al., 2013) and the use of complementary based models (Venturini et al., 2008) 15 

and land-process models with data assimilation schemes (Bateni and Liang, 2012; Xu et al., 2015). 16 

If the operational algorithm can be described as a linear combination of inputs, or if the surface 17 

variables and landscapes are homogeneous at the pixel scale, scale error does not exist (Hu and 18 

Islam, 1997). However, it is difficult to develop linear operational models due to the complexity of 19 

mass and heat transfer processes between the atmosphere and land surface. ET estimation models 20 

have been generally developed for simple and homogeneous surface conditions. However, hetero-21 

geneity is a natural attribute of the surface of the Earth. Therefore, larger spatial scale errors occur 22 

when these remotely sensed models are applied to calculate the regional ET using satellite data. 23 

In previous studies, researchers have coupled high- and low-resolution satellite data and statis-24 

tically quantified the inhomogeneity of mixed pixels to correct the scale error in ET estimations 25 

using (1) temperature downscaling, which converts images from a lower (coarser) to higher (finer) 26 

spatial resolution using statistical-based models with regression or stochastic relationships among 27 

parameters (Kustas et al., 2003; Norman et al., 2003; Cammalleri et al., 2013; Ha et al., 2013), (2) 28 

the correction-factor method, which uses sub-pixel landscapes information to determine the correc-29 

tion factor of scale bias (Maayar and Chen, 2006) and (3) the area-weighting method, which calcu-30 

lates roughness length and sensible heat flux based on sub-pixel landscapes (Xin et al., 2012). These 31 

correction methods mainly focus on two problems: inhomogeneity of landscapes and inhomogene-32 

ity of surface variables. 33 

Studies have shown that different landscapes (Blyth and Harding, 1995; Moran et al., 1997; 34 

Bonan et al., 2002; McCabe and Wood, 2006) and the sub-pixel variations of surface variables, such 35 

as stomatal conductance (Bin and Roni, 1994), or leaf area index (Bonan et al., 1993; Maayar and 36 

Chen, 2006), can cause errors in turbulent heat flux estimations. Surface variables inhomogeneity 37 

is rather difficult to evaluate, as the sub-pixel variation of surface variables can be large, even in the 38 

pure pixels. For example, generally, temperatures over land surfaces vary strongly in space and time, 39 

and it is common for the LST to vary by more than 10 K over just a few centimeters of distance or 40 

by more than 1 K in less than a minute over certain cover types (Li et al., 2013b). However, in case 41 

of mixed pixels, surface variables such as land surface temperature are commonly considered as a 42 

single value to represent the entire pixel area in ET estimation models, which results in large errors. 43 

The focus of this study is on the effects of surface heterogeneity when estimating ET. Based 44 
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on the satellite products that are currently available, three methods were used to analyze the uncer-1 

tainties produced by surface heterogeneity: (1) input parameter upscaling (IPUS) does not consider 2 

the surface heterogeneities at all. It was designed to simulate the satellites that have identical spatial 3 

resolutions both the visible near-infrared (VNIR) and thermal infrared (TIR) bands; (2) temperature 4 

resampling and flux aggregation (TRFA) does not consider the heterogeneity of LST; and (3) tem-5 

perature sharpening and flux aggregation (TSFA) considers all the surface heterogeneities. These 6 

methods were designed for use with the majority of satellite data or products that have inconsistent 7 

spatial resolutions between the VNIR and TIR bands, such as the Landsat and HJ-1B satellites. 8 

The surface variables in this paper were mainly derived from HJ-1B satellite data. The Chinese 9 

HJ-1A/B satellites were launched on September 6, 2008, and were designed for disaster and envi-10 

ronmental monitoring, as well as other applications. The HJ-1B satellites are equipped with two 11 

charge-coupled device (CCD) cameras and one infrared scanner (IRS) with spatial resolutions of 30 12 

m and 300 m, respectively. Compared to high-temporal-resolution satellite data, such as the MODIS 13 

satellite data, or high-spatial resolution satellite data, such as the Landsat 7 or 8 satellites data, HJ-14 

1B data has the advantage of a high spatiotemporal resolution. Since the satellites were launched, 15 

the HJ-1/CCD time series data have been widely used in China to accurately classify land cover 16 

(Zhong et al., 2014a) and monitor various environmental disasters (Wang et al., 2010). Land-based 17 

variables, such as leaf area index (LAI), land surface temperature (LST), and downward longwave 18 

radiation (Ld), have been retrieved by the HJ-1 satellites using algorithms developed by Chen et al. 19 

(2010), Li et al. (2010a, 2011a) and Yu et al. (2013), respectively. These variables lay the foundation 20 

for ET research. 21 

Although the HJ-1B satellites provide CCD data with a high spatial resolution of 30 m, the 22 

spatial resolution of the thermal infrared (TIR) band is only 300 m. Thus, surface heterogeneity 23 

effects must be considered when estimating the heat flux.  24 

2. Methodology 25 

2.1. Temperature-sharpening method based on statistical relationships 26 

Surface thermal dynamics affect ET. The spatial resolution of TIR images is usually not as high 27 

as the spatial resolution of visible near-infrared (VNIR) bands because the energy of VNIR photons 28 

is higher than the energy of thermal photons. Thus, the inhomogeneity of TIR images would be 29 

larger than the inhomogeneity of VNIR images. Since the land surface temperature is calculated 30 

from the TIR band, the uncertainty of the variables becomes unpredictable when the inhomogeneity 31 

of TIR images is enhanced. Therefore, land surface temperature data should be derived with a high 32 

spatial resolution. 33 

The land surface temperature can be reconstructed at the spatial resolution of the VNIR images 34 

by using a statistical temperature-sharpening strategy proposed by Kustas et al. (2003). This method 35 

assumes that the negative correlation between the Normalized Difference Vegetation Index (NDVI) 36 

and LST is invariant. The NDVI reflects vegetation growth and coverage, and the LST reflects sur-37 

face thermal dynamics. The LST decreases with increasing vegetation cover. The scatter plot be-38 

tween the LST and NDVI values forms a feature space that is applicable at different scales when 39 

sufficient number of pixels exist. 40 

HJ-1B satellite images can provide vegetation and thermal information at spatial resolutions of 41 

30 m and 300 m, respectively. The 300 m resolution thermal data cannot sufficiently distinguish the 42 
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surface temperatures of small targets within pixels. However, this issue can be addressed by tem-1 

perature sharpening based on the functional relationship between NDVI and LST. A flowchart of 2 

temperature sharpening is shown in Fig. 1, and LST at the NDVI pixel resolution can be derived 3 

based on the following steps (Kustas et al., 2003): 4 

(1) The NDVI30 is aggregated to 300 m NDVI (NDVI300). Then, the NDVI300 is divided into 5 

three classes (0 ≤ NDVI300 < 0.2, 0.2 ≤ NDVI300 < 0.5 and 0.5 ≤ NDVI300). 6 

(2) A subset of pixels is selected from the scene where the NDVI is as homogeneous as possible 7 

at a pixel resolution of 300 m based on the coefficient of variation (CV). The CVs are calculated 8 

using the original 30 m NDVI data (NDVI30) as follows: 9 

 CV =
STD

mean
 (1) 10 

where STD and mean are the standard deviation and the average values of 10×10 pixels of NDVI30, 11 

respectively. The CVs are sorted from smallest to largest. Lower CVs corresponds to more homo-12 

geneous land surface values, and a threshold should be determined to guarantee that a sufficient 13 

number of pixels is available for least squares fitting between NDVI300 and T300. Therefore, the 14 

fractions of 25% of the lowest CVs are selected from each class. 15 

(3) A least squares expression is established between NDVI300 and T300 using the selected 16 

pixels. 17 

 T̂300(NDVI300) = a + b × NDVI300 + c × NDVI300
2  (2) 18 

 19 

Figure 1. Flowchart of temperature sharpening. 20 

(4) For each 30 m pixel within a 300 m pixel, T̂30 can be calculated according to Eq. (2) as 21 

follows: 22 

 T̂30(NDVI30) = a + b × NDVI30 + c × NDVI30
2 + ∆T̂300 (3)  23 

where ∆T̂300 = T300 − T̂300 is the deviation between the regressed temperature and the tempera-24 

ture that was observed by the satellite at 300 m.  25 

2.2. Area-weighting method based on landscape information 26 

Coarse pixels are inhomogeneous because various types of land use may be included. Using a 27 

dominant type to represent such a large landscape is irrational. The spatial resolution of LST is 28 

significantly increased by temperature sharpening in section 2.1. Consequently, all inputs of ET 29 
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algorithms can be obtained at high spatial resolutions. Then, inhomogeneity issues can be greatly 1 

diminished by dividing the landscape into finer pixels. 2 

Combined with a high-resolution classification map, sub-pixel scale parameters can be used in 3 

the ET algorithm, which is more rational than using a dominant class type because different land-4 

scapes may require different ET algorithms. The surface energy fluxes can be averaged linearly due 5 

to the conservation of energy (Kustas et al., 2003), and a simple average that calculates the arithme-6 

tic mean over sub-pixels is the best choice for flux upscaling (Ershadi et al., 2013b). Thus, the 7 

aggregated flux at a low resolution F(x, y) is the arithmetic mean of all the n × n sub-pixel fluxes 8 

that constitute the contributing flux F(xi, yj) at coordinate (xi, yj): 9 

 F(x, y) =
1

n×n
∑ ∑ F(xi, yj)

n
j=1

n
i=1  (4) 10 

Because the average of the sub-pixels fluxes is equal to the area-weighted sum of each land-11 

type result, the final coarse result can be derived from the area-weighted sum of each land type 12 

result within the landscape. The main steps in the area-weighting process are shown below (Xin et 13 

al., 2012): 14 

(1) Geometric correction and registration of the VNIR and TIR input datasets. 15 

(2) Count the area ratios of different land cover types within each pixel of a low-spatial-reso-16 

lution classification image. 17 

(3) According to the fine-classification data, different parameterization schemes can be used in 18 

the ET algorithm to calculate the sub-pixel flux, such as the net radiation (Rn), soil heat flux (G) and 19 

sensible heat flux (H). 20 

(4) To calculate the regional flux, the flux of the large pixel is calculated by the area-weighting 21 

method as follows: 22 

 F = ∑ wi ∙ Fi
n
i=1  (5) 23 

where wi is the fractional area contributing flux Fi of class type i and F is the aggregated flux 24 

at the coarse resolution. The LE is computed as a residual of the surface energy balance in the TSFA 25 

(see section 2.3) process, in which a high-spatial resolution image is used to reduce the number of 26 

mixed pixels. 27 

2.3. Pixel ET algorithm 28 

The surface energy balance describes the energy between the land surface and atmosphere. The 29 

energy budget is commonly expressed as follows: 30 

 Rn = LE + H + G (6) 31 

where Rn is the net radiation, G is the soil heat flux, H is the sensible heat flux, and LE is the 32 

latent heat flux absorbed by water vapor when it evaporates from the soil surface and transpires 33 

from plants through stomata. The widely used one-source energy balance model considers a homo-34 

geneous SPAC medium and ignores the inhomogeneity and structure. In this case, LE can be ex-35 

pressed as follows: 36 

  LE =
ρcp

γ
∙

es−ea

ra+rs
 (7) 37 

where γ is the psychometric constant; es and ea are the aerodynamic saturation vapor pressure 38 

and atmospheric water vapor pressure, respectively; and ra and rs are the water vapor transfer 39 

aerodynamic resistance and surface resistance, respectively. Surface resistance includes soil re-40 
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sistance and canopy resistance. The surface resistance is influenced by the physiological character-1 

istics of the vegetation and the water supply of roots. Thus, it is difficult to obtain surface resistance 2 

via remote sensing, and surface resistance is highly uncertain, particularly over heterogeneous sur-3 

faces. To avoid error introduced by the uncertainty of the surface resistance, LE is computed as a 4 

residual of the surface energy balance equation.  5 

Rn is the difference between incoming and outgoing radiation and is calculated as follows: 6 

