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Response to the Referee
We thank the reviewer for the comments. Below are our responses (in blue font) to the review’s
comments(in black font).

Anonymous Referee

I think the authors have done a very good job in addressing almost all of the reviewer comments
and have significantly approved the manuscript!

Before final acceptance however, | would still like to see 2 topics addressed in the discussion
and conclusion part of manuscript that are essential when comparing ground observed fluxes
and RS derived fluxes: a) the different footprints of measurements and RS, and b) the non-
closure of the measured energy balance and their correction. Both aspects might have a signif-
icant impact on possible differences and biases - and should at least be taken into consideration
in the evaluation of the results.

Response: Thank you for your suggestion. We added some discussion about the two topics in the
discussion, following as:

a) The different footprints of measurements and RS.

Since a footprint model was used in the validation, the footprints discrepancy between in situ
measurements and remote sensing pixel may cause biases. For example, model validation results
were calculated by the relative weights of the footprint model, and multiply heat flux results of the
coarse pixels which were covered by source area from upwind direction. However, the heat fluxes
of coarse pixels included the contribution of not-overlapped sub-pixels within the coarse pixel. In-
fluenced by the heterogeneity of underlying surface, it would cause uncertainties in the validation.
b) The non-closure of the measured energy balance and their correction.

The energy balance closure has significant influence on evaluation of the model calculated heat
flux results. In our study area, the EC energy balance closure ratio was greater than 0.75 (Liu et al.,
2011). Studies have shown that the not-captured low-frequency eddies(Von Randow et al., 2008),
extension of averaging time (Charuchittipan et al., 2014), and lack of an accurate accounting of all
storage terms(Meyers and Hollinger, 2004) are potential reasons for the energy imbalance and so
forth. The conserving Bowen ratio and residual closure technique are often used to force energy
balance. We chose the residual closure at last because the conserving Bowen ratio method conducted
irrational sensible heat flux due to small or negative Bowen ratios (large LEs due to “oasis effect”)
in the oasis-desert system. Energy balance closure was problematic at times for turbulent flux sys-
tem and tended to be associated with significant discrepancies in LE (Prueger et al., 2005).

Reference:

Charuchittipan, D., Babel, W., Mauder, M., Leps, J.-P., and Foken, T.: Extension of the Aver-
aging Time in Eddy-Covariance Measurements and Its Effect on the Energy Balance Closure,
Boundary-Layer Meteorology, 152, 303-327, 10.1007/s10546-014-9922-6, 2014.

Liu, S. M., Xu, Z. W., Wang, W. Z., Jia, Z. Z., Zhu, M. J., Bai, J., and Wang, J. M.: A compar-
ison of eddy-covariance and large aperture scintillometer measurements with respect to the energy
balance closure problem, Hydrology and Earth System Sciences, 15, 1291-1306, 2011.

Meyers, T. P., and Hollinger, S. E.: An assessment of storage terms in the surface energy bal-
ance of maize and soybean, Agricultural and Forest Meteorology, 125, 105-115,
http://dx.doi.org/10.1016/j.agrformet.2004.03.001, 2004.
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Prueger, J. H., Hatfield, J. L., Parkin, T. B., Kustas, W. P., Hipps, L. E., Neale, C. M. U., Mac-
Pherson, J. ., Eichinger, W. E., and Cooper, D. I.: Tower and Aircraft Eddy Covariance Measure-
ments of Water Vapor, Energy, and Carbon Dioxide Fluxes during SMACEX, Journal of Hydrome-
teorology, 6, 954-960, 10.1175/JHM457.1, 2005.

Von Randow, C., Kruijt, B., Holtslag, A. A. M., and de Oliveira, M. B. L.: Exploring eddy-
covariance and large-aperture scintillometer measurements in an Amazonian rain forest, Agricul-
tural and Forest Meteorology, 148, 680-690, http://dx.doi.org/10.1016/j.agrformet.2007.11.011,
2008.

Relevant Changes

All the changes were marked as navy blue color in the manuscript.

1. We have added two topics: a) the footprint discrepancy between measurements and remote sens-
ing, and b) the non-closure of the measured energy balance and their correction in the discussion.
2. New references were added.
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Abstract

Evapotranspiration (ET) plays an important role in surface-atmosphere interactions and can be
monitored using remote sensing data. However, surface heterogeneity including inhomogeneity of
landscapes and surface variables affects the accuracy of ET estimated from satellite data signifi-
cantly. The objective of this study is to assess and reduce the uncertainties resulted from surface
heterogeneity in remotely sensed ET using Chinese HJ-1B satellite data, which is of 30m spatial
resolution in VIS/NIR bands and 300m spatial resolution in TIR band. A temperature sharpening
and flux aggregation scheme (TSFA) was developed to obtain accurate heat fluxes from the HJ-1B
satellite data. Two methods employing different upscaling policies of surface variables and fluxes
were used to compare with TSFA, i.e., IPUS (input parameter upscaling) and TRFA (temperature
resampling and flux aggregation). Moreover, the three methods can also be regarded as representing
three typical schemes handling mixed pixels from the simplest to the most complex, i.e., all surface
variables are at coarse resolution (300 m in this study) in IPUS and fine resolution (30 m in this
study) in TSFA, while TRFA is in the middle (both 30m and 300m variables are used). Analysis and
comparison between them can help us to get better understandings about spatial scale errors in re-
mote sensing of surface heat fluxes. In situ data collected during HIWATER-MUSOEXE (Multi-
Scale Observation Experiment on Evapotranspiration over heterogeneous land surfaces of The
Heihe Watershed Allied Telemetry Experimental Research) were used for the validation and analy-
sis of the methods. ET estimated by TSFA is of best agreement with in-situ observations, the foot-
print validation results show that the R2, MBE, and RMSE of the sensible heat flux (H) were 0.61,
0.90 W-m and 50.99 W-m?, respectively, and the corresponding terms for the latent heat flux (LE)
were 0.82, -20.54 W-m and 71.24 W-m?, respectively, and IPUS showed the largest errors in ET
estimation. The RMSE of LE between the TSFA and IPUS methods was 51.30 W-m, and the
RMSE of LE between the TSFA and TRFA methods was 16.48 W-m. Furthermore, additional
analysis shows that the TSFA method can capture the sub-pixel variations of land surface tempera-
ture and integrate the effects of overlooked landscapes in mixed pixels.

Index Terms: heterogeneous surface, temperature sharpening, area weighting, energy balance, evapo-
transpiration, spatial scale, HJ-1B satellite

1. Introduction

Five types of methods have been developed to estimate evapotranspiration (ET) or latent heat
flux (LE) via remote sensing. (1) Surface energy balance models calculate LE as a residual term.
According to the partitioning of the sources and sinks of the Soil-Plant-Atmosphere Continuum
(SPAC), surface energy balance models can be classified as one-source (Bastiaanssen et al., 1998;
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Su, 2002; Allen et al., 2007; Long and Singh, 2012a) or two-source models (Shuttleworth and Wal-
lace, 1985; Norman et al., 1995; Xin and Liu, 2010; Zhu et al., 2013). (2) Penman-Monteith models
are used to calculate LE by using the Penman-Monteith equation and numerous surface resistance
parameterization schemes that control the diffusion of evaporation from land surfaces and transpi-
ration from plant canopies. These two-source Penman-Monteith models separate soil evaporation
from plant transpiration (Cleugh et al., 2007; Mu et al., 2011; Leuning et al., 2008; Chen et al., 2013;
Sun et al., 2013; Mallick et al., 2015). (3) Land surface temperature-vegetation index (LST-V1) space
methods assign the dry and wet edges of the LST-VI feature space as minimum and maximum ET,
respectively. These methods interpolate the media using the Penman-Monteith or Priestley-Taylor
equation to calculate the LE (Jiang and Islam, 1999, 2001; Sun et al., 2011; Long and Singh, 2012b;
Yang and Shang, 2013; Fan et al., 2015; Zhang et al., 2005). (4) Priestley-Taylor models expand the
range of the Priestley-Taylor coefficient in the Priestley-Taylor equation (Jiang and Islam, 2003; Jin
et al., 2011) or combine the physiological force factors with the energy component of ET (Fisher et
al., 2008; Yao et al., 2013). (5) Additional methods include empirical/statistical methods (Wang and
Liang, 2008; Yebra et al., 2013) and the use of complementary based models (Venturini et al., 2008)
and land-process models with data assimilation schemes (Bateni and Liang, 2012; Xu et al., 2015).

All these ET estimation models are usually developed for simple and homogeneous surface
conditions. When these remotely sensed models are applied to calculate the regional ET via satellite
data, large spatial scale errors occur. Because heterogeneity is a natural attribute of the Earth’s sur-
face, non-linear operational model is another important issue of remotely sensed spatial scale error.
However, it is difficult to develop linear operational models due to the complexity of mass and heat
transfer processes between the atmosphere and land surface.

In previous studies, researchers have coupled high- and low-resolution satellite data and statis-
tically quantified the inhomogeneity of mixed pixels to correct the scale error in ET estimations by
using temperature downscaling that converts images from a lower (coarser) to higher (finer) spatial
resolution using statistical-based models with regression or stochastic relationships among param-
eters (Kustas et al., 2003; Norman et al., 2003; Cammalleri et al., 2013; Ha et al., 2013), the correc-
tion-factor method that uses sub-pixel landscapes information to regress the correction factor of
scale bias (Maayar and Chen, 2006) and the area-weighting method that calculates roughness length
and sensible heat flux based on sub-pixel landscapes (Xin et al., 2012).These correction methods
mainly focus on two problems: inhomogeneity of landscapes and inhomogeneity of surface varia-
bles.

Studies have shown that different landscapes (Blyth and Harding, 1995; Moran et al., 1997;
Bonan et al., 2002; McCabe and Wood, 2006) and the sub-pixel variations of surface variables, such
as stomatal conductance (Bin and Roni, 1994), leaf area index (Bonan et al., 1993; Maayar and
Chen, 2006) can cause errors in turbulent heat flux estimations. Surface variables inhomogeneity is
rather difficult to evaluate as the sub-pixel variation of surface variables could be large even in the
pure pixel. For example, generally, temperatures over the land surfaces vary strongly in space and
time, and it is not unusual for the LST to vary by more than 10 K over just a few centimeters of
distance or by more than 1 K in less than a minute over certain cover types (Z. Li et al., 2013). But
in mixed pixels, surface variables such as land surface temperature are set as singular to represent
the entire pixel area in ET estimation models.

The focus of this study is on the effects of surface heterogeneity when estimating ET. Accord-
ing to the current satellites operation situation, three methods were used to analyze the uncertainty
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produced by surface heterogeneity. Input parameter upscaling (IPUS) does not consider the surface
heterogeneities at all. It was designed to simulate the satellites that have identical spatial resolution
both in visible near-infrared (VNIR) and thermal infrared bands (TIR), such as the land surface
products of Moderate-Resolution Imaging Spectroradiometer (MODIS) satellites. Temperature
resampling and flux aggregation (TRFA) only does not consider the heterogeneity of LST, and tem-
perature sharpening and flux aggregation (TSFA) consider all the surface heterogeneities. They
were designed for the majority of satellites data or products that have inconsistent spatial resolution
between VNIR and TIR, such as Landsat and HJ-1B satellites.