 Rn = Sd(1 − α) + εsLd − εsσTrad
4

 (8) 7 

where Sd  is the downward shortwave radiation, α is the surface broadband albedo, εs  is the 8 

emissivity of the land surface, Ld is the downward atmospheric longwave radiation, σ = 5.67 ×9 

10−8W ∙ m−2 ∙ K−4 is the Stefan-Boltzmann constant and Trad is the surface radiation tempera-10 

ture. 11 

G is commonly estimated using the empirical relationship with Rn. Because the canopy exerts 12 

a significant influence on G, the fractional canopy coverage FVC is used to determine the ratio of 13 

G to Rn as follows: 14 

 G = Rn × [Γc + (1 − FVC) × (Γs − Γc)] (9)  15 

where Γs is 0.315 for bare soil and Γc is 0.05 for a full vegetation canopy (Su, 2002). H is the 16 

transfer of turbulent heat between the surface and atmosphere, which is driven by a temperature 17 

difference and controlled by resistances that depend on local atmospheric conditions and land cover 18 

properties (Kalma et al., 2008). According to gradient diffusion theory, the equation for H is as 19 

follows: 20 

 H = ρcp
Taero−Ta

ra
 (10) 21 

where ρ is the density of the air; cp is the specific heat of the air at a constant pressure; Taero is 22 

the aerodynamic surface temperature obtained by extrapolating the logarithmic air temperature pro-23 

file to the roughness length for heat transport; Ta is the air temperature at a reference height; and 24 

ra is the aerodynamic resistance, which influences the heat transfer between the source of the tur-25 

bulent heat flux and the reference height. Aerodynamic resistance was calculated based on the 26 

Monin-Obukhov similarity theory (MOST) using a stability correction function (Paulson, 1970; 27 

Ambast et al., 2002). The zero-plane displacement height, d, and roughness length, z0m, were pa-28 

rameterized by the schemes proposed by Choudhury and Monteith (1988). 29 

In this approach, H must be accurately estimated. However, calculating H using Eq. (10) is 30 

difficult. Because remote sensing cannot obtain Taero, the value of Taero is generally replaced with 31 

the radiative surface temperature Trad, which is not always equal to Taero. The difference between 32 

these terms for homogeneous and full-coverage vegetation is approximately 1-2℃ (Choudhury et 33 

al., 1986), and it can reach 10℃ in sparsely vegetative areas (Kustas, 1990). The method that cor-34 

rects for this discrepancy adds “excess” resistance rex to ra. We used the brief method proposed 35 

by Chen (1988) to calculate rex: rex = 4/u∗. 36 

Fig. 2 shows the flowchart for merging ET retrieval and temperature sharpening based on HJ-37 

1B satellites. 38 
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 1 

Figure 2. Flowchart of ET retrieval using the “Temperature Sharpening and Flux Aggregation” method. 2 

The spatial scale effect is generally revealed by a discrepancy between different upscaling 3 

methods. In one method, parameters are upscaled to a large scale before calculating the heat flux. 4 

In the other method, heat flux is calculated at a small scale, and the results are then upscaled. In this 5 

study, the resolution of the final output result is 300 m. To evaluate the heterogeneity reducing effect 6 

of TSFA, two other upscaling methods called IPUS and TRFA were implemented (see Fig. 3). In 7 

the case of IPUS, the inputs of the energy balance model are first retrieved at 30 m resolution (see 8 

section 3.2.1.1) and then aggregated to 300 m resolution. Subsequently, these 300 m inputs are used 9 

in the one-source energy balance model to obtain the four energy balance components at 300 m 10 

resolution. In TRFA, the LST at 300 m is first resampled to 30 m using the nearest neighbour method 11 

and the 30 m resolution inputs are used for estimating ET. The outputs of the four energy-balance 12 

components of the TRFA are obtained using the area-weighting method shown in section 2.2. 13 

 14 
Figure 3. Flowchart of the three upscaling methods for retrieving evapotranspiration 15 

3. Study area and Dataset 16 

3.1. Study area 17 

Our study was conducted in the middle stream of the Heihe River Basin (HRB), which is lo-18 

cated near the city of Zhangye in the arid region of Gansu Province in northwestern China 19 
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(100.11°E-100.16°E, 39.10°N-39.15°N). The middle reach of the HRB is a typical desert-oasis ag-1 

riculture ecosystem dominated by maize and wheat. Areas of the Gobi Desert and the alpine vege-2 

tation in the Qilian Mountains are located near the study area (see Fig. 4). The artificial oasis is 3 

highly heterogeneous, which impacts the thermal-dynamics and hydraulic features. Consequently, 4 

the water use efficiency and ET are variable. The Heihe River Basin has long served as a test bed 5 

for integrated watershed studies, as well as land surface and hydrological experiments. Comprehen-6 

sive experiments, such as the Watershed Allied Telemetry Experimental Research (WATER) project 7 

(Li et al., 2009), and an international experiment - the Heihe Basin Field Experiment (HEIFE) as 8 

part of the World Climate Research Programme (WCRP), have been conducted in this basin. One 9 

major objective of HiWATER was to capture the strong land surface heterogeneities and associated 10 

uncertainties within a watershed (Li et al., 2013a). 11 

 12 

Figure 4. Study area and distribution of EC towers in HiWATER-MUSOEXE 13 

3.2. Dataset 14 

In this study, data are mainly derived from the HJ-1B satellite. We combined these data with 15 

ancillary data and in situ “Multi-Scale Observation Experiment on Evapotranspiration over hetero-16 

geneous land surfaces of The Heihe Watershed Allied Telemetry Experimental Research” (Hi-17 

WATER-MUSOEXE) data to estimate and validate the HJ-B land surface variables and heat fluxes. 18 

3.2.1. Remote sensing data 19 

3.2.1.1. HJ-1B satellite data 20 

The specifications of HJ-1B are shown in Table 1. The satellite has quasi-sun-synchronous 21 

orbits at an altitude of 650 km, a swath width of 700 km and a revisit period of 4 days. Combined, 22 

the revisit period of the satellites is 48 h. Because HJ-1 CCDs lack an onboard calibration system, 23 

cross-calibration methods were proposed to calibrate the CCD instruments (Zhang et al., 2013; 24 

Zhong et al., 2014b). The image quality of the HJ-1A/B CCD is stable, the performances of each 25 
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band are balanced (Zhang et al., 2013) and the radiometric performance of the HJ-1A/B CCD sen-1 

sors is similar to the performances of the Landsat-5 TM, Observer-1 (EO-1) Advanced Land Imager 2 

and Terra ASTER. The image quality of the HJ-1 CCD is very similar to the image quality of Land-3 

sat-5 TM (Jiang et al., 2013). In addition, the accuracy of the TIR band’s onboard calibration meets 4 

the land surface temperature retrieval requirements but not the sea surface temperature retrieval 5 

requirements (Li et al., 2011b). The Center for Resources Satellite Data and Application (CRESDA) 6 

in China releases calibration coefficients annually on its website (http://www.cresda.com). These 7 

data are freely available from the CRESDA website (http://218.247.138.121/DSSPlatform/in-8 

dex.html). 9 

Table 1. Specifications of the HJ-1B main payloads 10 

Sensor Band Spectral range (µm) Spatial resolution (m) Swath width (km) Revisit time (days) 

CCD 

1 0.43-0.52 

30 
360 (single) 

700 (two） 
4 

2 0.52-0.60 

3 0.63-0.69 

4 0.76-0.90 

IRS 

5 0.75-1.10 

150 
720 4 

6 1.55-1.75 

7 3.50-3.90 

8 10.5-12.5 300 
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Figure 5. Flowchart of land surface variable retrieval. The abbreviations are defined as follows: SZA: solar zenith 12 

angle; SAA: solar azimuth angle; VZA: view zenith angle; AOD: aerosol optical depth; ABT: at-nadir brightness 13 

temperature; Sd: downward shortwave radiation; USR: upward shortwave radiation, ULR: upward longwave radia-14 

tion; and Ld: downward longwave radiation. 15 

We used the HJ-1B satellite data from the HRB region in 2012. Because many variable-retriev-16 

ing algorithms require clear-sky conditions when calculating ET, we combined data quality infor-17 

mation with visual interpretation to select satellite images without clouds. Considering the period 18 

of ground observations discussed in section 3.2.2, we obtained data for 11 days: June 19, June 30, 19 

July 8, July 27, August 2, August 15, August 22, August 29, September 2, September 13 and Sep-20 

tember 14. 21 

The HJ-1B satellite data of the HRB were pre-processed, including geometric correction, radi-22 

ometric calibration, and atmospheric correction. The following surface variables are needed in Eqs. 23 

(1) to (10): downward shortwave radiation, downward longwave radiation, emissivity, albedo, frac-24 

tional vegetation coverage (FVC), cloud mask data, meteorological data, LAI and LST. Fig. 5 illus-25 

trates a flowchart of the retrieval of these variables. 26 

(1) Surface albedo. According to the algorithm proposed by Liang et al. (2005) and Liu et al. 27 

(2011a), surface albedo was obtained from the top of the atmosphere (TOA) reflectance by the HJ-28 
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1 satellite using a lookup table based on an angular bin regression relationship. The surface albedo 1 

and bidirectional reflectance distribution function (BRDF) of the HJ-1 satellite in the regression 2 

procedure were monitored using POLDER-3/PARASOL BRDF datasets, and BRDF was used to 3 

obtain the TOA reflectance in the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) 4 

radiation transfer mode. 5 

(2) NDVI, FVC and LAI. The NDVI is the regression kernel of the temperature-sharpening 6 

procedure and is used to calculate the FVC. Atmospherically corrected surface reflectance values 7 

were used to calculate the NDVI as follows: 8 

 NDVI =
ρnir−ρred

ρnir+ρred
 (11) 9 

and 10 
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 FVC =
NDVI−NDVIs

NDVIv+NDVIs
 (12) 12 

where ρnir  and ρred  are the reflectances in the near-infrared and red band, respectively, and 13 

NDVIv and NDVIs are the fully vegetated and bare soil NDVI values, respectively. As an im-14 

portant input for the parameterization of surface roughness length and aerodynamic resistance, the 15 

LAI was determined using the following equation (Nilson, 1971): 16 

 P(θ) = e−G(θ)∙Ω∙LAI/cos(θ) (13) 17 

 P(θ) = 1 − FVC (14) 18 

where θ is the zenith angle, P(θ) is the angular distribution of the canopy gap fraction, G(θ) is 19 

the projection coefficient (0.5) and Ω is the total foliage clumping index, which can be obtained 20 

from the GLC global clumping index database according to the land use type (He et al., 2012). 21 

(3) Land surface emissivity (LSE). LSE is needed to calculate the Rn and is extremely im-22 

portant for retrieving LST. In this paper, LSE was calculated using the FVC as follows (Valor and 23 