Surface variables in this paper mainly derived from HJ-1B satellite data were used for this
purpose. The Chinese HJ-1A/B satellites were launched on September 6, 2008, and were designed
for disaster and environmental monitoring, as well as other applications. The HJ-1B satellites are
equipped with two charge-coupled device (CCD) cameras and one infrared scanner (IRS) with spa-
tial resolutions of 30 m and 300 m, respectively. Compared with high-temporal-resolution satellites,
such as the MODIS satellite, or high-spatial-resolution satellites, such as the Landsat 7 or 8 satellites,
HJ-1B has the advantage of a high spatial-temporal resolution. Since the satellites were launched,
the HJ-1/CCD time series data have been widely used in China to accurately classify land cover
(Zhong et al., 2014a) and monitor various environmental disasters (Wang et al., 2010). Land-based
variables, such as leaf area index (LAI), land surface temperature (LST), and downward longwave
radiation (Lg), have been retrieved by the HJ-1 satellites using algorithms developed by Chen et al.
(2010), H. Lietal. (2010, 2011) and Yu et al. (2013), respectively. These variables lay the foundation
for ET research.

Although the HJ-1B satellites provide CCD data with a high spatial resolution of 30 m, the
spatial resolution of the thermal infrared (TIR) band is only 300 m. Thus, surface heterogeneity
effects must be considered when estimating the heat flux.

2. Methodology
2.1. Temperature-sharpening method based on statistical relationships

Surface thermal dynamics are a driving force of ET. The spatial resolution of TIR images is
usually not as high as the spatial resolution of visible near-infrared bands (VNIR) because the energy
of VNIR photons is higher than the energy of thermal photons. Thus, the inhomogeneity of TIR
images would be greater than the inhomogeneity of VNIR images. Once the inhomogeneity of TIR
images is enhanced, the uncertainty of the variables is calculated in the TIR band, and variables
such as the land surface temperature become unpredictable. Therefore, we would like to derive land
surface temperature data with a high spatial resolution.

The different spatial resolutions of TIR and VNIR images make it possible to obtain the land
surface temperature at the spatial resolution of the VNIR images, which is referred to as tempera-
ture-sharpening. Kustas et al. (2003) proposed a statistical temperature-sharpening method that
could be applied to remotely sensed evapotranspiration models. This method assumes that the neg-
ative correlation between the Normalized Difference Vegetation Index (NDVI) and LST is invariant.
The NDVI reflects vegetation growth and cover, and the LST reflects surface thermal dynamics.
The LST decreases with increasing vegetation cover. The resulting scatter plots form a feature space
that is applicable at different scales when enough pixels exist.

HJ-1B satellite images can provide vegetation and thermal information at spatial resolutions of
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30 mand 300 m, respectively. However, the 300 m resolution thermal data cannot be use to discrim-
inate the surface temperatures of small targets within pixels. This deficiency can be addressed by
using the functional relationship between NDVI and LST. A flowchart of temperature sharpening is
shown in Fig. 1, and the LST at the NDV1 pixel resolution can be derived based on the following
steps (Kustas et al., 2003):

(1) The selection of a subset of pixels from the scene where the NDVI is the most uniform at a
pixel resolution of 300 m. Calculate the coefficient of variation (CV) by using the original NDVI
data (NDVI30) with a resolution of 30 m and sort the values from smallest to largest. The CV is
calculated as follows:

cy = ST (1)

mean

where STD and mean are the standard deviation and the average values, respectively, among the
1010 pixels that make up each 300-m NDVI (NDVI;,,) aggregated from NDVI;,.

(2) Next, the NDV sy is divided into several classes (0 < NDVIzgo < 0.2, 0.2 < NDVI3,, <
0.5 and 0.5 < NDVI3(,). Lower CV values correspond with more homogeneous land surface val-
ues, and a specific fraction should guarantee that a sufficient number of pixels is available for fitting
a least-squares expression between NDVIs,, and Tso. Then, the fractions (25%) of the pixels
having the lowest CV are selected from each class.

(3) A least-squares expression is fit between NDVI;,, and Tsq, using the selected pixels.

T300(NDVI300) = a + b X NDVI3, + ¢ X NDVIZ,, (2)
30mNDVI| ‘ 300mN pﬁ\{rlr_‘ 3()()1117_7g§'71'_77_|
.
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ATs00 = Tsg0 — Tago
Figure 1. Flowchart of temperature sharpening.
(4) For each 30-m pixel within the 300-m pixel, Ts,can be computed according to Eq. (2) as
follows:
T30(NDVI3,) = a + b X NDVI3q + ¢ X NDVIZ, + ATz, (3)
where ATz00 = T390 — Ts0o IS the deviation between the regressed temperature and the tempera-
ture that was observed by the satellite at 300 m.

2.2. Area-weighting method based on landscape information

Coarse pixels are inhomogeneous because various types of land use may be included. Using a
dominant type to represent such a large landscape is irrational. When a sharpened temperature is
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obtained, the spatial details could be provided by surface variables at a high resolution, and the
inhomogeneous problem could be greatly diminished as the landscape is divided into finer pixels.
Combined with a high-resolution classification map, sub-pixel scale parameters can be applied
to the ET algorithm, which is more rational than using a dominate-class type because different land-
scapes might require different ET algorithms. The surface energy flux can be averaged linearly due
to the conservation of energy (Kustas et al., 2003), and a simple average that calculates the arithme-
tic mean over sub-pixels is the best choice for flux upscaling approaches (Ershadi et al., 2013b).
Thus, the aggregated flux at a low resolution F(x,y) is the arithmetic mean of all of the n X n
sub-pixel fluxes that constitute the contributing flux F(x;,y;) at coordinate (x;,y;) as follows:

F(xy) = — X0, X, F(x5y;) @)

Because the average of the sub-pixels fluxes is equal to the area-weighted sum of each land-
type result, the final coarse result can be derived by the area-weighted sum of each land-type result
within the landscape. The main steps of the area-weighting process are shown below (Xin et al.,
2012):

(1) Geometric correction and registration of the VNIR and TIR input datasets.

(2) Count area ratio of different land-cover types within each pixel of a low-spatial-resolution
classification image.

(3) According to the fine-classification data, different parameterization schemes can be used in
the ET algorithm to calculate the sub-pixel flux, such as net radiation (R,), soil heat flux (G) and
sensible heat flux (H).

(4) To calculate the regional flux, the flux of the large pixel is calculated by the area-weighting
method as follows:

F=YLwiF ()
where w; is the fractional area contributing flux F; of class type i, and F is the aggregated flux
at the coarse resolution. The LE is computed as a residual of the surface energy balance in the TSFA
(Temperature Sharpening and Flux Aggregation, see Sect. 2.3) process, in which a high-spatial-
resolution image is used to reduce the mixed pixels.

2.3. Pixel ET algorithm

The surface energy balance describes the energy between the land surface and atmosphere. The
energy budget is commonly expressed as follows:

R,=LE+H+G (6)
where R,, is the net radiation, G is the soil heat flux, H is the sensible heat flux, and LE is the
latent heat flux absorbed by water vapor when it evaporates from the soil surface and transpires
from plants through stomata. The widely used one-source energy balance model considers the ho-
mogeneous SPAC medium and ignores the inhomogeneity and structure. The LE can be expressed
as follows:

LE = 2p. %% (7)

Y Tatrs
where vy is the psychometric constant; e, and e, are the aerodynamic saturation vapor pressure

and atmospheric water vapor pressure, respectively; and r, and rg are the water vapor transfer
aerodynamic resistance and surface resistance, respectively. Surface resistance includes soil re-
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sistance and canopy resistance. The surface resistance is influenced by the physiological character-
istics of the vegetation and the water supply of roots. Thus, it is difficult to obtain surface resistance
by using remote sensing, and surface resistance is highly uncertain, particularly over heterogeneous
surfaces. To avoid error introduced by the uncertainty of the surface resistance, the LE is computed
as a residual of the surface energy balance equation.

R,, is the difference between incoming and outgoing radiation and is calculated as follows:

Ry = Sq(1 — ) + gLq — £,0Trhg (8)
where Sy is the downward shortwave radiation, a is the surface broadband albedo, g is the
emissivity of the land surface, Ly is the downward atmospheric longwave radiation, ¢ = 5.67 X
1078W-m™2 - K™* is the Stefan-Boltzmann constant, and T,,q is the surface radiation tempera-
ture.

G is commonly estimated by deriving empirical equations that consider surface variables, such
as R,. Because the canopy exerts a significant influence on G, the fractional canopy coverage FVC
is used to determine the ratio of G to R, as follows:

G=R, X[+ (1—-FVCQ) x (I, —T.)] 9
where Ty is 0.315 for bare soil and T, is 0.05 for a full vegetation canopy (Su, 2002). H is the
transfer of turbulent heat between the surface and atmosphere that is driven by a temperature differ-
ence and is controlled by resistances that depend on local atmospheric conditions and land cover
properties (Kalma et al., 2008). According to gradient diffusion theory,

H = p, e (10)
where p is the density of the air; c,, is the specific heat of the air at a constant pressure; Tyer, 1S
the aerodynamic surface temperature obtained by extrapolating the logarithmic air-temperature pro-
file to the roughness length for heat transport; T, is the air temperature at a reference height; and
r, isthe aerodynamic resistance, which influences the heat transfer between the source of turbulent
heat flux and the reference height. Aerodynamic resistance was calculated based on the Monin-
Obukhov similarity theory (MOST) using a stability correction function (Paulson, 1970; Ambast et
al., 2002). The zero-plane displacement height, d, and roughness length, z,,,, were parameterized
by the schemes proposed by Choudhury (Choudhury and Monteith, 1988).

In this approach, H must be accurately estimated. However, calculating H by using Eq. (10)
is difficult. Because remote sensing cannot obtain T,..,, the value of T,.., is usually replaced by
the radiative surface temperature T.,q, Which is not always equal to T,¢.,. The difference between
these terms for homogeneous and fully covered vegetation is approximately 1-2°C (Choudhury et
al., 1986), or up to 10°C in sparsely vegetative areas (Kustas, 1990). The method that corrects for
this discrepancy adds “excess” resistance ro, to r,. We used the brief method r., = 4/u,, which
was proposed by Chen (1988), to calculate rey.

Fig. 2 shows a flowchart for merging ET retrieval and temperature sharpening based on HJ-1B
satellites.
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Figure 2. Flowchart of ET retrieval using the “Temperature Sharpening and Flux Aggregation” method.

The spatial scale effect is usually revealed by a discrepancy between different upscaling meth-
ods: the upscaling of aggregate parameters to the large scale to calculate the heat flux and the cal-
culation of the heat flux at the small scale before upscaling it to the large scale. In this paper, the
resolution of the final output result is 300 m. To evaluate the reduced heterogeneity effect of TSFA,
two other upscaling methods called IPUS and TRFA were used (see Fig. 3). When using IPUS, the
surface-parameter retrieving algorithms (see Sect. 3.2.1.1) are applied to HJ-1 CCD data. Then, the
variable results are aggregated at a spatial resolution of 300 m. These 300 m outputs are used as
input parameters in the one-source energy balance model to obtain the four energy-balance compo-
nents at 300 m. In TRFA, the LST at 300 m is resized to 30 m using nearest neighbor sampling.
Then, the resampled LST and surface VNIR variables at 30 m are applied to ET algorithm. The
outputs of the four energy-balance components of the TRFA are obtained using the area-weighting
method shown in Sect. 2.2.

Surtace VNIR
parameters at 30 m

. Sharpened
LSTat 300 m 1ST at 30 m
[, )
Resamping
y I Y
Parameters aggregation ‘ ET algorithm ‘ ‘ ET algorithm ‘
Surface VNIR Turbulent heat flux Turbulent heat flux
parameters at 300 m at 30 m at 30 m
| ET algorithm | | Flux aggregation | ‘ Flux aggregation |
Turbulent heat flux Turbulent heat flux Turbulent heat flux
at 300 m (IPUS) at 300 m (TRFA) at 300 m (TSFA)
M Compare o

Figure 3. Flowchart of the three upscaling methods for retrieving evapotranspiration.
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3. Study area and Dataset
3.1. Study area

Our study was conducted in the middle stream of the Heihe River Basin (HRB), which is lo-
cated near the city of Zhangye in the arid region of Gansu Province in northwestern China
(100.11<E-100.16 E, 39.10N-39.15N). The middle reach of the HRB is a typical desert-oasis ag-
riculture ecosystem dominated by maize and wheat. A large portion of the Gobi Desert and the
alpine vegetation of Qilian Mountain are located near the study area (see Fig. 4). The artificial oasis
is highly heterogeneous, which impacts the thermal-dynamic and hydraulic features. Consequently,
the water use efficiency and ET are variable. The Heihe River Basin has long served as a test bed
for integrated watershed studies as well as land surface or hydrological experiments. Comprehen-
sive experiments, such as Watershed Allied Telemetry Experimental Research (WATER) (Li et al.,
2009), and an international experiment - the Heihe Basin Field Experiment (HEIFE) in World Cli-
mate Research Programme (WCRP) have taken place in the Heihe River Basin. One major objective
of HIWATER is to capture the strong land surface heterogeneities and associated uncertainties
within a watershed (Li et al., 2013).

100°10'E 100°30'E 100°35'E 100°40'E
L 1

ever green coniferous forest

e s broadleaved forest x
d HHZ

T
38°45'N

Wb

T
100°30'E

= T T
100°10°E 100°15'E 100°20'E 100°25'E

Figure 4. Study area and distribution of EC towers in HIWATER-MUSOEXE

3.2. Dataset

In this paper, the data are mainly derived from the HJ-1B satellite. We combined these data
with ancillary data and the in situ “Multi-Scale Observation Experiment on Evapotranspiration over
heterogeneous land surfaces of The Heihe Watershed Allied Telemetry Experimental Research”
(HIWATER-MUSOEXE) data to estimate and validate the HJ-B land surface variables and heat
fluxes.
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3.2.1. Remote sensing data
3.2.1.1. HJ-1B satellite data

The specifications of HJ-1B are shown in Table 1. These satellites have quasi-sun-synchronous
orbits at an altitude of 650 km, a swath width of 700 km and a revisit period of 4 days. Together, the
revisit period of the satellites is 48 h. Because HJ-1 CCDs lack an onboard calibration system,
scholars have proposed cross-calibration methods for calibrating the CCD instruments (Zhong et al.,
2014b; Zhang et al., 2013). The image quality of HJ-1A/B CCDs is stable, the performances of each
band are balanced (Zhang et al., 2013), and the radiometric performance of the HJ-1A/B CCD sen-
sors is similar to the performances of the Landsat-5 TM, Advanced Land Imager, and ASTER sen-
sors. The image quality of HJ-1 CCDs is very similar to the image quality of Landsat-5 TM (Jiang
et al., 2013). In addition, the accuracy of the TIR band’s onboard calibration meets land surface
temperature retrieval requirements but not sea surface temperature retrieval requirements (J. Li et
al., 2011). China Center for Resources Satellite Data and Application (CRESDA) releases calibra-
tion coefficients once each year on its website (http://www.cresda.com). These data are freely avail-
able from the CRESDA website (http://218.247.138.121/DSSPIlatform/index.html).

Table 1. Specifications of the HJ-1B main payloads

Sensor Band Spectral range (pm) Spatial resolution (m) Swath width (km) Revisit time (days)

1 0.43-0.52
2 0.52-0.60 360 (single)

CCDh 3 0.63-0.69 30 4

700 (two)
4 0.76-0.90
5 0.75-1.10
6 1.55-1.75 150
IRS 720 4

7 3.50-3.90
8 10.5-12.5 300

HIJ-1B CCD HI-1B IRS

SAA

Figure 5. Flowchart of the land surface variable retrieval. The abbreviations are defined as follows: SZA: solar
zenith angle; SAA: solar azimuth angle; VZA: view zenith angle; AOD: aerosol optical depth; ABT: at-nadir bright-
ness temperature; Sq: downward shortwave radiation; USR: upward shortwave radiation, ULR: upward longwave
radiation; and Lq: downward longwave radiation.

We used the HJ-1B satellite data for the HRB region in 2012. Because many variable-retrieving
algorithms required clear-sky conditions for calculating ET, we combined data-quality information
with visual interpretation to select satellite images without clouds. Considering the time period of
the ground observations discussed in Sect. 3.2.2, we obtained data for 11 days: June 19, June 30,
July 8, July 27, August 2, August 15, August 22, August 29, September 2, September 13 and Sep-
tember 14.
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The HJ-1B satellite data from the HRB were pre-processed and included geometric correction,
radiometric calibration, and atmosphere correction. For Eq. (1) to (10), the following surface varia-
bles are needed: downward shortwave radiation, downward longwave radiation, emissivity, albedo,
fractional vegetation coverage (FVC), cloud mask data, meteorological data, LAl and LST. Fig. 5
contains a flowchart showing the retrieval of these variables.

(1) Surface albedo. According to the algorithm proposed by Liang et al. (2005) and Q. Liu et
al. (2011), surface albedo was obtained from the top of the atmosphere (TOA) reflectance by the
HJ-1 satellite with a lookup table based on an angular bin regression relationship. The surface albedo
and bidirectional reflectance distribution function (BRDF) of the HJ-1 satellite in the regression
procedure were monitored by using POLDER-3/PARASOL BRDF datasets, and BRDF was used to
obtain the TOA reflectance using the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum)
radiation transfer mode.

(2) NDVI, FVC and LAI. The NDVI is the central regression of temperature sharpening and
was used to calculate the FVC. Atmospherically corrected surface reflectance values were used to
calculate the NDVI as follows:

NDV] = Pnir—Pred (11)
PnirtPred
and
NDVI-NDVI
FVC = NDVI,+NDVI; (12)

where pnir and preq are the reflectances in the near-infrared and red band, respectively, and
NDVI, and NDVI are the fully vegetated and bare soil NDVI values, respectively. As an im-
portant input for the parameterization of surface roughness length and aerodynamic resistance, the
LAI was determined using the following equation (Nilson, 1971):
P(e) — e—G(G)-Q-LAI/cos(G) (13)
P(8) =1—FVC (14)
where 0 is the zenith angle, P(0) is the angular distribution of the canopy gap fraction, G(8) is
the projection coefficient (0.5), and Q is the total foliage clumping index, which can be obtained
from the GLC global clumping index database according to the type of land use (He et al., 2012).

(3) Land surface emissivity (LSE). LSE is needed to calculate the R,, and is extremely im-
portant for retrieving LST. In this paper, LSE was calculated using the FVC as follows (Valor and
Caselles, 1996):

£ =& - FVC+ g5(1 — FVC) + 4 < de > FVC- (1 — FVC) (15)
where ¢ isthe LSE, < de > is an effective value of the cavity effect of emissivity, the mean de
of all vegetation species in this study is <de>=0.015, and ¢, and ¢, are the vegetation and ground
emissivity, respectively.

(4) Land surface temperature. A single-channel parametric model for retrieving LST based on
HJ-1B/IRS TIR data developed by H. Li et al. (2010) was applied. This model was developed from
a parametric model based on MODTRAN4 using NCEP atmospheric profile data.

(5) Downward shortwave radiation. The algorithm proposed by L. Li et al. (2010) was applied.
MODO05, TOMS, aerosol, and solar angle data were used to estimate the direct light flux and diffuse
light flux by using a lookup table that was generated using the 6S radiation transfer mode (Vermote
et al., 2006). This method considered the influences of complex terrain, and a topographic correction
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was performed by using products of the ASTER DEM.

(6) Downward longwave radiation (Lq). The TOA brightness temperature of the HJ-1B thermal
channel was used to substitute the atmospheric effective temperature. Effective atmospheric emis-
sivity was parameterized as an empirical function of the water vapor content. These values were
substituted for atmospheric temperature and atmospheric emissivity to estimate the value of L.
Because this Lq retrieval method proposed by Yu et al. (2013) was only valid for clear-sky conditions,
cloud masking information was used to determine clear skies. When cloud contamination existed in
the image, the brightness temperature was relatively low, causing the Lq to be lower than that in the
cloudless images.

3.2.1.2. Ancillary data

Ancillary data were used because the bands of the satellite could not invert all of the variables
needed for retrieving ET.

(1) Atmospheric water vapor data. MODIS provides water vapor data (MODO5), including a
1-km near-infrared product and a 5-km thermal-infrared product, every day. The 1-km near-infrared
water vapor product was used to retrieve Lg in this study.

(2) Surface elevation data. We used the 30-m resolution Global Digital Elevation Model
(GDEM) based on ASTER, which covers 83 N-83<5, to derive S,.

(3) Atmosphere ozone data. A Total Ozone Mapping Spectrometer (TOMS), which was carried
on an Earth Probe (EP) satellite, was used to derive Sy. The TOMS-EP provided daily global at-
mosphere 0zone data at a resolution of 1<1.25<(Li et al., 2010b).

(4) Atmosphere profile data. Global reanalysis data from the National Centers for Environmen-
tal Prediction (NCEP) were used to derive LST. These data were generated globally every 6 hours
(0:00, 06:00, 12:00, 18:00 UTC) for every 1 <of latitude and longitude (Li et al., 2010a).

3.2.2. HIWATER experiment dataset

The in situ HRB observation data were provided by HIWATER. From June to September 2012,
HIWATER designed two nested observation matrices over 30 km>30 km and 5.5 km>&.5 km within
the middle stream oasis in Zhangye to focus on the heterogeneity of the scale effect in the so-called
HIWATER-MUSOEXE.

In a larger observation matrix, four eddy covariance (EC) systems and one superstation were
installed in the oasis—desert ecosystem. Each station was supplemented with an automatic meteor-
ological station (AMS) to record meteorological and soil variables and monitor the spatial-temporal
variations of ET and its impact factors (Li et al., 2013). The station information is shown in Table
2, and the distribution of the stations is shown in Fig. 4. Within the artificial oasis, an observation
matrix composed of 17 EC towers and ordinary AMSs exists where the superstation was located.
The land surface was heterogeneous and dominated by maize, maize inter-cropped with spring
wheat, vegetables, orchards, and residential areas (Li et al., 2013). Because the EC16 and HHZ
stations lacked R, and G observation data, they were excluded from this study.