Caselles, 1996): 24 

 ε = εv ∙ FVC + εg(1 − FVC) + 4 < 𝑑𝜀 >∙ FVC ∙ (1 − FVC) (15) 25 

where ε is the LSE, < 𝑑𝜀 > is an effective value of the cavity effect of emissivity, the mean dε 26 

of all vegetation species in this study is <dε>=0.015, εv and εg are the vegetation and ground 27 

emissivity, respectively. 28 

(4) Land surface temperature. A single-channel parametric model for retrieving LST based on 29 

HJ-1B/IRS TIR data developed by Li et al. (2010a) was employed to obtain the LST. This model 30 

was developed from a parametric model based on MODTRAN4 using NCEP atmospheric profile 31 

data. 32 

(5) Downward shortwave radiation. In this study, the algorithm proposed by Li et al. (2010b) 33 

was applied. MOD05, TOMS, aerosol and solar angle data were used to estimate the direct light 34 

flux and diffuse light flux using a lookup table that was generated via the 6S radiation transfer mode 35 

(Vermote et al., 2006). This method considered the influences of complex terrain, and a topographic 36 

correction was performed by using products of the ASTER digital elevation model (DEM). 37 

(6) Downward longwave radiation (Ld). The TOA brightness temperature of the HJ-1B thermal 38 

channel was used to substitute the atmospheric effective temperature. Effective atmospheric emis-39 

sivity was parameterized as an empirical function of the water vapor content. These values were 40 

substituted for atmospheric temperature and atmospheric emissivity to estimate the value of Ld. 41 

Because this Ld retrieval method proposed by Yu et al. (2013) was only valid for clear-sky conditions, 42 
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cloud masking information was used to determine clear skies. When cloud contamination existed in 1 

the image, the brightness temperature was relatively low, causing the Ld to be lower than that in the 2 

cloudless images. 3 

3.2.1.2. Ancillary data 4 

Ancillary data were used because the bands of the satellite could not invert all of the variables 5 

needed to retrieve ET. 6 

(1) Atmospheric water vapor data. MODIS provides water vapor data (MOD05), including a 7 

1-km near-infrared product and a 5-km thermal-infrared product, every day. The 1-km near-infrared 8 

water vapor product was used to retrieve Ld in this study. 9 

(2) Surface elevation data. We used the 30 m resolution Global Digital Elevation Model 10 

(GDEM) based on ASTER, which covers 83°N–83°S, to derive Sd. 11 

(3) Atmosphere ozone data. A Total Ozone Mapping Spectrometer (TOMS), which was carried 12 

on an Earth Probe (EP) satellite, was used to derive Sd. The TOMS-EP provided daily global at-13 

mospheric ozone data at a resolution of 1°×1.25° (Li et al., 2010b). 14 

(4) Atmosphere profile data. Global reanalysis data from the National Centers for Environmen-15 

tal Prediction (NCEP) were used to derive LST. These data were generated globally every 6 hours 16 

(0:00, 06:00, 12:00, 18:00 UTC) for every 1° of latitude and longitude (Li et al., 2010a). 17 

3.2.2. HiWATER experiment dataset 18 

The in situ HRB observation data were provided by HiWATER. From June to September 2012, 19 

HiWATER designed nested observation matrices over 30 km×30 km and 5.5 km×5.5 km within the 20 

middle stream oasis in Zhangye to focus on the heterogeneity of the scale effect in HiWATER-21 

MUSOEXE. 22 

In the larger observation matrix, four eddy covariance (EC) systems and one superstation were 23 

installed in the oasis–desert ecosystem. Each station was supplemented with an automatic meteor-24 

ological station (AMS) to record meteorological and soil variables and monitor the spatial–temporal 25 

variations of ET and its associated factors (Li et al., 2013a). The station information is shown in 26 

Table 2, and the distribution of the stations is shown in Fig. 4. Within the artificial oasis, an obser-27 

vation matrix composed of 17 EC towers and ordinary AMSs exists where the superstation was 28 

located. The land surface was heterogeneous and dominated by maize, maize inter-cropped with 29 

spring wheat, vegetables, orchards and residential areas (Li et al., 2013a). Because the EC16 and 30 

HHZ stations lacked Rn and G observation data, they were excluded from this study. 31 

Table 2. The in situ HiWATER-MUSOEXE station information 32 

Station Longitude (°) Latitude (°) Tower height (m) Altitude (m) Land cover 

EC1 100.36E 38.89N 3.8 1552.75 vegetation 

EC2 100.35E 38.89N 3.7 1559.09 maize 

EC3 100.38E 38.89N 3.8 1543.05 maize 

EC4 100.36E 38.88N 4.2 1561.87 building 

EC5 100.35E 38.88N 3 1567.65 maize 

EC6 100.36E 38.87N 4.6 1562.97 maize 

EC7 100.37E 38.88N 3.8 1556.39 maize 

EC8 100.38E 38.87N 3.2 1550.06 maize 
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EC9 100.39E 38.87N 3.9 1543.34 maize 

EC10 100.40E 38.88N 4.8 1534.73 maize 

EC11 100.34E 38.87N 3.5 1575.65 maize 

EC12 100.37E 38.87N 3.5 1559.25 maize 

EC13 100.38E 38.86N 5 1550.73 maize 

EC14 100.35E 38.86N 4.6 1570.23 maize 

EC15 100.37E 38.86N 4.5 1556.06 maize 

EC17 100.37E 38.85N 7 1559.63 orchard 

GB 100.30E 38.91N 4.6 1562 uncultivated land-Gobi 

SSW 100.49E 38.79N 4.6 1594 uncultivated land-desert 

SD 100.45E 38.98N 5.2 1460 swamp land 

The ground observation data included the H and LE. Reliable methods were used to ensure the 1 

quality of the turbulent heat flux data. Before the main campaign, an intercomparison of all instru-2 

ments was conducted in the Gobi Desert (Xu et al., 2013). After basic processing, including spike 3 

removal and corrections for density fluctuations (WPL correction), a four-step procedure was per-4 

formed to control the quality of the EC data. In this procedure, data were rejected when (1) the 5 

sensor had been malfunctioning, (2) precipitation occurred within 1 h before or after collection, (3) 6 

the ratio of missing data was greater than 3% in the 30 min raw record and (4) the friction velocity 7 

was below 0.1 ms-1 at night (for more details see Liu et al., 2011b; Xu et al., 2013; Liu et al., 2016). 8 

EC outputs are available every 30 min. G was measured by using three soil heat plates at a depth of 9 

6 cm at each site, and the surface G was calculated using the method proposed by Yang and 10 

Wang(2008) based on the soil temperature and moisture above the plates. Surface meteorological 11 

variables, such as wind speed, wind direction, relative humidity and air pressure, were used to in-12 

terpolate images using the inverse distance weighting. Researchers can obtain these data from the 13 

websites of the Cold and Arid Regions Science Data Center at Lanzhou (http://card.westgis.ac.cn/) 14 

or the Heihe Plan Data Management Center (http://www.heihedata.org/). 15 

Energy imbalances are common in ground flux observations. The conserving Bowen ratio 16 

(H/LE) and residual closure technique are often used to force the energy balance. Computing the 17 

LE as a residual variable may be a better method for energy balance closure under conditions with 18 

large LEs (small or negative Bowen ratios due to strong advection) (Kustas et al., 2012). Thus, the 19 

residual closure method was applied because the “oasis effect” was distinctly observed in the desert-20 

oasis system on clear days during the summer (Liu et al., 2011b). 21 

4. Results and analysis 22 

4.1. Evaluation of surface variables 23 

To control model inputs and analyse error sources, the coarse-resolution land surface temper-24 

ature, downward shortwave radiation, downward longwave radiation, Rn and G were evaluated 25 

using in situ data.  26 

The ground-based land surface temperature, Ts, was calculated using the Stefan-Boltzman 27 

Law from the AMS measurements of the longwave radiation fluxes (Li et al., 2014) as follows: 28 

 Ts = [
L↑−(1−εs)∙L↓

εs∙σ
]

1

4
 (16) 29 

in which L↑ and L↓ are in situ surface upwelling and atmospheric downwelling longwave radiation, 30 
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respectively, and εs is the surface broadband emissivity, which is regarded as the pixel value of the 1 

HJ-1B at the AMS. The coefficient of determination R2, mean bias error (MBE) and root mean 2 

square error (RMSE) of the LST are 0.71, -0.14 K and 3.37 K, respectively. As shown in Table 3, 3 

the accuracy of EC4 is low. The main causes of the large errors are as follows: (1) buildings and 4 

soil/vegetation are distinct materials, the LSE algorithm may not be suitable for buildings and (2) 5 

the EC4 foundation is non-uniform and is not suitable for validation. After removing the EC4 data, 6 

the R2, MBE and RMSE values of the LSTs were 0.83, 0.69 K and 2.51 K, respectively. The LST 7 

errors of SSW and SD were large due to large errors on particular days. For example, although it 8 

was briefly cloudy above station SSW on July 27, this area was not identified as cloudy in the cloud 9 

detection process. 10 

Table 3. The station validation results of land surface temperature 11 

Station R2 MBE (K) 
RMSE 

(K) 
Station R2 MBE (K) RMSE (K) 

EC1 0.82  0.18  1.74  EC11 0.42  1.59  2.98  

EC2 0.82  0.59  1.54  EC12 0.87  0.62  1.51  

EC3 0.69  0.38  1.90  EC13 0.83  0.44  1.48  

EC4 0.83  -9.87  10.04  EC14 0.73  1.43  2.44  

EC5 0.83  1.71  2.34  EC15 0.74  1.53  2.41  

EC6 0.61  0.30  2.44  EC17 0.78  1.20  2.32  

EC7 0.82  0.39  1.40  GB 0.69  0.12  2.33  

EC8 0.83  0.45  1.55  SSW 0.59  1.38  3.82  

EC9 0.63  2.31  3.15  SD 0.76  -3.83  4.84  

EC10 0.68  1.32  2.45      

The R2, MBE and RMSE values of Sd were 0.81, 13.80 W∙m-2, and 25.35 W∙m-2, respectively. 12 

The station validation results are shown in Table 4. The accuracy of SSW is low. Because cloudy 13 

conditions occurred briefly on July 27, few ground observations were obtained, and Sd was signif-14 

icantly overestimated. After removing these data, the R2, MBE and RMSE values of Sd at SSW 15 

were 0.87, 10.90 W∙m-2 and 21.13 W∙m-2, respectively.  16 

Table 4. The station validation results of downward shortwave radiation 17 

Station R2 
MBE 

(W∙m-2) 

RMSE 

(W∙m-2) 
Station R2 

MBE 

(W∙m-2) 

RMSE 

(W∙m-2) 

EC1 0.97  25.23  27.73  EC11 0.90  30.11  33.76  

EC2 0.84  28.29  33.57  EC12 0.96  24.35  26.43  

EC3 0.97  17.56  19.25  EC13 0.93  12.41  17.92  

EC4 0.98  6.07  9.34  EC14 0.98  32.40  33.49  

EC5 0.98  10.60  12.29  EC15 0.94  26.71  29.71  

EC6 0.93  27.68  30.71  EC17 0.94  -20.25  24.54  

EC7 0.89  -17.69  27.59  GB 0.89  25.34  30.63  

EC8 0.83  15.63  25.50  SSW 0.63  18.51  34.93  

EC9 0.96  -2.27  9.96  SD 0.98  5.70  13.82  

EC10 0.94  -3.50  11.97      

The R2, MBE and RMSE values of the HRB Ld were 0.73, 0.28 W∙m-2, and 21.24 W∙m-2, 18 

respectively. As seen in Table 5, the accuracies at EC3, SD and SSW were low. The low accuracies 19 
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at EC3 and SD potentially resulted from (1) high humidity, which resulted in low at-nadir brightness 1 

temperatures and low retrieved Ld, or (2) instrument error, which occurred because the EC3 ground 2 

observations were always greater than those of the other stations during the same period. Although 3 