Table 2. The in situ HIWATER-MUSOEXE station information

Station  Longitude (§  Latitude (§  Tower height (m)  Altitude (m) Land cover
EC1 100.36E 38.89N 3.8 1552.75 vegetation
EC2 100.35E 38.89N 3.7 1559.09 maize

EC3 100.38E 38.89N 3.8 1543.05 maize



© 00 N O Ol W DN P

[T S T S e = S S S S S O
B O © 0N O U1l WDN B O

22

23

24
25

EC4 100.36E 38.88N 4.2 1561.87 building

EC5 100.35E 38.88N 3 1567.65 maize
EC6 100.36E 38.87N 4.6 1562.97 maize
EC7 100.37E 38.88N 3.8 1556.39 maize
EC8 100.38E 38.87N 3.2 1550.06 maize
EC9 100.39E 38.87N 3.9 1543.34 maize
EC10 100.40E 38.88N 4.8 1534.73 maize
EC11 100.34E 38.87N 35 1575.65 maize
EC12 100.37E 38.87N 35 1559.25 maize
EC13 100.38E 38.86N 5 1550.73 maize
EC14 100.35E 38.86N 4.6 1570.23 maize
EC15 100.37E 38.86N 45 1556.06 maize
EC17 100.37E 38.85N 7 1559.63 orchard
GB 100.30E 38.91N 4.6 1562 uncultivated land-Gobi
SSW 100.49E 38.79N 4.6 1594 uncultivated land-desert
SD 100.45E 38.98N 52 1460 swamp land

The ground observation data include the H and LE. Reliable methods were used to ensure the
quality of the turbulent heat flux data. Before the main campaign, an intercomparison of all instru-
ments was conducted in the Gobi Desert (Xu et al., 2013). After basic processing, including spike
removal and corrections for density fluctuations (WPL-correction), a four-step procedure (data were
rejected when (1) the sensor was malfunctioning, (2) precipitation occurred within 1 h before or
after collection, (3) the missing ratio was greater than 3% in the 30-min raw record and (4) the
friction velocity was below 0.1 ms™* at night) was performed to control the quality of the EC data,
and EC outputs were available every 30 min (for more details see Liu et al., 2011b; Xu et al., 2013;
Liuetal., 2016). G was measured by using three soil heat plates at a depth of 6 cm at each site, and
the surface G was calculated using the method proposed by Yang and Wang(2008) based on the soil
temperature and moisture above the plates. Surface meteorological variables, such as wind speed,
wind direction, relative humidity and air pressure, were used to interpolate images using the inverse-
distance weighted method. Researchers can obtain these data from the websites of the Cold and Arid
Regions Science Data Center at LanZhou http://card.westgis.ac.cn/ or the Heihe Plan Data Manage-
ment Center http://www.heihedata.org/.

An energy imbalance is common in ground flux observations. The conserving Bowen ratio
(H/LE) and residual closure technique are often used to force energy balance. Computing the LE as
a residual variable may be a better method for energy balance closure under conditions with large
LEs (small or negative Bowen ratios due to strong advection) (Kustas et al., 2012). Thus, the resid-
ual closure method was applied because the “oasis effect” was distinctly observed in the desert-
oasis system on clear days during the summer (Liu et al., 2011b).

4. Results and analysis
4.1. Evaluation of surface variables

To control the model input variables and analyze sources of error, the coarse-resolution land
surface temperature, downward shortwave radiation, downward longwave radiation, R, and G
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were evaluated using in situ data.
The ground-based land surface temperature, T, was calculated using the Stefan-Boltzman
Law from the AMS measurements of the longwave radiation fluxes (Li et al., 2014) as follows:

1
LT—(I—ES)-LL]Z

T, =| (16)

inwhich LT and L' are in situ surface upwelling and atmospheric downwelling longwave radiation,
respectively, and &g is the surface broadband emissivity, which is regarded as the pixel value of the
HJ-1B at the AMS. The coefficient of determination R?, mean bias error (MBE) and root mean
square error (RMSE) of the LST are 0.71, -0.14 K and 3.37 K, respectively. As seen in Table 3, the
accuracy of EC4 is low. The main causes of the large errors are as follows: (1) because buildings
and soil/vegetation are distinct materials, the LSE algorithm may not be suitable for buildings and
(2) the EC4 foundation is non-uniform and is not suitable for validation. After removing the EC4
data, the R?, MBE, and RMSE of the LSTs were 0.83, 0.69 K and 2.51 K, respectively. The LST
errors of SSW and SD were large due to large errors on particular days. For example, although it
was briefly cloudy above station SSW on July 27, this area was not identified as cloudy in the cloud
detection process.
Table 3. Station validation results of land surface temperature

RMSE
station R?  MBE (K) ) station R?  MBE (K) RMSE (K)

EC1 0.82 0.18 174 EC11 042 1.59 2.98
EC2 0.82 0.59 154 EC12 0.87 0.62 1.51
EC3  0.69 0.38 1.90 EC13 0.83 0.44 1.48
EC4 083 -9.87 10.04 EC14 0.73 1.43 2.44
EC5 0.83 1.71 234 EC15 074 1.53 2.41
EC6 061 0.30 244  EC17 0.78 1.20 2.32
EC7 082 0.39 1.40 GB 069 0.12 2.33
EC8 0.83 0.45 1.55 SSW  0.59 1.38 3.82
EC9 0.63 231 3.15 SD 0.76 -3.83 4.84
EC10 0.68 1.32 2.45
The R?, MBE, and RMSE values of S; were 0.81, 13.80 W-m2, and 25.35 W-m, respectively.
The station validation results are shown in Table 4. The accuracy of SSW is low. Because cloudy
conditions occurred briefly on July 27, few ground observations were obtained, and S; was signif-
icantly overestimated. After removing these data, the R2, MBE, and RMSE values of S; at SSW
were 0.87, 10.90 W-m and 21.13 W-m-?, respectively.
Table 4. Station validation results of downward shortwave radiation
station  R? MBE ~ RMSE station  R? MBE - RMSE
(W-m?) (W-m?) (W-m?) (W-m?)
ECl 097 2523 2773 ECI11 090 3011 33.76
EC2 084 2829 3357 ECI12 096 2435 2643
EC3 097 1756 1925 EC13 093 1241 1792
EC4 098 6.07 934 EC14 098 3240 3349
EC5 098 1060 1229 EC15 094 26.71 29.71
EC6 093 2768 30.71 EC17 094 -2025 2454
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EC7 089 -17.69 27.59 GB 0.89 2534 30.63
EC8 083 1563 2550 SSW 0.63 1851 3493
EC9 096 -227 996 SD 098 570 1382
EC10 094 -350 11.97
The R?, MBE, and RMSE of the HRB Lq were 0.73, 0.28 W-m?, and 21.24 W-m?, respectively.
As seen in Table 5, the accuracies at EC3, SD and SSW were low. The low accuracies at EC3 and
SD potentially resulted from (1) high humidity, which resulted in low at-nadir brightness tempera-
tures and low retrieved Lg, or (2) instrument error, which occurred because the EC3 ground obser-
vations were always greater than those of the other stations during the same period. Although SSW
was located in a desert, the ground-air temperature difference was large. The Lq retrieval may have
a large error because the models use surface temperature when estimating Ly to approximate or
substitute the near-surface temperature (Yu et al., 2013). The corrected error of our Lg retrieving
algorithm resulted from the ground-air temperature difference in non-vegetated areas. The inaccu-
racy of the SSW LST may influence the Lq results.
Table 5. Station validation results of downward longwave radiation
station  R? MBE  RMSE station  R? MBE  RMSE
(W.m-Z) (W.m-Z) (W.m»?) (W.m>2)
ECl 085 416 1721 ECI11 093 -272 1055
EC2 088 011 1423 ECI12 087 -0.84 1480
EC3 091 -3565 37.88 EC13 086 -7.28 1598
EC4 0.88 3.36 16.38 EC14 0.82 4.07 16.42
EC5 088 -079 1502 EC15 0.85 17.67 23.06
EC6 084 255 1543 EC17 090 -1.11 1287
EC7 075 -590 19.72 GB 0.88 9.50 27.82
EC8 080 -135 1749 SSW 085 2533 3450
ECO 086 1044 1799 SD 085 -2654 34.08
EC10 087 798 16.05
The R?, MBE, and RMSE of the HRB R,, were 0.70, -9.64 W-m2, and 42.77 W-m, respec-
tively. The station R,, validation results are shown in Table 6, which indicate that the accuracies of
EC4, EC7, EC17 and SSW were relatively low. According to the sensitivity analysis of Eq. (8), Lqg
and Sy are highly sensitive variables when calculating R,,, while the albedo, LSE and LST are not
as sensitive. Although LST was not a sensitive variable, the EC4’s LST, MBE and RMSE reached -
9.87 K and 10.04 K because the land cover of EC4 was maize at the 300 m resolution. However,
the observation tower was in a built-up area, which potentially caused errors when estimating R,,.
The accuracies of the EC7 S, and Lq were low on several days, and after removing these data,
MBE=-43.40 W-m and the RMSE=50.50 W-m. EC17 was within an orchard, and the signal that
was received by the sensors at EC17 were affected by the complex vertical structure of the orchard
ecosystem. The information on substrate plants may be ignored, leading to albedo retrieval errors.
Although the albedo was not a sensitive variable, a 0.03 bias can lead to an R, error of approxi-
mately 20 W-m-2 when the solar incoming radiation is large. As previously mentioned, it was briefly
cloudy on July 27, and after removing that data, the R?, MBE, and RMSE values of the R,, obtained
at SSW were 0.72, 8.20 W-m, and 37.60 W-m-?, respectively.
Table 6. Station net radiation validation results
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station  R? MBE ~ RMSE station  R? MBE - RMSE
(W m-Z) (W m-Z) (W m-Z) (W m-Z)
ECl 076 -255 3061 ECI11 0.86 -15.13 28.05
EC2 079 252 2524 ECI12 0.90 -8.46 19.38
EC3 086 -3584 4297 EC13 088 -2573 3234
EC4 084 76.64 80.25 EC14 090 4.23 18.18
EC5 085 -2441 3234 EC15 0.84 8.33 23.01
EC6 0.82 4.35 23.44 EC17 0.89 -62.62 68.11
EC7 0.61 -58.66 67.83 GB 0.77 -10.40 38.86
EC8 0.83 -2062 3245 SSW 044 2305 62.93
EC9 087 -29.60 36.27 SD 0.75 19.98 3524
EC10 083 -2435 3351
The R?, MBE, and RMSE of the G in the HRB were 0.57, 8.51 W-m?, and 29.73 W-m, re-
spectively. The station G validation results are shown in Table 7. For EC5, the soil temperature and
moisture were the same at different depths after July 19, which resulted in a surface G that was equal
to the G at a depth of 6 cm. The G below the surface was usually less than the G at the soil surface;
thus, the validation results of the G at EC5 indicate that G was overestimated. For SSW, the brief
cloudy period decreased the observed soil surface temperature, which decreased the calculated sur-
face G. However, the remotely sensed G did not reflect this situation. In this case, the G was over-
estimated because the R,, was overestimated. After removing the data on July 27, the R?, MBE,
and RMSE of the G at SSW were 0.17, 19.34 W-m?, and 33.30 W-m?, respectively.
Table 7. Station validation results of the soil heat flux
station  R? MBE ~ RMSE station  R? MBE - RMSE
(W m-Z) (W m-Z) (W m»2) (W m»Z)
ECl 050 1973 3153 ECI11 071 423 1923
EC2 024 2078 2872 ECI12 053 2029 24.79
EC3 003 -115 36.28 EC13 091 -0.89 17.27
EC4 045 1850 2229 EC14 082 -1.89 1872
EC5 038 4187 6019 EC15 078 668 1580
EC6 083 -591 1457 EC17 0.49 8.26 33.59
EC7 028 750 2465 GB 029 -17.86 2681
EC8 068 -573 2015 SSW 001 3041 5187
EC9 061 683 269 SD 071 -479 1371
EC10 041 7.68 2867

4.2. Validation of heat fluxes by TSFA

Fig. 6 provides the turbulent heat flux results calculated by TSFA on September 13, 2012. The
spatial distribution of the turbulent heat flux is obvious. The H of buildings and uncultivated land,
including the Gobi Desert, barren areas and other deserts, was high, in addition to the LEs of the
water and agricultural areas in the oasis. The southern areas of the images show uncultivated barren
land bordering the Qilian Mountains that resulted from snowmelt and the downward movement of
water. In these areas, the groundwater levels are high and the soil moisture content is approximately
30% based on in situ measurements at a depth of 2 cm. Therefore, the LE is higher in the south than
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in the southeast desert, although both areas were classified as uncultivated land.