SSW was located in a desert, the ground-air temperature difference was large. The Ld retrieval may 4 

have a large error because the models use surface temperature when estimating Ld to approximate 5 

or substitute the near-surface temperature (Yu et al., 2013). The corrected error of our Ld retrieving 6 

algorithm resulted from the ground-air temperature difference in non-vegetated areas. The inaccu-7 

racy of the SSW LST may influence the Ld results. 8 

Table 5. The station validation results of downward longwave radiation 9 

Station R2 
MBE 

(W∙m-2) 

RMSE 

(W∙m-2) 
Station R2 

MBE 

(W∙m-2) 

RMSE 

(W∙m-2) 

EC1 0.85  4.16  17.21  EC11 0.93  -2.72  10.55  

EC2 0.88  0.11  14.23  EC12 0.87  -0.84  14.80  

EC3 0.91  -35.65  37.88  EC13 0.86  -7.28  15.98  

EC4 0.88  3.36  16.38  EC14 0.82  4.07  16.42  

EC5 0.88  -0.79  15.02  EC15 0.85  17.67  23.06  

EC6 0.84  2.55  15.43  EC17 0.90  -1.11  12.87  

EC7 0.75  -5.90  19.72  GB 0.88  9.50  27.82  

EC8 0.80  -1.35  17.49  SSW 0.85  25.33  34.50  

EC9 0.86  10.44  17.99  SD 0.85  -26.54  34.08  

EC10 0.87  7.98  16.05      

The R2, MBE and RMSE values of the HRB Rn were 0.70, -9.64 W∙m-2, and 42.77 W∙m-2, 10 

respectively. The station-validated results of Rn are shown in Table 6, which indicates that the 11 

accuracies of EC4, EC7, EC17 and SSW were relatively low. According to the sensitivity analysis 12 

of Eq. (8), Ld and Sd are highly sensitive variables when calculating Rn, while the albedo, LSE 13 

and LST are not as sensitive. Although LST was not a sensitive variable, the MBE and RMSE values 14 

of LST at EC4 reached -9.87 K and 10.04 K because the land cover of EC4 was maize at 300 m 15 

resolution. However, the observation tower was located in a built-up area, which potentially caused 16 

errors when estimating Rn. The accuracies of Sd and Ld at EC7 were low on several days, and 17 

MBE=-43.40 W∙m-2 and RMSE=50.50 W∙m-2 after removing these data. EC17 was located in an 18 

orchard, and the signal that was received by the sensors at EC17 was affected by the complex ver-19 

tical structure of the orchard ecosystem. The information of substrate plants may be ignored, leading 20 

to albedo retrieval errors. An albedo bias of 0.03 can lead to an Rn error of approximately 20 W∙m-21 

2 when the solar incoming radiation is large. As previously discussed, it was briefly cloudy on July 22 

27, and after removing those data, the R2, MBE and RMSE values of the Rn obtained at station 23 

SSW were 0.72, 8.20 W∙m-2, and 37.60 W∙m-2, respectively. 24 

Table 6. The station net radiation validation results 25 

Station R2 
MBE 

(W∙m-2) 

RMSE 

(W∙m-2) 
Station R2 

MBE 

(W∙m-2) 

RMSE 

(W∙m-2) 

EC1 0.76  -2.55  30.61  EC11 0.86  -15.13  28.05  

EC2 0.79  2.52  25.24  EC12 0.90  -8.46  19.38  

EC3 0.86  -35.84  42.97  EC13 0.88  -25.73  32.34  

EC4 0.84  76.64  80.25  EC14 0.90  4.23  18.18  
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EC5 0.85  -24.41  32.34  EC15 0.84  8.33  23.01  

EC6 0.82  4.35  23.44  EC17 0.89  -62.62  68.11  

EC7 0.61  -58.66  67.83  GB 0.77  -10.40  38.86  

EC8 0.83  -20.62  32.45  SSW 0.44  23.05  62.93  

EC9 0.87  -29.60  36.27  SD 0.75  19.98  35.24  

EC10 0.83  -24.35  33.51      

The R2, MBE and RMSE values of the G in the HRB were 0.57, 8.51 W∙m-2, and 29.73 W∙m-1 

2, respectively. The station-validated G results are shown in Table 7. At EC5, the soil temperature 2 

and moisture were the same at different depths after July 19, which resulted in a surface G that was 3 

equal to the G at a depth of 6 cm. G below the surface was usually less than the G at the soil surface; 4 

thus, the validation results of G at EC5 indicate that G was overestimated. At SSW, the brief cloudy 5 

period decreased the observed soil surface temperature, which decreased the calculated surface G. 6 

However, the remotely sensed G did not reflect this situation. In this case, the G was overestimated 7 

because the Rn was overestimated. After removing the data on July 27, the R2, MBE and RMSE 8 

values of the G at SSW were 0.17, 19.34 W∙m-2, and 33.30 W∙m-2, respectively. 9 

Table 7. The station validation results of the soil heat flux 10 

tation R2 
MBE 

(W∙m-2) 

RMSE 

(W∙m-2) 
Station R2 

MBE 

(W∙m-2) 

RMSE 

(W∙m-2) 

EC1 0.50  19.73  31.53  EC11 0.71  4.23  19.23  

EC2 0.24  20.78  28.72  EC12 0.53  20.29  24.79  

EC3 0.03  -1.15  36.28  EC13 0.91  -0.89  17.27  

EC4 0.45  18.50  22.29  EC14 0.82  -1.89  18.72  

EC5 0.38  41.87  60.19  EC15 0.78  6.68  15.80  

EC6 0.83  -5.91  14.57  EC17 0.49  8.26  33.59  

EC7 0.28  7.50  24.65  GB 0.29  -17.86  26.81  

EC8 0.68  -5.73  20.15  SSW 0.01  30.41  51.87  

EC9 0.61  6.83  26.96  SD 0.71  -4.79  13.71  

EC10 0.41  7.68  28.67      

4.2. Validation of heat fluxes by TSFA  11 

Fig. 6 provides the turbulent heat flux results calculated by TSFA on September 13, 2012. The 12 

spatial distribution of the turbulent heat flux is obvious. The H values of buildings and uncultivated 13 

land, including land patches in the Gobi region, barren areas and desert areas, were high, in addition 14 

to the LEs of water and agricultural areas in the oasis. The southern areas of the images show un-15 

cultivated barren land bordering the Qilian Mountains that resulted from snowmelt and the down-16 

ward movement of water. In these areas, the groundwater levels are high and the soil moisture con-17 

tent is approximately 30% based on in situ measurements at a depth of 2 cm. Therefore, the LE 18 

values of barren areas in the south are higher than the LE values of desert areas in the southeast, 19 

although both areas were classified as uncultivated land. 20 

Studies have shown that validation methods that consider the source area are more appropriate 21 

for evaluating ET models than traditional validation methods based on a single pixel (Jia et al., 2012; 22 

Song et al., 2012). In this study, a user-friendly tool presented by Neftel et al. (2008), which is based 23 

on the Eulerian analytic flux footprint model proposed by Kormann and Meixner (2001) was used 24 
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to calculate the footprints of the function parameters. The continuous footprint function was dis-1 

persed based on the relative weights of the pixels in which the source area was located. 2 

 3 

Figure 6. Maps of the four energy components, (a) Rn, (b) G, (c) H and (d) LE, calculated by TSFA on September 4 

13, 2012. 5 

 6 
Figure 7. Scatter plot of the TSFA turbulent heat flux results 7 

The footprint validation results of the TSFA turbulent heat fluxes are shown in Fig. 7 and Table 8 

8. The R2, MBE and RMSE of H were 0.61, 0.90 W∙m-2 and 50.99 W∙m-2, respectively, and those 9 

of LE were 0.82, -20.54 W∙m-2 and 71.24 W∙m-2, respectively. Because LE was calculated as a 10 

residual term, it was impacted by Rn, surface G and H. The errors of all inputs may contribute to 11 
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the LE, which complicates the error sources of the LE. These errors are discussed in detail in sec-1 

tions 4.3.2 and 4.4. 2 

Table 8. In situ validation results of heat flux using the TSFA 3 

 TSFA-H(W∙m-2) TSFA-LE(W∙m-2) 

Date R2 MBE RMSE R2 MBE RMSE 

0619 0.39  44.73  66.38  0.69  -44.15  80.60  

0630 0.73  23.71  38.96  0.88  -63.81  77.83  

0708 0.55  32.70  58.72  0.85  -43.02  72.32  

0727 0.90  -34.34  43.59  0.92  26.74  57.60  

0803 0.80  -4.77  18.92  0.78  -4.58  47.86  

0815 0.74  -18.37  38.82  0.93  4.75  35.41  

0822 0.40  31.64  66.21  0.65  -44.44  93.81  

0829 0.79  23.01  38.36  0.79  -50.45  77.99  

0902 0.21  -45.10  74.81  0.54  24.39  69.31  

0913 0.25  -9.64  41.01  0.59  -59.36  82.77  

0914 0.31  -34.11  50.88  0.47  27.99  67.50  

As shown in Fig. 7, the majority of the H values are small because June, July, August and 4 

September constitute the growing season when ET greatly cools the air. The temperature difference 5 

between the land surface and air is small, leading to a low H. The points with large H values are 6 

influenced by uncultivated land. In our study area, Gobi region, barren area and desert area comprise 7 

the uncultivated land. The points in the scatter plot with large H values represent desert, where the 8 

H values reach approximately 300 W∙m-2. Some points in the H scatter plot are less than 0 due to 9 

inversion from the “oasis effect” or irrigation. For example, the HiWATER soil moisture data show 10 

that irrigation occurred on August 22, 2012. Irrigation is the main source of water within the oasis 11 

and cools the land surface to temperatures below the air temperature. In addition, irrigation leads to 12 

errors in LST retrieval because it increases the atmospheric water vapor content, as discussed in 13 

section 4.1. The model error is further analyzed in section 4.4. 14 

4.3. Comparison between TSFA, TRFA and IPUS 15 

To verify whether the TSFA method can simulate the heterogeneity of the land surface, the 16 

TRFA and IPUS methods were also implemented for comparison purposes. These three methods 17 

were evaluated using (1) validation of TRFA and IPUS based on in situ measurements and (2) quan-18 

titative analysis based on the spatial distribution and scatter plots of the four energy balance com-19 

ponents. 20 

4.3.1. Validation of the TRFA and IPUS heat fluxes 21 

Table 9 provides the in situ validation results of H and LE calculated using the IPUS and TRFA 22 

methods. Compared to validation results of TSFA in Table 8, the TSFA produced a better retrieval 23 

accuracy than the TRFA, and the TRFA was better than the IPUS on all days and the MBE and 24 

RMSE values of TSFA decreased and the R2 of TSFA increased on most days. Table 9 shows that 25 

the improvements in accuracy between TRFA and IPUS were relatively larger than those between 26 

TSFA and TRFA. Compared to the IPUS results, the TRFA results were similar to the TSFA results 27 

because sub-pixel landscapes and sub-pixel variations of most variables were considered. Thus, 28 

TRFA effectively decreased the scale error that resulted from heterogeneity because the 30 m VNIR 29 
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data were fully used. However, the performance of the TRFA method is unstable. For example, on 1 

August 3 and August 29, the TRFA results were slightly worse than the IPUS results. This situation 2 

occurred because the different sub-pixel landscape temperatures were considered as equal to the 3 

values estimated at the 300 m resolution. Thus, when values of LST at 300 m scale have large 4 

retrieval errors, the turbulent heat flux retrieval error may be amplified by the sub-pixel landscapes. 5 

Table 9. In situ validation results of the turbulent heat fluxes of IPUS and TRFA 6 

 IPUS-H(W∙m-2) IPUS-LE (W∙m-2) TRFA-H (W∙m-2) TRFA-LE (W∙m-2) 

date R2 MBE RMSE R2 MBE RMSE R2 MBE RMSE R2 MBE RMSE 

0619 0.32  48.53  71.70  0.66  -47.68  86.02  0.39  52.28  70.98  0.65  -46.71  85.93  

0630 0.50  41.45  67.30  0.80  -81.75  102.33  0.69  42.64  60.85  0.86  -78.50  93.98  

0708 0.34  44.17  77.45  0.63  -66.75  118.63  0.44  54.20  76.00  0.82  -63.82  89.11  

0727 0.81  -33.14  50.01  0.83  25.61  74.26  0.84  -23.53  41.76  0.86  14.82  65.21  

0803 0.84  -5.23  33.50  0.74  -3.98  60.49  0.80  7.76  37.51  0.76  -18.23  62.71  

0815 0.64  -23.28  47.89  0.85  10.32  54.98  0.70  -14.77  39.99  0.89  0.59  45.22  

0822 0.31  41.50  74.81  0.61  -53.60  102.12  0.40  40.63  69.94  0.65  -54.17  98.97  

0829 0.72  27.15  44.16  0.76  -54.76  83.20  0.75  30.79  44.97  0.77  -59.43  86.22  

0902 0.28  -52.44  83.25  0.51  32.89  76.48  0.21  -45.77  75.84  0.52  24.37  71.69  

0913 0.08  -11.45  57.50  0.61  -57.38  81.83  0.06  -11.89  49.63  0.54  -57.78  84.58  

0914 0.12  -36.52  67.38  0.28  19.46  89.30  0.03  -34.34  64.85  0.38  25.41  75.96  

Variations in landscape characteristics systematically trigger variations in surface variables. 7 

Landscape inhomogeneity can be classified using two conditions: nonlinear vegetation density var-8 

iations between sub-pixels (e.g., different types of vegetation mixed with each other or with bare 9 

soil) and coarse pixels containing different landscapes (e.g., vegetation or bare soil mixed with 10 

buildings or water). To evaluate the effects of TSFA, stations with a typical severe heterogeneous 11 

surface at EC4, a weak heterogeneous surface at EC11, a typical pixel (called “TP” hereafter) at the 12 

boundary of the oasis and bare soil (sample 62, line 102 in the image of study area), and a uniform 13 

surface at EC15, were selected to analyze the temperature sharpening results. 14 

EC4 is used as an example because its land cover and sub-pixel variations of temperature were 15 

complicated. Table 10 compares the turbulent heat fluxes calculated using the IPUS, TRFA and 16 

TSFA methods. Significant differences were observed between the TSFA and IPUS results and be-17 

tween the TRFA and IPUS results due to the heterogeneity of the surface. The LE calculated using 18 

the TSFA method was more consistent with in situ measurements than the LE calculated using the 19 

IPUS method because the MBE and RMSE decreased considerably, the R2 increased, and the accu-20 

racy was improved by approximately 40 W∙m-2. However, the LE calculated by the TRFA was more 21 

accurate than the LE calculated by the TSFA, as discussed below. 22 

The H calculated by using the TSFA method was more accurate than the H calculated by using 23 

the TRFA and IPUS methods. The RMSE of the results from the TRFA method was relatively close 24 

to the RMSE of the results from the TSFA method because the TRFA method also considers the 25 

effects of the heterogeneity of landscapes. In addition, the H values obtained from the TRFA method 26 

were always greater than those obtained from the TSFA method. Because the TSFA turbulent heat 27 

flux results are the same as the TRFA turbulent heat flux results for buildings and water bodies in 28 

our pixel ET algorithm, the differences between the TSFA and TRFA results depend on the vegeta-29 

tion and bare soil. Additionally, the 300 m resolution LST is larger than the LST of the sub-pixels, 30 

such as pixels containing vegetation or bare soil. This relationship occurs for two reasons: (1) the 31 
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coarse pixels contain buildings and result in a larger 300 m resolution LST and (2) the LSTs were 1 

underestimated at EC4 (as shown in Table 3), which would underestimate the value of ∆T̂300 in 2 

Eq. (3) and, consequently, the sharpening temperature at 30 m and H. Because the LE was calculated 3 

as a residual item in the energy balance equation, the errors of the other three energy balance com-4 

ponents accumulate in the LE term. At EC4, the Rn was overestimated by approximately 80 W∙m-5 

2, as discussed in section 4.1, but the scale effect of Rn was not obvious (see section 4.3.2), and the 6 

G was overestimated by approximately 20 W∙m-2. These results decreased the accuracy of the avail-7 

able energy and overestimated the error by 60 W∙m-2. Because the TRFA overestimates H, the un-8 

derestimation of H in the TSFA would result in larger overestimation of LE than that estimated by 9 

the TRFA. Consequently, the LE calculated by using the TSFA method is less accurate than the LE 10 

calculated by the TRFA method. 11 

Table 10. Comparison of the turbulent heat flux results at EC4 12 

EC4 H(W∙m-2) LE(W∙m-2) 

Date EC IPUS TRFA TSFA EC IPUS TRFA TSFA 

0619 150.65  105.86  154.71  142.13  278.55  402.60  344.05  357.79  

0630 138.32  99.91  153.53  126.88  341.98  419.83  358.12  386.07  

0708 117.04  63.47  131.79  112.16  361.16  502.60  424.85  444.01  

0727 136.41  4.87  85.99  72.33  306.53  543.48  452.01  467.96  

0803 68.97  36.51  111.73  74.76  389.63  498.21  414.67  454.23  

5 104.60  12.69  88.26  82.56  357.34  522.31  436.43  441.95  

0822 125.34  85.93  120.68  93.18  318.08  415.15  370.76  400.99  

0829 82.93  73.06  103.84  74.76  317.68  362.04  322.77  355.16  

0902 162.05  93.74  144.49  132.60  280.41  375.42  315.16  326.29  

0913 119.42  151.44  157.07  130.85  263.18  234.93  222.62  249.59  

0914 110.02  88.24  128.37  99.33  262.33  333.82  285.04  314.91  

units: W∙m-2 13 

 IPUS TRFA TSFA 

Variable R2 MBE RMSE R2 MBE RMSE R2 MBE RMSE 

EC4-H 0.11  -44.65  61.73  0.25  5.88  26.33  0.51  -16.93  26.54  

EC4-LE 0.49  99.21  119.55  0.56  42.69  62.40  0.60  63.92  76.78  

Fig. 8 shows that the classes and temperatures of 10×10 sub-pixels at 30 m correspond to the 14 

pixels with a resolution of 300 m at the EC tower. In the IPUS upscaling scheme, the 300 m pixels 15 

included buildings, maize and vegetable crops at the 30 m resolution and were identified as maize. 16 

The canopy height gap between maize and vegetables was large during our study period, resulting 17 

in the overestimation of the canopy height. For additional details, see the error analysis in section 18 

4.4. However, because buildings corresponded with H = 0.6Rn in this study, ignoring the contri-19 

butions of buildings would result in the underestimation of H. Fig. 8(a) shows the temperature-20 

sharpening results in the EC4 pixel on August 29. The temperature retrieved at 300 m scale was 21 

303.49 K. Compared with the in situ measurement of 313.24 K, the temperature was underestimated 22 

at a resolution of 300 m. Even when substituting the in situ temperature into the ET model, the value 23 

of H reached 399.60 W∙m-2 and the LE became 0 W∙m-2. When substituting the in situ temperature 24 

into the TRFA method, H was 396.49 W∙m-2 and LE was 18.7 W∙m-2, indicating that the LE was 25 

underestimated and the H was overestimated with large errors. After processing by temperature 26 

sharpening, the distribution of the temperature at the 30 m resolution agreed with the classification. 27 
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Temperature sharpening improved the description of heterogeneity based on the thermodynamic-1 

driven force of the turbulent heat flux. These results apply to the ET model based on the classifica-2 

tion map and high-resolution inputs and correspond to more accurate sensible heat flux estimates. 3 

 4 

Figure 8. Distribution of classes and temperatures over (a) EC4, (b) EC15, (c) EC11 and (d) TP on August 29, 2012 5 

The land surface of EC15 was uniform and consisted of pure pixels covering maize fields. 6 

Consequently, the temperature distribution at 30 m resolution was very homogeneous, and the sur-7 

face temperature variations were comprised within a range of 1.6 K. Table 11 shows the in situ 8 
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validation results at EC15, for which the overall accuracy is not high due to the low LST retrieval 1 

accuracy on July 8, which is discussed in section 4.4.1. For homogeneous surfaces, the gaps between 2 

IPUS, TRFA and TSFA were not large (within 10 W∙m-2), and the accuracy did not improve (MBE 3 

and RMSE did not exhibit obvious variations). Statistically sharpening the temperature may increase 4 

the uncertainty of the model results for homogeneous surfaces; however, this influence could be 5 

omitted. 6 

Table 11. Comparison of the turbulent heat fluxes results at EC15 7 

EC15 H (W∙m-2) LE (W∙m-2) 

Date EC IPUS TRFA TSFA EC IPUS TRFA TSFA 

0619 92.55  106.60  109.25  99.81  419.47  427.19  419.99  429.98  

0630 42.37  43.99  45.51  44.67  551.73  527.12  525.17  526.09  

0708 18.34  217.53  235.48  209.90  620.95  425.71  397.49  424.86  

0727 27.68  21.22  31.11  24.30  597.76  589.58  579.43  586.47  

0803 2.33  33.32  -0.07  0.01  592.37  565.20  601.33  601.33  

0815 48.81  32.31  46.28  44.62  553.74  561.92  547.48  549.11  

0822 54.59  154.34  151.77  158.60  473.68  408.37  410.80  405.07  

0829 9.80  94.97  95.01  90.91  473.54  399.25  398.52  402.93  

0913 176.96  265.62  209.65  257.81  307.72  165.40  221.68  173.58  

0914 188.34  198.15  197.04  196.60  274.98  275.07  276.05  276.56  

units: W∙m-2 8 

 IPUS TRFA TSFA 

Variable R2 MBE RMSE R2 MBE RMSE R2 MBE RMSE 

EC15-H 0.40  40.64  74.64  0.33  45.93  80.81  0.40  40.36  72.88  

EC15-LE 0.74  -52.11  83.48  0.71  -48.80  82.51  0.74  -49.00  81.94  

The weak heterogeneous land surface at EC11 contained barley, maize and vegetables in a 300 9 

m pixel resolution with a fractional area of 58:41:1 and was classified as barley at the 300 m reso-10 

lution. The distributions of the classes and temperatures are shown in Fig. 8(c). The pixel belongs 11 

to the first conditions of heterogeneity (nonlinear vegetation density variation between sub-pixels). 12 

Table 12 shows the in situ validation results of EC11. The improvements in the accuracies of H and 13 