Studies have shown that validation methods that consider the source area are more appropriate
for evaluating ET models than traditional validation methods based on a single pixel (Jiaetal., 2012;
Song et al., 2012). In this study, a user-friendly tool presented by Neftel et al. (2008) and based on
the Eulerian analytic flux footprint model proposed by Kormann and Meixner (2001) was used to
calculate the footprints of the function parameters. The continuous footprint function was dispersed
based on the relative weights of the pixels on which the source area fell.
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Figure 6. Maps of the four energy components, (a) Rn, (b) G, (c) H and (d) LE, calculated by TSFA on September

13, 2012.
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Figure 7. Scatter plot of the TSFA turbulent heat flux results
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The footprint validation results of the TSFA turbulent heat fluxes are shown in Fig. 7 and Table
8. The R?, MBE, and RMSE of the H were 0.61, 0.90 W-m2 and 50.99 W-m-2, respectively, and the
corresponding terms for the LE were 0.82, -20.54 W-m and 71.24 W-m, respectively. Because
the LE was calculated as a residual term, it was impacted by the R, surface G and H. The errors
of all of these variables may contribute to the LE, which complicates the error source of the LE and
is discussed in Sects. 4.3.2 and 4.4.
Table 8. In situ validation results of heat flux of TSFA
TSFA-H(W-m?) TSFA-LE(W-m?2)
date  R? MBE RMSE R? MBE RMSE
0619 0.39 4473 66.38 0.69 -44.15 80.60
0630 0.73 2371 3896 088 -63.81 77.83
0708 055 3270 5872 085 -43.02 7232
0727 0.90 -34.34 4359 092 26.74 57.60
0803 0.80 -477 1892 078 -458 47.86
0815 0.74 -1837 3882 093 475 3541
0822 0.40 31.64 6621 065 -4444 9381
0829 0.79 2301 3836 079 -5045 77.99
0902 021 -4510 7481 054 2439 6931
0913 025 -9.64 4101 059 -59.36 82.77
0914 031 -3411 50.88 047 27.99 6750

As seen in Fig. 7, most of the H values are small because June, July, August and September
constitute the growing season when ET greatly cools the air. The differential temperature between
the land surface and air is small, leading to a low H. The points with large H values are influenced
by uncultivated land. In our study area, bare soil, the Gobi Desert, and desert areas compose the
uncultivated land. The points in the scatter plot with large H values represent desert, where the H
values reach approximately 300 W-m™2. Some points in the H scatter plot are less than 0 due to
inversion from the “oasis effect” or irrigation. For example, HIWATERs soil moisture data show
that irrigation occurred on August 22, 2012. Irrigation is the main source of water within the oasis
and cools the land surface to temperatures below the air temperature. In addition, irrigation leads to
errors in LST retrieval because it increases the atmospheric water vapor content, as discussed in
Sect. 4.1. The model error is further analyzed in Sect. 4.4.

4.3. Comparison between TSFA, TRFA and IPUS

To verify whether the TSFA method can simulate the heterogeneities of the land surface, the
TRFA and IPUS methods were compared for estimating the ET. These three methods were evaluated
using (1) validation of TRFA and IPUS based on in situ measurements and (2) qualitative analysis
based on the spatial distribution and scatter plots of the four energy balance components.

4.3.1. Validation of TRFA and IPUS heat fluxes

Table 9 provides the footprint in situ validation results of the H and LE calculated using the
IPUS and TRFA methods. The R?, MBE, and RMSE of the LE between TSFA and TRFA were 0.99,
-7.81 W-m2 and 16.48 W-m?, respectively. And the R?, MBE, and RMSE of the LE between TSFA
and IPUS were 0.91, -4.10 W-m and 51.30W-m?, respectively. Comparing with validation results
of TSFA in Table 8, the TSFA method had a better retrieval accuracy than the TRFA method, and
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TRFA method was better than the IPUS method on all days, because the MBE and RMSE of TSFA
decreased and the R? of TSFA increased on most days. Table 9 shows that the improvement in the
accuracy that resulted from temperature resampling (TRFA) when comparing with the IPUS method
was relatively higher than the improvement observed from temperature sharpening (TSFA) when
comparing with the TRFA method. Compared with the IPUS method, the TRFA results were similar
to the TSFA results since the sub-pixel landscapes and sub-pixel variations of most variables were
considered. Thus, TRFA could effectively decrease the scale error that resulted from heterogeneity
because the VNIR data of satellite were fully used. However, the performance of the TRFA method
is unstable. For example, on August 3 and August 29, the TRFA results were slightly worse than the
IPUS results, and the TSFA results were obviously better. This difference occurred because the dif-
ferent sub-pixel landscape temperatures were treated as equal to the values estimated at the 300-m
resolution. Thus, when the 300-m-resolution LST has large retrieving errors, the turbulent heat flux
retrieving error may be amplified by the sub-pixel landscapes.
Table 9. In situ validation results of turbulent heat fluxes of IPUS and TRFA
IPUS-H(W-m?) IPUS-LE (W-m??) TRFA-H (W-m?) TRFA-LE (W-m?)
date R? MBE RMSE R? MBE RMSE R? MBE RMSE R? MBE RMSE
0619 032 4853 7170 066 -47.68 86.02 039 5228 7098 065 -4671 85.93
0630 050 4145 6730 0.80 -81.75 10233 069 4264 6085 086 -7850 93.98
0708 034 4417 7745 063 -66.75 11863 044 5420 7600 082 -6382 89.11
0727 081 -3314 5001 083 2561 7426 084 -2353 4176 086 1482 6521
0803 084 -523 3350 074 -398 6049 080 776 3751 076 -1823 6271
0815 064 -2328 4789 085 1032 5498 070 -1477 3999 089 059 4522
0822 031 4150 7481 061 -5360 10212 040 4063 69.94 065 -5417 98.97
0829 072 2715 4416 076 -5476 8320 075 3079 4497 077 -5943 86.22
0902 028 -5244 8325 051 3289 7648 021 -4577 7584 052 2437 71.69
0913 008 -1145 5750 061 -57.38 81.83 006 -11.89 49.63 054 -57.78 8458
0914 012 -3652 67.38 028 1946 89.30 003 -3434 6485 038 2541 7596

Surface landscape inhomogeneity can be classified using two conditions: nonlinear vegetation
density variations between sub-pixels (e.g., different types of vegetation mixed with each other or
with bare soil) and coarse pixels containing different landscapes (e.g., vegetation or bare soil mixed
with buildings or water). And landscapes variation always corresponding to inhomogeneity of sur-
face variable. To evaluate the effects of TSFA, stations with a typical severe heterogeneous surface,
such as EC4, a weak heterogeneous surface, such as EC11 and a typical pixel (called “TP” hereafter)
at the boundary of the oasis and bare soil (sample 62, line 102 in the image of study area), and a
uniform surface, such as EC15, were selected to analyze the temperature sharpening results.

EC4 is used as an example because its land cover and sub-pixel variation of temperature were
complicated. Table 11 compares the turbulent heat fluxes calculated using the IPUS, TRFA and
TSFA methods. Significant differences were observed between the TSFA and IPUS results and be-
tween the TRFA and IPUS results due to the heterogeneity of the surface. The LE calculated using
the TSFA method was more consistent with in situ measurements than the LE calculated using the
IPUS method because the MBE and RMSE decreased greatly, the R? increased, and the accuracy
was improved by approximately 40 W-m-2. However, the LE calculated by using the TRFA was
more accurate than the LE calculated by using the TSFA, as discussed below.

The H calculated by using the TSFA method was more accurate than the H calculated by using
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the TRFA and IPUS methods. The accuracy of the results from the TRFA method was relatively
close to the accuracy of the results from the TSFA method because the TRFA method also considers
the effects of the heterogeneity of landscapes. In addition, the H values obtained from the TRFA
method were always greater than those obtained from the TSFA method. Because the TSFA turbu-
lent heat flux results are the same as the TRFA turbulent heat flux results for buildings and water
bodies in our pixel ET algorithm, so the difference between TSFA and TRFA depends on the veg-
etation and bare soil. And the 300-m-resolution LST is larger than the LST of the sub-pixels, such
as pixels containing vegetation or bare soil, for two reasons: (1) the coarse pixels contain buildings
and result in a larger 300-m-resolution LST and (2) the LSTs were underestimated at EC4 (as shown
in Table 3), which would underestimate the value of ATs,, in Eq.(3) and, consequently, the sharp-
ening temperature at 30 m and H. Because the LE was calculated as a residual item in the energy
balance equation, the errors of the other three energy balance components would accumulate in the
LE. AtEC4, the R,, was overestimated by approximately 80 W-m-2, but the scale effect of R,, was
not obvious, as discussed in Sect. 4.1, and the G was overestimated by approximately 20 W-m2,
These results would lead to low accuracy of the available energy and overestimate the error by 60
W-m2. As TRFA overestimates H, the underestimation of H in TSFA would result in larger over-
estimation of LE than TRFA. Consequently, the LE calculated by using the TSFA method is less
accurate than the LE calculated by using the TRFA method.
Table 10. Comparison of the turbulent heat flux results at EC4

EC4 H(W-m?) LE(W-m?2)

Date  EC IPUS TRFA TSFA EC IPUS TRFA TSFA

0619 150.65 105.86 154.71 14213 278.55 402.60 344.05 357.79

0630 13832 9991 15353 126.88 341.98 419.83 358.12 386.07

0708 117.04 63.47 13179 11216 361.16 502.60 424.85 444,01

0727 13641 487 8599 7233 306.53 543.48 452.01 467.96

0803 6897 3651 11173 7476 389.63 498.21 414.67 454.23

0815 10460 12.69 8826 8256 357.34 522.31 43643 441.95

0822 12534 8593 120.68 93.18 318.08 41515 370.76 400.99

0829 8293 73.06 103.84 7476 317.68 362.04 322.77 355.16

0902 162.05 93.74 14449 13260 280.41 37542 31516 326.29

0913 11942 15144 157.07 130.85 263.18 234.93 222.62 249.59

0914 110.02 8824 12837 99.33 262.33 333.82 28504 31491

units: W-m-2

IPUS TRFA TSFA

Variable R? MBE RMSE R? MBE RMSE R? MBE RMSE

EC4-H 011 -4465 6173 025 588 2633 051 -16.93 26.54

EC4-LE 049 99.21 11955 0.56 4269 6240 0.60 6392 76.78
Fig. 8 shows that the classes and temperatures of 1010 sub-pixels at 30 m correspond to the
pixels with a resolution of 300 m at the EC tower. In the IPUS upscaling scheme, the 300-m pixels
included buildings and maize and vegetable crops at the 30-m resolution and were identified as
maize. The canopy height gap between maize and vegetables was large during our study period,
resulting in the overestimation of the canopy height. For more details see the error analysis in Sect.
4.4. However, because buildings corresponded with H = 0.6R, in this paper, ignoring the contri-
butions of buildings would result in the underestimation of H. Fig. 8(a) shows the temperature-
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sharpening results for the EC4 pixel on August 29. The temperature achieved at a resolution of 300
m was 303.49 K. Compared with the in situ measurement of 313.24 K, the temperature at a resolu-
tion of 300 m was underestimated. Even when substituting the in situ temperature into the ET model,
the value of H reached 399.60 W-m and the LE became 0 W-m. When substituting the in situ
temperature in the TRFA method, H was 396.49 W-m and LE was 18.7 W-m, indicating that the
LE was underestimated and the H was overestimated with large errors. After processing by temper-
ature sharpening, the distribution of the temperature at the 30-m resolution agreed with the classifi-
cation. Temperature sharpening improved the description of heterogeneity based on the thermody-
namic-driven force of the turbulent heat flux. These results apply to the ET model with the classifi-
cation map and high-resolution variables and correspond with more accurate sensible heat flux es-
timations.
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Figure 8. Distribution of classes and temperatures over the extreme heterogeneous surface (a) EC4, homogeneous
surface (b) EC15, weak heterogeneous surface (c) EC11 and (d) a typical pixel on August 29, 2012.