LE by temperature resampling or sharpening were not as obvious as the improvements at EC4, 14 

which contained totally different landscapes (the other inhomogeneous condition). 15 

Theoretically, the LE from the TSFA and TRFA at EC11 should be smaller than the IPUS LE 16 

values in the energy balance system. The height of maize (ranges from 0.3 to 2 m) was generally 17 

higher than the height of barley (ranges from 0.9 to 1.1 m) in the study area from June to August. 18 

Taller vegetation resulted in larger surface roughness and smaller aerodynamic resistance, which 19 

led to larger H values and smaller LE values, and vice versa (e.g., vegetables with a canopy height 20 

of 0.2 m). When using the TSFA and TRFA methods, patch landscapes consisting of different crops, 21 

such as maize and vegetables, were considered. Thus, the LE was smaller than the IPUS LE. On 22 

June 19, the canopy height of maize was 0.74 m, which was lower than the canopy height of barley 23 

(1 m) and indicated that the H values resulted from the TRFA and TSFA methods were less than H 24 

resulted from the IPUS method. Because our validation method considered the influence of source 25 

area, the in situ turbulent heat flux validation results included the effects of neighboring pixels (i.e., 26 

on August 3, the turbulent heat flux values of the pixel corresponding to the location of EC11 was 27 

only assigned a weight of 37% in the source area).  28 
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The differences between the TSFA and TRFA methods were small and resulted from the LST 1 

differences between the 30 m resolution temperature-sharpening results and the LST retrieved at the 2 

300 m resolution, but these differences were not evident at EC11. For example, on August 29, the 3 

temperature range was 1.4 K, as shown in Fig. 8(c). This temperature was even less than the tem-4 

perature range at EC15 because the observation system at EC15 was a superstation with a 40 m tall 5 

tower that may cause large shadow effects and result in a relative large temperature range. Hence, 6 

the temperature sharpening effect is not obvious after aggregating the flux at the 300 m resolution 7 

under dense vegetation canopies. However, temperature sharpening can still decrease the heteroge-8 

neity that resulted from thermal dynamics. 9 

The excess errors at EC11 was caused by the relatively low LST accuracy, with R2, MBE and 10 

RMSE values of 0.42, 1.59 K and 2.98 K, respectively. On August 29, the temperature retrieved at 11 

300 m scale was 301.6 K, and the observed ground temperature was 300.20 K. The LST at the 300 12 

m resolution was slightly overestimated. When the in situ temperature was substituted into the IPUS 13 

algorithm, the value of H decreased to 16.06 W∙m-2 and LE became 467.43 W∙m-2. When the in situ 14 

temperature was substituted into the TRFA scheme, the value of H was 22.43 W∙m-2 and the LE was 15 

461.58 W∙m-2, which were similar to the ground observations. 16 

Table 12. Comparison of the turbulent heat flux results at EC11 17 

EC11 H(W∙m-2) LE(W∙m-2) 

Date EC IPUS TRFA TSFA EC IPUS TRFA TSFA 

0619 33.94  173.69  158.12 158.18  531.46  391.60  407.42  407.40  

0630 25.03  3.29  23.12 21.37  635.22  586.37  566.48  568.28  

0708 32.29  68.17  97.16 96.13  601.98  567.73  538.77  539.81  

0727 21.42  -1.17  -1.58 -3.77  587.70  618.80  619.19  621.46  

0803 7.01  24.85  20.34 19.52  614.28  575.03  585.29  586.16  

0815 38.94  12.51  15.52 16.02  567.07  584.31  581.31  580.82  

0822 69.25  73.45  83.11 84.38  516.07  483.23  473.60  472.40  

0829 29.77  48.21  60.9 60.81  473.22  427.92  415.32  415.45  

0902 193.97  154.58  197.01 197.49  306.62  361.96  319.54  319.03  

0913 288.37  168.42  176.4 177.71  160.29  216.53  208.49  207.19  

0914 240.33  268.91  256.29 256.40  199.52  156.00  168.63  168.55  

units: W∙m-2 18 

 IPUS TRFA TSFA 

Variable R2 MBE RMSE R2 MBE RMSE R2 MBE RMSE 

EC11-H 0.61  -1.07  61.31  0.57  -0.36  63.24  0.67  -0.21  55.50  

EC11-LE 0.88  -19.83  63.16  0.89  -18.12  60.02  0.90  -21.29  58.11  

Another typical pixel located at the boundary of the bare soil and the oasis with no flux meas-19 

urements was used to evaluate the correction effects of landscapes and temperature sharpening. The 20 

land surface of the TP contained maize, vegetables and bare soil at a fraction of 35:31:34. Table 13 21 

shows that when neither the heterogeneity of the landscape nor the LST are considered, the relative 22 

error of LE reached 180 W∙m-2. In addition, if only the LST heterogeneity is not considered, the LE 23 

relative error reached 48 W∙m-2. This result also reveals that the influences of landscape inhomoge-24 

neity are greater than the influences of inhomogeneity on the LST in mixed pixels. 25 

Table 13. Comparison of the turbulent heat flux results at TP 26 

  H (W∙m-2) LE (W∙m-2) 
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Date IPUS TRFA TSFA IPUS TRFA TSFA 

0619 186.31  149.73  143.98  321.04  358.22  364.79  

0630 383.65  191.59  158.79  67.03  259.36  292.89  

0708 498.36  240.20  204.18  0.29  259.25  293.41  

0727 276.79  136.06  84.01  206.52  347.64  402.23  

0803 214.14  75.45  53.72  252.37  392.08  416.41  

0815 214.14  98.24  72.05  252.37  368.64  393.68  

0822 436.48  369.28  276.70  0.00  67.79  162.80  

0829 235.29  117.16  67.21  183.62  302.41  356.75  

0902 423.61  212.15  180.92  0.00  211.77  241.36  

0913 338.00  285.04  216.26  0.00  53.62  122.58  

0914 270.44  148.20  100.19  115.19  238.43  286.51  

units: W∙m-2 1 

  IPUS TRFA 

Variable R2 MBE RMSE R2 MBE RMSE 

TP-H 0.62  174.47  185.49  0.95  42.28  48.01  

TP-LE 0.71  -175.91  186.63  0.97  -43.11  49.04  

4.3.2. Comparison of the TRFA and IPUS methods 2 

Using data of September 13 as an example, the spatial distributions of the four components of 3 

the energy balance calculated by the IPUS and TRFA methods are shown in Fig. 9 and Fig. 10, 4 

respectively. TSFA minus IPUS and TSFA minus TRFA, which display the spatial distributions of 5 

the scale effect, are shown in Fig. 11. Scatterplots of TSFA versus IPUS and TRFA are shown in 6 

Fig. 12. 7 

A comparison of Fig. 6 with Fig. 9 shows that the spatial distributions of the fluxes greatly 8 

change, except for Rn. The TSFA results are synoptically smoother than the IPUS results because 9 

the land cover types and temperature distributions in mixed pixels are not considered in IPUS. For 10 

example, the boundary between the oasis and uncultivated land becomes a belt of intermediate G, 11 

H and LE because these mixed pixels include uncultivated land and vegetation. However, mixed 12 

pixels are classified as the dominant land use type in the parameterization process of IPUS. This 13 

result overlooks the contributions of heat flux from complex land use types and overestimates or 14 

underestimates the turbulent heat flux by approximately 50 W∙m-2. Since the TSFA can integrate the 15 

effects of these land areas and reveals the relative actual surface conditions, the heat flux results of 16 

TSFA vary less dramatically than those of IPUS, as shown in the figures. The results are similar in 17 

the oasis area. 18 

Based on Fig. 6 and Fig. 10, the TRFA and TSFA methods are similar. Because the TRFA 19 

method considers the sub-pixel landscapes that could be significant source of error in the ET models, 20 

the difference between the TSFA and TRFA methods is mainly resulted from the differences between 21 

the sharpened LST and retrieved, resampled LST of sub-pixels at the 30 m resolution. In addition, 22 

the bias between the TSFA and TRFA is not as obvious as the bias between the TSFA and IPUS 23 

methods, as shown in Fig. 11(c)-(f). Furthermore, Fig. 11(f) shows that the LEs calculated by using 24 

the TSFA method in most oasis areas were slightly greater than the LEs calculated by using the 25 

TRFA method, which yielded values of approximately 20 W∙m-2.  26 

The quadrangular with a relatively unstable bias shown in Fig. 11(a) is caused by the Ld that 27 
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was calculated from the MOD05 water vapor product which exists quadrangular even after prepro-1 

cessing the instrument malfunction gap. In Fig. 11, the differences of the four energy components 2 

of the pure pixels between these three methods are within 5 W∙m-2, and the mixed pixels have dif-3 

ferent ranges. 4 

 5 

Figure 9. Maps of the four energy components, (a) Rn, (b) G, (c) H and (d) LE, calculated using the IPUS method 6 

on September 13, 2012 7 
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 1 

Figure 10. Maps of the four energy components, (a) Rn, (b) G, (c) H and (d) LE, calculated using the TRFA method 2 

on September 13, 2012 3 
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 1 

Figure 11. Maps of the bias of the energy balance components calculated using the TSFA method minus the IPUS 2 

method: (a) Rn, (b) G, (c) H, (d) LE, and TSFA minus TRFA: (e) H and (f) LE 3 
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 1 

Figure 12. Scatter plots between the TSFA and IPUS results: (a) Rn, (b) G, (c) H and (d) LE; and TSFA and TRFA 2 

results: (e) Rn, (f) G, (g) H and (h) LE. MBD and RMSD are the mean bias deviation and root mean square deviation 3 

between the TSFA and IPUS results, respectively 4 

Fig. 12 shows the scatter plots between the results of the TSFA method and the other two 5 
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methods for all four energy balance components. Fig. 11(a)(e) shows that Rn does not vary much 1 

between the three methods and the scatter is centralized around the 1:1 line. However, regarding the 2 

spatial scale effect, the differences in G, H and LE calculated by using the IPUS and TSFA meth-3 

ods are obvious. The scatter plots disperse at the mixed pixels, and the differences between the 4 

TRFA and TSFA results are relatively smaller. When using the TSFA method, the temperature sharp-5 

ening results can be divided into results that are higher and lower than the LST retrieved at 300 m. 6 

Compared to the LST retrieved at 300 m when using the TRFA method, a higher LST is counterbal-7 

anced by a lower LST when calculating H using the TSFA. Thus, the effect of temperature hetero-8 

geneity is neutralized in this case. This observation is potentially resulted from the temperature-9 

sharpening algorithms because they tend to overestimate the sub-pixel LST for cooler landscapes 10 

and underestimate the sub-pixel LST for warmer areas in the image (Kustas et al., 2003). 11 

However, LE is calculated as a residual; thus, the difference of LE is resulted from G and H. 12 

When the 300 m mixed pixels contained various types of landcapes, they were categorized as one 13 

type of landscape in the IPUS method and a single temperature value was used to evaluate the ther-14 

mal dynamic effects when using the TRFA method. Pixels with highly different G, H and LE val-15 

ues are mainly distributed near the mixed pixels, as shown in Fig. 10. An explanation for these 16 

deviations is provided below.  17 

The parameterization of G and H are based on the land cover type. For example, for build-18 

ings, G = 0.4Rn (Kato and Yamaguchi, 2005) (which is usually greater than the G of vegetation 19 

and bare soil deduced from Eq.(9)) and H = 0.6Rn, and for water, G = 0.226Rn and LE = Rn −20 

G. From the land cover map shown in Fig. 4, four major classes exist in the study area: buildings 21 

with a high H, uncultivated land with a relatively high H, cropland with a relatively low H, and 22 

water with H = 0. 23 

(1) If a pixel contains cropland and buildings and is categorized as cropland, the building area 24 

within the pixel is ignored in the IPUS method. In this case, G and H are underestimated and LE 25 

is overestimated. In addition, after considering the landscapes using the TRFA method, the LE is 26 

underestimated and H is overestimated because the pixels contain buildings that are still reflected 27 

indistinctly by LST at 300 m because the detailed temperature heterogeneity cannot be represented 28 

by the TRFA method. These points are shown in green in Fig. 11. However, if the pixel is categorized 29 

as built-up, the building area within a pixel is exaggerated, which causes G and H to be overesti-30 

mated and LE to be underestimated when using the IPUS method. This situation is similar to that 31 

illustrated by the green points associated with the TRFA results and is shown by the red points in 32 

Fig. 11. 33 

(2) At the boundary of the oasis and uncultivated land, the mixed pixels are divided into 34 

cropland, LE is overestimated, G and H are underestimated in the IPUS method, and vice versa. 35 

LE is also overestimated in the pixels containing water and other types of land cover (generally 36 

bare soil in our study area). These pixels are categorized as water and are shown as blue points in 37 

Fig. 11. Some of the blue LE points calculated by using the TSFA method are slightly smaller than 38 

those calculated using the TRFA method for pixels containing vegetation. At noon, the temperature 39 

of vegetation in those pixels is lower than that of water bodies. 40 

(3) In mixed pixels that contain various crops, such as maize and vegetables, LE is underesti-41 

mated if the area of maize within the pixel is overestimated because the canopy height of the maize 42 

is taller than that of vegetables. This relationship results in the overestimation of H when using the 43 

IPUS and TRFA methods. In addition, G depends on the FVC values of the crops when using the 44 
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IPUS method. Moreover, G depends on Rn when using the TRFA method and is nearly identical 1 

to the values of G obtained using the TSFA method. 2 

At the study area, we compared the TRFA and IPUS methods to quantify the ability of the 3 

TSFA method to simulate the heterogeneities of the land surface on September 13 (see Table 14). In 4 

pure pixels, the LE biases among the IPUS, TRFA and TSFA methods were small. In mixed pixels, 5 

the LE bias between the TSFA and IPUS methods varied from 35.36 to 65.66 W∙m-2, and the bias 6 

between the TSFA and TRFA methods varied from 4.41 to 22.53 W∙m-2. More class types in mixed 7 

pixels correspond to larger biases. Table 15 shows the bias of the mixed pixels that contain buildings 8 

and bare soil between the three methods. In mixed pixels with buildings, the IPUS and TRFA meth-9 

ods generally underestimated LE and had large bias values compared to those of the TSFA method. 10 

In mixed pixels without buildings and bare soil, the bias between TRFA (or IPUS) and TSFA was 11 

relatively small, which indicates that the landscape and temperature inhomogeneity were accounted 12 

for by the TSFA method. The aforementioned analyses demonstrate that the TSFA method can con-13 

sider the heterogeneous effects of mixed pixels. 14 

Table 14. Comparison of the latent heat flux in pixels containing different numbers of class types 15 

Number of class IPUS (W∙m-2) TRFA (W∙m-2) Pixel 

types in pixels R2 MBD RMSD R2 MBD RMSD number 

1 1.00  0.21  0.21  1.00  0.05  0.61  11,398 

2 0.85  -7.18  35.36  1.00  -0.35  4.41  8212 

3 0.66  -2.32  52.55  0.98  -7.33  12.56  4762 

4 0.49  1.88  65.66  0.96  -11.56  16.55  2824 

5 0.98  -30.92  62.69  0.96  -16.90  22.53  4 

Notes: The number of class types in mixed pixels represents the number of classification types that were con-16 

tained in the pixels. For example, 1 represents the pure pixels, 2 represents mixed pixels containing two land use 17 

types, etc. MBD and RMSD are the mean bias deviation and root mean square deviation, respectively, between the 18 

TSFA results and the TRFA and IPUS results. 19 

Table 15. Comparison of the latent heat fluxes of typical mixed pixels  20 

Types of mixed pixels 
IPUS (W∙m-2) TRFA (W∙m-2) Pixel 

R2 MBD RMSD R2 MBD RMSD number 

Mixed pixels containing buildings 0.58  -1.02  61.94  0.97  -9.64  14.66  4918 

Mixed pixels do not containing buildings 0.81  -5.49  39.21  0.99  -2.12  7.60  10,884 

Mixed pixels containing bare soil 0.73  -1.52  49.04  0.98  -5.96  11.86  9049 

Mixed pixels do not containing bare soil 0.65  -7.55  45.28  0.98  -2.46  7.83  6753 

Considering the landscapes and inhomogeneous distribution of LST, the TSFA method ensures 21 

that none of the end members (30 m pixel) are ignored or exaggerated. Thus, the distribution of LE 22 

calculated using the TSFA method is smoother and more rational than the distributions of LE cal-23 

culated using the other methods. At the regional scale, the TSFA method describes the heterogeneity 24 

of the land surface more precisely. The degree of achievable estimation accuracy is discussed here-25 

after. 26 

4.4. Error analysis 27 

Since LE is calculated as a residual term in the energy balance equations, the sensitivity of H 28 

was analyzed first. Land surface variables (including LST, LAI, canopy height, and FVC) and me-29 

teorological variables including wind speed, air temperature, air pressure and relative humidity are 30 
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the major factors for H sensitive analysis. Fig. 13 presents a case of sensitivity analysis results for 1 

H. In this case, LST is 303.9 K, and it ranges from 298.4~309.4 K with a step size of 0.5 K, LAI is 2 

set to 1.4 and it ranges from 0.14~2.66 with a step size of 0.14. Canopy height is 1 m and it ranges 3 

from 0.1~1.9 m with a step size of 0.1 m. Additionally, FVC=0.5, wind speed u=2.48 m∙s-1, air 4 

temperature Ta=297.9 K, air pressure = 97.2 kPa, and RH=40.29%. In addition, the land cover is 5 

maize, and the reference H is 230.2 W∙m-2. 6 

 7 

Figure 13. Sensitivity analysis of the surface variables for sensible heat flux 8 

The air pressure is stable over a short period and has little effect on the ET results. Although 9 

“excess resistance” was calculated from the friction velocity, the meteorological data were provided 10 

by ground observations; thus, the meteorological data are relatively accurate. As shown in Fig. 13, 11 

LAI, canopy height and LST are sensitive variables. 12 

The parameterization of the momentum roughness length indicates that H is sensitive to LAI, 13 

with decreasing sensitivity when the LAI is greater than 1. When the LAI is less than 1, the momen-14 

tum roughness length increases as the LAI increases, and turbulent exchange are enhanced. How-15 

ever, when the LAI is greater than 1, the plant canopy is regarded as a continuum that is not a 16 

sensitive variable. Because our study area is dominated by agriculture and the study period extended 17 

from July to September, the crops in the HRB middle stream grew quickly, thus, the LAI was usually 18 

greater than 1. Thus, LST and canopy height are the main sources of error. 19 

4.4.1. Errors in LST 20 

As shown in Fig. 13, 1 K LST bias would result in 21% error of H while H is 230.2 W∙m-2. 21 

However, the sensitivity of the LST is unstable and depends on the strength of the turbulence. The 22 

strength of the turbulence determines the mass and energy transport and the resistance of heat trans-23 

fer, which influences the sensitivity to the LST. A weaker turbulence corresponds to a weaker LST 24 

sensitivity, and vice versa. 25 

A sensitivity analysis of LE induced by LST was also performed. In order to exclude the influ-26 

ence of other factors, stations were chosen with homogeneous landscapes within coarse pixels. 27 

These results are shown in Table 16. The LE results obtained from the observed LST are consistent 28 

with the in situ observations and have less bias. LE was overestimated when the LST was underes-29 

timated, and vice versa. Because the magnitude of LE was greater than that of H, the relative error 30 

of LE was less than the relative error of H. However, 1 K of LST bias resulted in an average LE 31 

error of 30 W∙m-2, which is consistent with the sensitivity analysis of H shown in Fig. 13. Specifi-32 

cally, 1 K of LST bias would resulted in an LE biases of 8.7 W∙m-2 (in desert, SSW) to 84.4 W∙m-2 33 

(in oasis, EC8), which indicates that the sensitivity of LST is unstable. 34 

Table 16. The results of the LST error analyses at the stations with homogeneous landscapes 35 
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Station Date 

Re-

trieved 

LST (K) 

Ob-

served 

LST (K) 

LST 

bias 

(K) 

EC-LE 

(W∙m-2) 

LE from  

retrieved 

LST 

(W∙m-2) 

LE from 

observed 

LST 

(W∙m-2) 

LE  

relative 

error 

(%) 

H  

relative 

error 

(%) 

EC8 0619 304.92 301.74 3.18 415.89  321.80  399.78  -22.62  68.58 

EC7 0630 302.5 299.35 3.15 611.22  453.59  557.97  -25.79  886.08 

EC10 0708 303.58 300.5 3.08 617.83  504.44  549.53  -18.35  390.24 

EC15 0708 303.55 300.13 3.42 620.95  425.71  603.73  -31.44  450.57 

EC7 0727 298.87 300.55 -1.68 577.59  643.56  566.62  11.42  -132.47 

SSW 0727 307.86 316.82 -8.96 119.35  238.07  78.43  99.48  -60.36 

EC8 0822 299.58 297.77 1.81 543.56  416.23  467.42  -23.42  88.59 

EC10 0822 301.61 298.04 3.57 503.82  398.82  513.67  -20.84  138.61 

EC15 0822 300.59 297.69 2.9 473.68  408.37  495.49  -13.79  129.60 

EC8 0829 301.54 300.44 1.1 514.31  402.93  428.78  -21.66  63.91 

EC15 0829 301.41 299.84 1.57 473.54  399.25  459.66  -15.69  182.34 

SSW 0902 304.9 303.42 1.48 226.88  127.96  149.83  -43.60  11.36 

Notes: “LST bias” is calculated as the retrieved LST minus the observed LST; “EC-LE” is the in situ latent heat flux; 1 

“LE relative error” is the relative error between the retrieved and observed LST and is expressed as ((LE from 2 

retrieved LST)-(LE from observed LST))/(LE from observed LST)×100% and “H relative error” is calculated in the 3 

same way.  4 

4.4.2. Errors in canopy height 5 

In this paper, canopy height was obtained from a phenophase and classification map. Thus, the 6 

accuracy of the canopy height was mainly dependent on the classification accuracy and plant growth 7 

state. Even within the same region, the canopy height of a crop can differ due to differences in 8 

seeding times and soil attributes, such as soil moisture and fertilization. 9 

The land use type was orchard at EC17. However, in our land classification map, the land use 10 

at EC17 was other crops, which includes vegetables and orchards. Thus, it was difficult to set the 11 

canopy height. In our study area, most of the other crops were vegetables (canopy height of 0.2 m), 12 

and the height of the orchard was approximately 4 m; thus, a value of 0.2 m would overestimate the 13 