The land surface of EC15 was uniform and comprised of pure pixels covered by maize. The
temperature distribution at the 30-m resolution was as homogeneous as the land cover, and the var-
iation range of the surface temperature was small (approximately 1.6 K). Table 11 shows the in situ
validation results of EC15, for which the overall accuracy is not high due to the low LST retrieval
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accuracy on July 8, which is discussed in Sect. 4.4.1. For the homogeneous surface, the gaps be-
tween IPUS, TRFA and TSFA were not large (within 10 W-m), and the accuracy did not improve
(MBE and RMSE did not have obvious variations). Statistically sharpening the temperature may
increase the uncertainty of the model results for a homogeneous surface; however, this influence
could be omitted.
Table 11. Comparison of the turbulent heat fluxes results at EC15

EC15 H (W-m?) LE (W-m?)

Date EC IPUS TRFA TSFA EC IPUS TRFA TSFA

0619 9255 106.60 109.25 99.81 419.47 427.19 419.99 429.98

0630 4237 43.99 4551  44.67 551.73 527.12 52517 526.09

0708 18.34 21753 23548 209.90 620.95 42571 397.49 424.86

0727 2768 21.22 3111 2430 597.76 589.58 579.43 586.47

0803 233 3332 -007 001 59237 56520 601.33 601.33

0815 4881 3231 4628 44.62 553.74 56192 547.48 549.11

0822 5459 15434 151.77 158.60 473.68 408.37 410.80 405.07

0829 9.80 9497 9501 9091 47354 399.25 39852 402.93

0913 176.96 265.62 209.65 257.81 307.72 165.40 221.68 173.58

0914 188.34 198.15 197.04 196.60 274.98 275.07 276.05 276.56

units: W-m-2

IPUS TRFA TSFA
Variable R?2  MBE RMSE R?2 MBE RMSE R? MBE RMSE
EC15-H 040 40.64 7464 033 4593 80.81 040 4036 72.88
ECI15-LE 074 -5211 8348 071 -4880 8251 0.74 -49.00 81.94

The weak heterogeneous land surface EC11 contained barley, maize and vegetables in a coarse
pixel with a fractional area of 48:41:1 and was classified as barley at the 300-m resolution. The
distributions of the classes and temperatures are shown in Fig. 8(c), and the pixel belongs to the first
conditions of heterogeneity (nonlinear vegetation density variation between sub-pixels) that are
classified in the introduction. Table 12 shows the in situ validation results of EC11, for which the
improvements in the accuracies of H and LE by temperature resampling or sharpening were not as
obvious as the improvements at EC4, which contained total different landscapes (the other inhomo-
geneous scenario in introduction).

Theoretically, the LE pixel values from the TSFA and TRFA methods at EC11 should be
smaller than the IPUS values in the energy balance system. The height of maize (range 0.3 ~ 2 m)
was usually higher than the height of barley (range 0.9 ~ 1.1 m) in the study area from June to
August. Taller vegetation resulted in greater surface roughness and smaller aerodynamic resistance,
which led to larger H values, smaller LE values, and vice versa (e.g., vegetables with a canopy
height of 0.2 m). When using the TSFA and TRFA methods, patch landscapes consisting of different
crops, such as maize and vegetables, were considered. Thus, the LE was smaller than the IPUS LE.
On June 19, the canopy height of maize was 0.74 m, which was lower than the canopy height of
barley (1 m) and indicated that the H values resulting from the TRFA and TSFA methods were less
than the H resulting from the IPUS method. Because our validation method considered the influence
of source area, the in situ turbulent heat flux validation results included the effects of neighboring
pixels (i.e., on August 3, the turbulent heat flux values of the pixel corresponding with the location
of EC11 was only weighted 37% in the source area).
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The differences between the TSFA and TRFA methods was small and resulted from the LST
differences between the 30-m resolution temperature sharpening results and the LST retrieved at the
300-m resolution and were not evident at EC11. For example, on August 29, the temperature range
was 1.4 K, as shown in Fig. 8(c). This temperature was even less than the temperature range at EC15
because the observation system at EC15 was a superstation with a 40-m tall tower that may cause a
large shadow and a large temperature range. Hence the temperature sharpening effect is not obvious
after aggregating flux at the 300-m resolution under dense vegetation canopies. However, tempera-
ture sharpening can still decrease the heterogeneity that results from thermal dynamics.

The excess errors resulted from the relatively low LST accuracy, with R?, MBE, and RMSE
values of 0.42, 1.59 K and 2.98 K, respectively. On August 29, the temperature at a resolution of
300 m was 301.6 K, and the observed temperature of the ground was 300.20 K. The LST at the 300-
m resolution was slightly overestimated. When the in situ temperature was substituted into the IPUS
algorithm, the value of H decreased to 16.06 W-m and the LE became 467.43 W-m. When sub-
stituting the in situ temperature in the TRFA scheme, the value of H was 22.43 W-:m and the LE
was 461.58 W-m-2, which were more similar to the ground observations.

Table 12. Comparison of the turbulent heat flux results at EC11

EC11 H(W-m2) LE(W-m?)

Date  EC IPUS TRFA TSFA EC IPUS TRFA TSFA
0619 3394 17369 158.12 15818 531.46 391.60 407.42 407.40
0630 2503 329 2312 2137 63522 586.37 566.48 568.28
0708 3229 6817 9716 96.13 60198 567.73 538.77 539.81
0727 2142 117 -158 -377 587.70 618.80 619.19 621.46
0803 7.01 2485 2034 1952 61428 57503 58529 586.16
0815 3894 1251 1552 16.02 567.07 58431 581.31 580.82
0822 6925 7345 8311 8438 516.07 48323 473.60 472.40
0829 29.77 4821 609  60.81 47322 427.92 41532 41545
0902 193.97 15458 197.01 197.49 306.62 361.96 319.54 319.03
0913 28837 16842 1764 17771 160.29 21653 208.49 207.19
0914 240.33 26891 256.29 256.40 19952 156.00 168.63 168.55

units: W-m-2

IPUS TRFA TSFA
Variable R?  MBE RMSE R? MBE RMSE R? MBE RMSE
EC11-H 061 -1.07 6131 057 -036 6324 067 -021 5550
EC11-LE 0.88 -19.83 63.16 0.89 -1812 60.02 090 -21.29 58.11
Another typical pixel located at the boundary of the bare soil and the oasis with no flux meas-
urements was used to evaluate the correction effects of landscapes and temperature sharpening. The
land surface of TP contained maize, vegetables and bare soil at a fraction of 35:31:34. Table 13
shows that when neither the heterogeneity of the landscape nor the LST are considered, the relative
error of LE could reach 180 W-m. In addition, if only the LST heterogeneity is not considered, the
LE relative error could reach 48 W-m2. This result also reveals that the influences of landscape
inhomogeneity are greater than the influences of inhomogeneity on the LST in mixed pixels.
Table 13. Comparison of the turbulent heat flux results at TP
H (W-m?) LE (W-m?)
Date IPUS TRFA TSFA IPUS TRFA TSFA
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0619 186.31 149.73 143.98 321.04 35822 364.79
0630 383.65 191.59 158.79 67.03 259.36 292.89
0708 498.36 240.20 204.18 0.29  259.25 29341
0727 276.79 136.06 84.01 206.52 347.64 402.23
0803 214.14 7545 53.72 25237 392.08 416.41
0815 214.14 9824 7205 25237 368.64 393.68
0822 436.48 369.28 276.70  0.00 67.79  162.80
0829 23529 117.16 67.21 183.62 30241 356.75
0902 423.61 21215 18092 0.00 211.77 241.36
0913 338.00 285.04 216.26  0.00 53.62 122.58
0914 270.44 14820 100.19 115.19 238.43 286.51

units: W-m-

IPUS TRFA
Variable  R? MBE RMSE R? MBE RMSE
TP-H 0.62 17447 18549 0.95 4228 48.01
TP-LE 071 -17591 186.63 0.97 -43.11 49.04

4.3.2. Comparison of TRFA and IPUS methods

Using September 13 as an example, the spatial distributions of the four components of the
energy balance calculated by IPUS and TRFA are shown in Fig. 9 and Fig. 10, respectively. TSFA
minus IPUS and TSFA minus TRFA, which show the spatial distributions of the heterogeneity ef-
fect, are shown in Fig. 11. Scatterplots of TSFA versus IPUS and TRFA are shown in Fig. 12.

Comparing Fig. 6 with Fig. 9, the spatial distribution of the fluxes greatly changes, except for
R,. The TSFA results are synoptically smoother than the IPUS results because the land types and
temperature distributions in mixed pixels that cannot be considered in IPUS appear in TSFA. For
example, the boundary between the oasis and uncultivated land becomes a belt of intermediate G,
H and LE because mixed pixels include uncultivated land and vegetation. However, mixed pixels
are classified as the dominant land use type in the parameterization process of IPUS. This result
overlooks the contributions of heat flux from complex land use types and overestimates or underes-
timates the heat flux by approximately 50 W-m-2. However, TSFA can integrate the effects of these
land areas and reveals the relative actual surface conditions. The results of this analysis vary less
dramatically than the results obtained using IPUS, as shown in the figures. The results are similar
in the oasis.

Based on the overviews presented in Fig. 6 and Fig. 10, the TRFA and TSFA methods are
similar. Because the TRFA method considers the sub-pixel landscapes that could be a significant
source of error in ET models, the difference between the TSFA and TRFA methods result from the
differences between the sharpened and retrieved LST for the sub-pixels at the 300 m resolution. In
addition, the bias between the TSFA and TRFA is not as obvious as the bias between the TSFA and
IPUS methods, as shown in Fig. 11(c)(d)(e)(f). Furthermore, Fig. 11(f) shows that the LEs calcu-
lated by using the TSFA method for most oasis areas were slightly greater than the LEs calculated
by using the TRFA method, which were approximately 20 W-m2.

The quadrangular with a relatively unstable bias shown in Fig. 11(a) is caused by the Lq that
was calculated from the MODOS5 water vapor product which exists quadrangular even after prepro-
cessing the instrument malfunction gap. From Fig. 11, the differences of the four energy components
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5 on September 13, 2012.
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Figure 12. Scatter plots between the TSFA and IPUS results: (a) Ry, (b) G, (c) H and (d) LE; TSFA and TRFA (e)
R,, (f) G, (g) H and (h) LE. MBD and RMSD are the mean bias deviation and root mean square deviation between
the TSFA and IPUS results, respectively.

Fig. 12 shows the scatter plots between the results from the TSFA method and the other two
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methods for all four energy balance components in the image. Fig. 11(a)(e) shows that R,, does not
vary much between the three methods because the scatter is centralized around the 1:1 line. However,
regarding the spatial scale effect, the differences in G, H and LE calculated by using the IPUS
and TSFA methods are obvious: the scatter plots are dispersed at the mixed pixels, and the differ-
ences between the TRFA and TSFA results are relatively smaller. When using the TSFA method, the
temperature sharpening results can be divided into results that are higher and lower than the LST
retrieved at 300 m. Compared with the LST retrieved at 300 m when using the TRFA method, a
higher LST would be counterbalanced by a lower LST when calculating H. Thus, the heterogeneous
effect of temperature is neutralized in this case. This observation potentially resulted from the tem-
perature sharpening algorithms because they tend to overestimate the sub-pixel LST for cooler land-
scapes and underestimate the sub-pixel LST for warmer areas in the image (Kustas et al., 2003).

However, LE is calculated as a residual; thus, the difference of LE resulted from the G and H.
When the 300 m mixed pixels contain various types of land, they may be categorized as one type of
land because of the coarse resolution of the IPUS results and because a single temperature value is
used to evaluate the thermal dynamic effects when using the TRFA method. Pixels with highly dif-
ferent G, H and LE values are mainly distributed near the mixed pixels, as shown in Fig. 10. An
explanation for these deviations is provided below.

The parameterization of G and H is based on the land cover type. For example, for buildings,
G = 0.4R,(Kato and Yamaguchi, 2005) (which is usually greater than the G of vegetation and bare
soil deduced from Eq.(9)) and H = 0.6R,,, and for water, G = 0.226R,, and LE = R, — G. From
the land cover map shown in Fig. 4, four major classes exist in the study area, buildings with a high
H, uncultivated land with a relatively high H, cropland with a relatively low H, and water with
H=0.

(1) If a pixel contains cropland and buildings and is categorized as cropland the building area
within the pixel is ignored when using the IPUS method. In this case, G and H are underestimated
and LE is overestimated. In addition, after considering the landscapes by using the TRFA method,
the LE isunderestimated and H is overestimated because the pixels contain buildings that are still
reflected indistinctly by LST at 300 m because the detailed temperature heterogeneity cannot be
represented by the TRFA method. These points are shown in green in Fig. 11. However, if the pixel
is categorized as built-up, the building area within a pixel is exaggerated, which causes G and H
to be overestimated and LE to be underestimated when using the IPUS method. This situation is
similar to the points shown in green for the TRFA results and is shown by red points in Fig. 11.

(2) At the margin of the oasis and uncultivated land, the mixed pixels are divided into cropland,
the LE is overestimated, G and H are underestimated in the IPUS method, and vice versa. The
LE is also overestimated in the pixels containing water and other types of land cover (generally
bare soil in our study area). These pixels are categorized as water and are shown as blue points in
Fig. 11. Some of the blue LE points calculated by using the TSFA method are slightly smaller than
those calculated by using the TRFA method for pixels containing vegetation, and the temperature
of vegetation is lower than the temperature of water bodies at noon in our study area.

(3) In mixed pixels that contain various crops, such as maize and vegetables, the LE is under-
estimated if the area of maize within the pixel is overestimated because the canopy height of the
maize would be taller than that of vegetables, which would result in the overestimation of H when
using the IPUS and TRFA methods. In addition, G depends on the FVC of the crops when using
the IPUS method, and is nearly the same as the values of G obtained when using the TRFA and
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TSFA methods because it depends on R,,.

At the study area scale, we compared TRFA and IPUS to quantify the ability of the TSFA
method to simulate the heterogeneities of the land surface on September 13 (see Table 14). For pure
pixels, the LE biases among the IPUS, TRFA and TSFA methods were small. In mixed pixels, the
LE bias between the TSFA and IPUS methods varied from 35.36 to 65.66 W-m2, and the bias be-
tween the TSFA and TRFA methods varied from 4.41 to 22.53 W-m. More class types in mixed
pixels correspond to larger biases. Table 15 shows the bias of the mixed pixels that contain buildings
and bare soil between the three methods. For mixed pixels with buildings, the IPUS and TRFA
methods usually underestimated the LE, with a large bias compared with the TSFA method. For
mixed pixels without buildings and bare soil, the bias between TRFA (or IPUS) and TSFA was
relatively small, which indicates that the landscape and temperature inhomogeneity are accounted
for by the TSFA method. The aforementioned analyses demonstrate that the TSFA method can con-
sider the heterogeneous effects of mixed pixels.

Table 14. Comparison of the latent heat flux in pixels containing different numbers of class types

Number of class IPUS (W:m?) TRFA (W-m?) Pixel

types in pixels  R? MBD RMSD R? MBD RMSD number
1 1.00 0.21 0.21 1.00 0.05 0.61 11,398
2 085 -7.18 3536 1.00 -0.35 441 8212
3 0.66 -2.32 5255 098 -7.33 1256 4762
4 0.49 1.88 65.66 0.96 -11.56 16.55 2824
5 0.98 -30.92 62.69 0.96 -16.90 22.53 4

Notes: Number of class types in mixed pixels means the number of classification types that were contained in
the pixels. For example, 1 represents the pure pixels, 2 represents mixed pixels containing two land use types, etc.
MBD and RMSD are the mean bias deviation and root mean square deviation, respectively, between the TSFA
results and the TRFA and IPUS results.

Table 15. Comparison of the latent heat fluxes of typical mixed pixels
IPUS (W-m2) TRFA (W-m?) Pixel
R? MBD RMSD R? MBD RMSD number
mixed pixels contain buildings 0.58 -1.02 61.94 097 -9.64 1466 4918
mixed pixels do not contain buildings 0.81  -5.49 39.21 099 -212 7.60 10,884
mixed pixels contain bare soil 0.73 -152  49.04 098 -5.96 11.86 9049
mixed pixels do not contain bare soil 0.65 -7.55 4528 0.98 -2.46 7.83 6753

Types of mixed pixels

Considering the landscapes and inhomogeneous distribution of LST, the TSFA method ensures
that none of the end members (30 m pixel) are ignored or exaggerated. Thus, the distribution of LE
calculated using the TSFA method is smoother and more rational than the distributions of LE cal-
culated using the other methods. At the regional scale, the TSFA method describes the heterogeneity
of the land surface more precisely. And how much the estimation accuracy can be improved is dis-
cussed in the following sections.

4.4. Error analysis

Since LE is calculated as a residual term in the energy balance equations, the sensitivity of H
was analyzed at first. Land surface variables (including LST, LAI, canopy height, and FVC) and
meteorological variables (including wind speed, air temperature, air pressure and relative humidity)
are needed to estimate H in this paper. To locate the error source when retrieving H, a sensitivity
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analysis was performed by adding errors at each 10% step (except LST). Fig. 13 presents the sensi-
tivity analysis results: LST = 303.9 K (ranging from 298.4~309.4 K with a step size of 0.5 K),
LAI=1.4 (ranging 0.14~2.66 with a step size of 0.14), canopy height equals 1 m (ranging 0.1~1.9 m
with a step size of 0.1 m), FVC=0.5, wind speed u=2.48 m-s’, air temperature Ta=297.9 K, air
pressure = 97.2 kPa, and RH=40.29%. In addition, the land use type is maize, and the reference H
is 230.2 W-m™2.,
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Figure 13. Sensitivity analysis of the surface variables for sensible heat flux

The air pressure is stable over a short period and has little effect on the ET results. Although
“excess resistance” was calculated from the friction velocity, the meteorological data were provided
by ground observations; thus, the meteorological data are relatively accurate. As shown in Fig. 13,
LAI, canopy height and LST are sensitive variables.

The parameterization of the momentum roughness length indicates that LAI is sensitive to H,
with decreasing sensitivity when the LAl is greater than 1. When the LAl is less than 1, the momen-
tum roughness length increases as the LAl increases and the H and turbulent exchange are enhanced.
However, when the LAl is greater than 1, the plant canopy could be regarded as a continuum that is
not sensitive to H. Because our study area is dominated by agriculture and the study period was
from July to September, the crops in the HRB middle stream grew quickly, so the LAI was generally
greater than 1. Thus, LST and canopy height are the main sources of error.

4.4.1. The error of LST

As shown in Fig. 13 using monitoring data, a 1 K LST bias would result in 21% error of H,
about 48.3 W-m. However, the sensitivity of the LST is unstable and depends on the strength of
the turbulence. The strength of the turbulence determines the mass and energy transport and the
resistance of heat transfer, which influences the sensitivity of the LST. A weaker turbulence corre-
sponds to a weaker LST sensitivity and vice versa.

The influence of LST was analyzed based on the sensitivity analysis and LE results. We chose
homogeneous stations to analyze the LST error so that other errors could be ignored. These results
are shown in Table 16. The LE results obtained from the observed LST are consistent with the in
situ observations but have less bias. The LE was overestimated when the LST was underestimated
and vice versa. Because the magnitude of LE was greater than H, the relative error of LE was less
than the relative error of H. However, 1 K of LST bias would result in an average LE error of 30
W-m?, which is consistent with the sensitivity analysis of H shown in Fig. 13. Specifically, 1 K of
LST bias would result in LE biases of 8.7 W-m™ (in desert, SSW) to 84.4 W-m (in oasis, EC8),
which may prove that the sensitivity of LST is unstable.

Table 16. Results of the LST error analyses at the homogeneous stations
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LE from LE from LE H

LST
) retrieved  observed ) EC-LE  retrieved observed relative relative
Station  Date bias
LST (K) LST (K) ) (W-m?) LST LST error error

(W-m?  (Wm?) (%) (%)
EC8 0619  304.92 301.74 3.18 415.89 321.80 399.78 -22.62 68.58
EC7 0630 302.5 299.35 3.15 611.22 453.59 557.97 -25.79  886.08
EC10 0708  303.58 300.5 3.08 617.83 504.44 549.53 -18.35  390.24
EC15 0708  303.55 300.13 3.42  620.95 425.71 603.73 -31.44  450.57
EC7 0727  298.87 30055 -1.68 577.59 643.56 566.62 1142 -132.47
SSW 0727  307.86 316.82 -896 119.35 238.07 78.43 99.48 -60.36
EC2 0822  299.79 298.05 1.74  501.12 411.43 486.28 -17.90 67.20
EC8 0822  299.58 297.77 1.81  543.56 416.23 467.42 -23.42 88.59
EC10 0822 301.61 298.04 3.57  503.82 398.82 513.67 -20.84  138.61
EC15 0822  300.59 297.69 2.9 473.68 408.37 495.49 -13.79  129.60
EC8 0829  301.54 300.44 11 514.31 402.93 428.78 -21.66 63.91
EC15 0829 30141 299.84 157 47354 399.25 459.66 -15.69  182.34
SSW 0902 304.9 303.42 1.48  226.88 127.96 149.83 -43.60 11.36

Notes: “LST bias” is calculated as the retrieved LST minus the observed LST; “EC-LE” is the in situ latent heat flux;
“LE relative error” is the relative error between the retrieved and observed LST and is expressed as ((LE from
retrieved LST)-(LE from observed LST))/(LE from observed LST)>100%, “H relative error” is calculated in the

Ssame way.
4.4.2. The error of canopy height

In this paper, canopy height was obtained from a phenophase and classification map. Thus, the
accuracy of the canopy height was mainly dependent on the classification accuracy and plant growth
state. Even within the same region, the canopy height of a crop can differ due to differences in
seeding times and soil attributes, such as soil moisture and fertilization.