LE. The LE estimations with incorrect canopy heights and correct orchard canopy height at EC17 14 

are shown in Table 17. The days of large LST bias were removed, and the bias between the model 15 

and ground observations decreased. The excess errors were caused by errors in the LST and land 16 

use, such as buildings and maize in the mixed pixels. 17 

Table 17. The results of the canopy height error analyses at EC17 18 

Date 
EC-LE 

 (W∙m-2) 

LE from incorrect 

canopy height (W∙m-2) 

LE-I relative 

error (%) 

LE from correct  

canopy height (W∙m-2) 

LE-C relative 

error (%) 

20120815 499.62 562.06  12.50 521.83  4.45  

20120822 366.27 519.01  41.70 396.54  8.26  

20120902 377.96 471.68  24.80 336.52  -10.96  

20120914 465.38 352.78  -24.20 258.07  -44.55  

Notes: “LE-I relative error” is the relative error between the LE from incorrect canopy height and observed LE and 19 

is expressed as ((LE from incorrect canopy height)-(EC-LE))/( EC-LE)×100%, “LE-C relative error” is the relative 20 
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error between the LE from correct canopy height and observed LE and is expressed as ((LE from correct canopy 1 

height)-(EC-LE))/( EC-LE)×100%. 2 

Except for the error source discussed previously, the following sources of error were unavoid-3 

able: 4 

(1) Although the remotely sensed turbulent heat flux is instantaneous, the EC data are averaged 5 

over time. Thus, the time scales do not match in the validation. 6 

(2) The calibration coefficients of the HJ-1B satellite’s CCD and IRS drifts because of instru-7 

ments aging. 8 

(3) Geometric correction causes half-pixel bias equal to or less than the deviation of the artifi-9 

cially subjective interpretation. 10 

A one-source model and simplified parameterization schemes were used in this paper to deter-11 

mining surface roughness lengths and heat transfer coefficients. The one-source model combines 12 

soil evaporation and plant transpiration and assumes that SPAC is a one-source continuum. This 13 

assumption is reasonable when the surface is densely covered by vegetation but relies on the accu-14 

racy of the difference between the LST and air temperature, as previously mentioned. When a one-15 

source model is applied to an area covered by sparse vegetation, such as semi-arid or arid areas, this 16 

assumption is irrational. 17 

5. Discussions  18 

The TSFA describes the surface heterogeneity much better than the IPUS and TRFA. The IPUS 19 

aggregates the land surface variables from 30 m to 300 m, which results in the loss of land surface 20 

details and leads to the scale effects. Although the TRFA uses 30 m information from VNIR bands 21 

and partially decreases the heterogeneity, it treats the pivotal variable LST as homogeneous at 300 22 

m resolution, which results in considerable error. In summary, the advantages of the TSFA method 23 

are described as follows: 24 

(1) The temperature sharpening algorithm in TSFA is capable of decreasing the influences of 25 

the heterogeneity of the LST, which is consistent with results from previous studies (Kustas et al., 26 

2003; Bayala and Rivas, 2014; Mukherjee et al., 2014). As analyzed in section 4.3, the non-consid-27 

eration of the heterogeneity of LST in mixed pixels is ill-founded and causes errors when estimating 28 

ET. 29 

(2) In the one-source energy balance model, different parameterization schemes were em-30 

ployed for different landscapes. In the IPUS, a single land cover is assigned to a mixed pixel, which 31 

results in a large error. However, the TSFA method is used to calculate the surface flux at 30 m and 32 

is aggregated to 300 m using the area-weighting method, which considers all of the sub-pixel land-33 

scapes and improves the accuracy. 34 

Some problems exist in the temperature-sharpening algorithms. The temperature-downscaling 35 

method used in this paper caused “boxy” anomalies in parts of the sharpened temperature fields in 36 

large pixels because of the constant residual term, ∆T̂300, in Eq. (3) within large pixels. This situa-37 

tion also occurred in the temperature-sharpening algorithm proposed by Agam et al. (2007). In ad-38 

dition, our temperature sharpening algorithm tends to overestimate the sub-pixel LST for cooler 39 

landscapes and underestimate the sub-pixel LST for warmer areas (Kustas et al., 2003). This inac-40 

curate estimation causes errors that are difficult to evaluate when estimating the turbulent heat flux. 41 

For example, the small turbulent heat flux bias between TSFA and TRFA was caused bya counter-42 

balancing effect as analyzed in section 4.3.1. Additional temperature sharpening algorithms under 43 
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heterogeneous surfaces should be evaluated using real datasets when applied in ET models (Ha et 1 

al., 2011). 2 

The retrieval methods of land surface variables were validated against in other areas. For ex-3 

ample, the albedo algorithm was previously applied to retrieve Global Land Surface Satellite 4 

(GLASS) Products (Liang et al., 2014), the LST retrieval algorithm was validated in the Haihe River 5 

Basin in northern China (Li et al., 2011a), and the soil heat flux correction algorithm was validated 6 

in the GAME-Tibet campaign (Yang and Wang, 2008). Since the surface of the Heihe River Basin 7 

is very heterogeneous, additional comparisons of our algorithm in other areas would be helpful. 8 

In addition, to correct the discrepancy between remotely sensed radiative surface temperature 9 

and aerodynamic temperature at the source of heat transport, a brief and well performed parameter-10 

ization scheme (under uniformly flat plant surface) of “excess” resistance was used to calculate the 11 

aerodynamic resistance of heat transfer (Jiao et al., 2014). Since our study is based on mixed pixels, 12 

multiple parameterization methods should be compared to select the optimum method. 13 

Because of the sensitive variables of the one-source energy balance model used in this paper, 14 

the accuracies of the LST and canopy height greatly influenced the turbulent heat flux. HJ-1B IRS 15 

has a single-thermal channel, and the single-channel LST-retrieving algorithm may be unstable un-16 

der wet atmospheric conditions (water vapor contents higher than 3 g/cm2) (Li et al., 2010a), which 17 

may create a bottleneck for ET estimations by HJ-1B. The canopy height is a priori knowledge 18 

based on phenophase classifications and would influence the accuracy of the surface roughness 19 

calculation. Multi-source remote sensing data could be used to improve the accuracy of calibrations 20 

and land surface variable estimation. Active microwave and LiDAR data (Colin and Faivre, 2010) 21 

could be used to obtain the canopy height, which would decrease the dependence on the accuracy 22 

of the classification. 23 

The energy balance closure has a significant influence on the evaluation of the model calcu-24 

lated heat flux results. In our study area, the EC energy balance closure ratio was greater than 0.75 25 

(Liu et al., 2011b). Studies have shown that not-captured low-frequency eddies (Von Randow et al., 26 

2008), extension of averaging time (Charuchittipan et al., 2014) and lack of an accurate accounting 27 

of heat storage terms (Meyers and Hollinger, 2004) are potential reasons for the energy imbalance 28 

and so forth. The conserving Bowen ratio and residual closure technique are often used to force 29 

energy balance. We chose the residual closure method at last because the conserving Bowen ratio 30 

method yields irrational sensible heat flux due to small or negative Bowen ratios (large LEs due to 31 

the “oasis effect”) in the oasis-desert system. Energy balance closure was problematic at times for 32 

turbulent flux system and tended to be associated with significant discrepancies in LE (Prueger et 33 

al., 2005). 34 

Since a footprint model was used in the validation, the footprints discrepancies between in situ 35 

measurements and remote sensing pixel may cause biases. For example, model validation results 36 

were calculated based on the relative weights of the footprint model and multiplied by the heat flux 37 

results of the coarse pixels in the source area from the upwind direction. However, the heat fluxes 38 

of coarse pixels included the contributions of non-overlapped sub-pixels within the coarse pixel. 39 

These pixels are influenced by the heterogeneity of underlying surface, it would cause uncertainties 40 

in the validation. 41 

6. Conclusion 42 

The effects of surface heterogeneity in ET estimation have been studied here by employing the 43 
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IPUS, TRFA and TSFA methods over heterogeneous surface. Compared to the IPUS and TRFA 1 

methods, the TSFA method exhibits more consistent agreement with in situ measurements (energy 2 

balance forced by the residual closure method) based on the footprint validation results. The IPUS 3 

approach does not consider surface heterogeneity at all, which causes significant error in the heat 4 

fluxes (i.e., 186 W∙m-2). The TRFA considers heterogeneity of landscapes besides LST heterogene-5 

ity, with a heat flux error (i.e., 49 W∙m-2) that is less than that of IPUS. However, this error is non-6 

negligible. As a sensitive variable of the ET model, canopy height is mainly determined by classifi-7 

cation, and the application of classification at a 30 m resolution can improve the accuracy of the 8 

canopy height. Additionally, the sharpened surface temperature at a resolution of 30 m decreases 9 

the thermodynamic uncertainty caused by the land surface. The TSFA method can capture the het-10 

erogeneities of the land surface and integrate the effects of landscapes in mixed pixels that are ne-11 

glected at coarse spatial resolutions. 12 

HJ-1B satellite data have advantages because of their high spatiotemporal resolution and free 13 

access. Because the satellites are still in operation, the long-term data are promising for applications 14 

of monitoring energy budgets. 15 
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Appendix 26 

Notation 
 Application 

 (for calculating) 

6S radiation 

transfer mode 

Second Simulation of a Satellite Signal in the Solar Spectrum 

radiation transfer mode 
Albedo, Sd 

α Surface broadband albedo Sd, Rn 

ABT At-nadir brightness temperature (K) Ld 

AMS Automatic meteorological station   

AOD Aerosol optical depth Sd 

BRDF Bidirectional reflectance distribution function α 

CCD Charge-coupled device  

CV Coefficient of variation Sharpened LST 

EC Eddy covariance  

FVC Fractional vegetation coverage LSE, G, LAI 

G Soil heat flux (W∙m-2)  

G(𝜃) G function, Foliage angle distribution LAI 

H Sensible heat flux (W∙m-2)  
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HRB The Heihe River Basin  

IPUS Input parameter upscaling scheme  

IRS Infrared scanner  

Ld Downward atmospheric longwave radiation (W∙m-2) Rn 

LSE/ε Land surface emissivity LST 

εv/εg The vegetation/ground emissivity  

LST/Trad Land surface temperature/Surface radiation temperature (K) H 

MBE/MBD Mean bias error (deviation)  

NCEP National Centers for Environmental Prediction LST 

NDVI/NDVI30 Normalized difference vegetation index FVC, Sharpened LST 

NDVI300 300 m NDVI aggregated from NDVI Sharpened LST 

NDVIs/NDVIv 
Normalized difference vegetation index of bare soil/fully cov-

ered vegetation 
FVC 

P(𝜃) Angular distribution of the canopy gap fraction LAI 

ra Aerodynamic resistance (s∙m-1) H 

rex “Excess” resistance (s∙m-1) heat transfer resistance 

Rn Net radiation (W∙m-2)  

RMSE/RMSD Root mean square error (deviation)  

Sd Downward shortwave radiation (W∙m-2) Rn 

SPAC The soil-plant-atmosphere continuum  

SZA Solar zenith angle Sd 

Ta Air temperature (K) H 

Taero 

Aerodynamic surface temperature obtained by extrapolating the 

logarithmic air-temperature profile to the roughness length for 

heat transport (K) 

H 

TOA Top of the atmosphere  

TOMS Total ozone mapping spectrometer Sd 

TRFA Temperature resampling and flux aggregation  

TSFA Temperature sharpening and flux aggregation  

ULR Upward longwave radiation (W∙m-2) Rn 

USR Upward shortwave radiation (W∙m-2) Rn 

VNIR Visible/near-infrared  

VZA/𝜃 View zenith angle Ld, LAI 
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