The land use at EC17 was orchard. However, in our land classification map, the land use at
EC17 was other crops, which includes vegetables and orchards. Thus, it was difficult to set the
canopy height. In our study area, most of the other crops were vegetables (canopy height of 0.2 m),
and the height of the orchard was approximately 4 m; thus, a value of 0.2 m would overestimate the
LE. The LE results with incorrect canopy heights and correct orchard canopy heights at EC17 are
shown in Table 17. The days of large LST bias were removed, and the bias between the model and
ground observations decreased. The excess errors were caused by errors in the LST and other land
use types, such as buildings and maize in the mixed pixels.

Table 17. Results of the canopy height error analyses at EC17

LE from incorrect LE from correct LE relative
Date EC-LE (W-m?) ] ]
canopy height (W-m2)  canopy height (W-m2)  error (%)

20120815 499.62 562.06 521.83 7.71
20120822 366.27 519.01 396.54 30.88
20120902 377.96 471.68 336.52 40.16
20120914 465.38 352.78 258.07 36.70

Except for the error source discussed before, the following sources of error were unavoidable:
(1) Although the remotely sensed turbulent heat flux is instantaneous, the EC data are averaged
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over time. Thus, the time scales do not match in the validation.

(2) The calibration coefficient of HJ-1B satellite’s CCD and IRS drifts because of the aging
instruments.

(3) Geometric correction causes half-pixel bias equal to or less than the deviation of the artifi-
cially subjective interpretation.

A one-source model and simplified parameterization schemes for determining surface rough-
ness lengths and heat transfer coefficients were used in this paper. The one-source model combines
soil evaporation and plant transpiration and assumes that SPAC is a one-source continuum for cal-
culating ET. This assumption is reasonable when the surface is densely covered by vegetation but
relies on the accuracy of the difference between the LST and air temperature, as previously men-
tioned. When a one-source model is applied to an area covered by sparse vegetation, such a semi-
arid or arid areas, this assumption is irrational.

5. Discussion

As mentioned in the results and analysis, the TSFA method describes the surface heterogeneity
more clearly than the IPUS and TRFA methods. The IPUS method aggregates the land surface pa-
rameters achieved by CCDs from 30 m to 300 m, which results in the loss of surface information
and leads to the scale effect. Although the TRFA method uses VNIR information and partially de-
creases the heterogeneity caused by landscape and VNIR variables, it treats the pivotal variable LST
as homogeneous within mixed pixels, which results in considerable error. In summary, the superi-
ority of the TSFA method is described as follows:

(1) The temperature sharpening algorithm in TSFA uses the NDVI at 30 m to monitor the LST
at 30 m and is capable of decreasing the influences of the heterogeneity of the LST, which agrees
with previous research results (Kustas et al., 2003; Bayala and Rivas, 2014; Mukherjee et al., 2014).
As analyzed in Sect. 4.3, the ignorance of the heterogeneity of LST in mixed pixels is irrational and
causes errors when estimating ET.

(2) In the one-source energy balance model, different landscapes used different parameteriza-
tion schemes. In the IPUS method, a single land cover type is assigned to a mixed pixel, which
results in a large error. However, the TSFA method is used to calculate the surface flux at 30 m and
is aggregated to 300 m using the area-weighting method, which considers all of the sub-pixel land-
scapes and improves the retrieval accuracy.

Some problems exist in the temperature sharpening algorithms. The temperature-downscaling
method used in this paper caused boxy anomalies in parts of the sharpened-temperature field be-
cause of the constant residual term, ATs,,, in Eq. (3) within large pixels. This situation also oc-
curred in the temperature sharpening algorithm proposed by Agam et al. (2007). In addition, our
temperature sharpening algorithm tends to overestimate the sub-pixel LST for cooler landscapes
and underestimate the sub-pixel LST for warmer areas (Kustas et al., 2003). This inaccurate estima-
tion causes errors that are difficult to evaluate when estimating turbulent heat flux. For example, the
small turbulent heat flux bias between TSFA and TRFA was caused by the counterbalanced effect
as analyzed in Sect. 4.3.1. The evaluation of more temperature sharpening algorithms under heter-
ogeneous surfaces with real datasets when applied in ET models would be helpful (Ha et al., 2011).

Our surface variable retrieval methods were validated against other areas considered in remote
sensing measurement campaigns. For example, the albedo algorithm was previously applied to re-
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trieve Global Land Surface Satellite (GLASS) Products (Liang et al., 2014), the LST retrieval algo-
rithm was validated in the Haihe River Basin in northern China (Li et al., 2011), and the soil heat
flux correction algorithm was validated in the GAME-Tibet campaign (Yang and Wang, 2008).
Since the surface of the Heihe River Basin is extreme heterogeneous, additional comparisons of our
algorithm in other areas of research would be better.

In addition, to correct the discrepancy between remotely sensed radiative surface temperature
and aerodynamic temperature at the source of heat transport, a brief and well-performed parameter-
ization scheme (under uniformly flat plant surface) of “excess” resistance was used to calculate the
aerodynamic resistance of heat transfer (Jiao et al., 2014). Since the objects of our study are mixed
pixels, more parameterization methods should be compared to select the optimum method.

Because of the sensitive variables of the one-source energy balance model used in this paper,
the accuracy of the LST and canopy height greatly influenced the turbulent heat flux. HJ-1B IRS is
a single-thermal channel, the single-channel LST-retrieving algorithm may be unstable under wet
atmospheric conditions (water vapor contents higher than 3 g/cm?) (H. Li et al., 2010), which may
create a bottleneck for ET estimations by HJ-1B. The canopy height is a priori knowledge based on
phenophase classifications and would influence the accuracy of the surface roughness, the length of
a heterogeneous surface or the seasonal transition. Multi-source remote sensing data could be used
to improve the accuracy of calibrations and land surface variable estimations. Active microwave
and LiDAR data (Colin and Faivre, 2010) could be used to obtain the canopy height, which would
decrease the dependence on the accuracy of the classification.

The energy balance closure has significant influence on evaluation of the model calculated heat
flux results. In our study area, the EC energy balance closure ratio was greater than 0.75 (Liu et al.,
2011b). Studies have shown that the not-captured low-frequency eddies(\VVon Randow et al., 2008),
extension of averaging time (Charuchittipan et al., 2014), and lack of an accurate accounting of heat
storage terms(Meyers and Hollinger, 2004) are potential reasons for the energy imbalance and so
forth. The conserving Bowen ratio and residual closure technique are often used to force energy
balance. We chose the residual closure at last because the conserving Bowen ratio method conducted
irrational sensible heat flux due to small or negative Bowen ratios (large LES due to “oasis effect”)
in the oasis-desert system. Energy balance closure was problematic at times for turbulent flux sys-
tem and tended to be associated with significant discrepancies in LE (Prueger et al., 2005).

Since a footprint model was used in the validation, the footprints discrepancy between in situ
measurements and remote sensing pixel may cause biases. For example, model validation results
were calculated by the relative weights of the footprint model, and multiply heat flux results of the
coarse pixels which were covered by source area from upwind direction. However, the heat fluxes
of coarse pixels included the contribution of not-overlapped sub-pixels within the coarse pixel. In-
fluenced by the heterogeneity of underlying surface, it would cause uncertainties in the validation.

6. Conclusion

We studied the effects of surface heterogeneity in ET estimation by the IPUS, TRFA and TSFA
methods over heterogeneous surface based on spatial resolution characteristic of different satellites,
and applied them to HJ-1B satellite data based on operational satellites’ instrumental characteristics.

Compared with the IPUS and TRFA methods, the TSFA method is more consistent with in situ
measurements (energy balance forced by residual closure method) according to the footprint vali-
dation results. If ET estimating algorithm does not consider surface heterogeneity at all (i.e. IPUS),
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it would cause significant error (i.e. 186 W-m-?) of heat fluxes. If ET estimating algorithm does not
consider heterogeneity of LST only (i.e. TRFA), it would cause non-negligible error (i.e. 49 W-m-?)
in heat fluxes calculating. The TSFA method reduces the uncertainties produced by surface land-
scapes and LST inhomogeneity. As a sensitive variable of the ET model, canopy height is mainly
determined by classification, and the application of classification at a 30-m resolution can improve
the accuracy of the canopy height. As another sensitive variable, the sharpened surface temperature
at a resolution of 30 m decreases the thermodynamic uncertainty caused by land surface heteroge-
neities. The TSFA method can capture the heterogeneities of the land surface and integrate the ef-
fects of landscapes in mixed pixels that are neglected at coarse spatial resolutions.

HJ-1B satellite data are advantageous because of their high spatiotemporal resolution and free
access. Because the satellites are still in operation, long-term data have promising applications for
monitoring energy budgets.
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Appendix

Notation Appllcatloh
(for calculating)

6S radiation Second Simulation of a Satellite Signal in the Solar Spectrum Albedo, S,
transfer mode radiation transfer mode
a Surface broadband albedo Sa» Ry
ABT At-nadir brightness temperature (K) Ld
AMS Automatic meteorological station
AOD Aerosol optical depth Sd
BRDF Bidirectional reflectance distribution function o
CCD Charge-coupled device
CcVv Coefficient of variation Sharpened LST
EC Eddy covariance
FvC Fractional vegetation coverage LSE, G, LAI
G Soil heat flux (W-m2)
G(6) G function, Foliage angle distribution LAI
H Sensible heat flux (W-m-)
HRB The Heihe River Basin
IPUS Input parameter upscaling scheme
IRS Infrared scanner
Ld Downward atmospheric longwave radiation (W-m~2) R,

LSE/e Land surface emissivity LST
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The vegetation/ground emissivity

LST/Tyaq Land surface temperature/Surface radiation temperature (K) H
MBE/MBD Mean bias error (deviation)
NCEP National Centers for Environmental Prediction LST
NDVI/NDVlzo Normalized difference vegetation index FVC, Sharpened LST
NDV 300 300-m NDV1 aggregated from NDVI Sharpened LST
NDVI,/NDVI, Normalized -diﬁerence vegetation index of bare soil/fully cov- .
ered vegetation
P(6) Angular distribution of the canopy gap fraction LAI
I, Aerodynamic resistance (s:-m™) H
Tex “Excess” resistance (s:m™?) heat transfer resistance
R, Net radiation (W-m2)
RMSE/RMSD Root mean square error (deviation)
Sd Downward shortwave radiation (W-m-) R,
SPAC The soil-plant-atmosphere continuum
SZA Solar zenith angle Sd
T, Air temperature (K) H
Aerodynamic surface temperature obtained by extrapolating the H
Taero logarithmic air-temperature profile to the roughness length for
heat transport (K)
TOA Top of the atmosphere
TOMS Total ozone mapping spectrometer Sd
TRFA Temperature resampling and flux aggregation
TSFA Temperature sharpening and flux aggregation
ULR Upward longwave radiation (W-m?) R,
USR Upward shortwave radiation (W-m-) R,
VNIR Visible/near-infrared
VZA/O View zenith angle Lg, LAI
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