
 

 

Response to the Referee 1 

We thank the reviewer for the comments. Below are our responses (in blue font) to the review’s 2 

comments(in black font). 3 

 4 

Anonymous Referee 5 

I think the authors have done a very good job in addressing almost all of the reviewer comments 6 

and have significantly approved the manuscript!  7 

Before final acceptance however, I would still like to see 2 topics addressed in the discussion 8 

and conclusion part of manuscript that are essential when comparing ground observed fluxes 9 

and RS derived fluxes: a) the different footprints of measurements and RS, and b) the non-10 

closure of the measured energy balance and their correction. Both aspects might have a signif-11 

icant impact on possible differences and biases - and should at least be taken into consideration 12 

in the evaluation of the results. 13 

Response: Thank you for your suggestion. We added some discussion about the two topics in the 14 

discussion, following as: 15 

a) The different footprints of measurements and RS. 16 

Since a footprint model was used in the validation, the footprints discrepancy between in situ 17 

measurements and remote sensing pixel may cause biases. For example, model validation results 18 

were calculated by the relative weights of the footprint model, and multiply heat flux results of the 19 

coarse pixels which were covered by source area from upwind direction. However, the heat fluxes 20 

of coarse pixels included the contribution of not-overlapped sub-pixels within the coarse pixel. In-21 

fluenced by the heterogeneity of underlying surface, it would cause uncertainties in the validation. 22 

b) The non-closure of the measured energy balance and their correction. 23 

The energy balance closure has significant influence on evaluation of the model calculated heat 24 

flux results. In our study area, the EC energy balance closure ratio was greater than 0.75 (Liu et al., 25 

2011). Studies have shown that the not-captured low-frequency eddies(Von Randow et al., 2008), 26 

extension of averaging time (Charuchittipan et al., 2014), and lack of an accurate accounting of all 27 

storage terms(Meyers and Hollinger, 2004) are potential reasons for the energy imbalance and so 28 

forth. The conserving Bowen ratio and residual closure technique are often used to force energy 29 

balance. We chose the residual closure at last because the conserving Bowen ratio method conducted 30 

irrational sensible heat flux due to small or negative Bowen ratios (large LEs due to “oasis effect”) 31 

in the oasis-desert system. Energy balance closure was problematic at times for turbulent flux sys-32 

tem and tended to be associated with significant discrepancies in LE (Prueger et al., 2005). 33 
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Abstract 8 

Evapotranspiration (ET) plays an important role in surface-atmosphere interactions and can be 9 

monitored using remote sensing data. However, surface heterogeneity including inhomogeneity of 10 

landscapes and surface variables affects the accuracy of ET estimated from satellite data signifi-11 

cantly. The objective of this study is to assess and reduce the uncertainties resulted from surface 12 

heterogeneity in remotely sensed ET using Chinese HJ-1B satellite data, which is of 30m spatial 13 

resolution in VIS/NIR bands and 300m spatial resolution in TIR band. A temperature sharpening 14 

and flux aggregation scheme (TSFA) was developed to obtain accurate heat fluxes from the HJ-1B 15 

satellite data. Two methods employing different upscaling policies of surface variables and fluxes 16 

were used to compare with TSFA, i.e., IPUS (input parameter upscaling) and TRFA (temperature 17 

resampling and flux aggregation). Moreover, the three methods can also be regarded as representing 18 

three typical schemes handling mixed pixels from the simplest to the most complex, i.e., all surface 19 

variables are at coarse resolution (300 m in this study) in IPUS and fine resolution (30 m in this 20 

study) in TSFA, while TRFA is in the middle (both 30m and 300m variables are used). Analysis and 21 

comparison between them can help us to get better understandings about spatial scale errors in re-22 

mote sensing of surface heat fluxes. In situ data collected during HiWATER-MUSOEXE (Multi-23 

Scale Observation Experiment on Evapotranspiration over heterogeneous land surfaces of The 24 

Heihe Watershed Allied Telemetry Experimental Research) were used for the validation and analy-25 

sis of the methods. ET estimated by TSFA is of best agreement with in-situ observations, the foot-26 

print validation results show that the R2, MBE, and RMSE of the sensible heat flux (H) were 0.61, 27 

0.90 W∙m-2 and 50.99 W∙m-2, respectively, and the corresponding terms for the latent heat flux (LE) 28 

were 0.82, -20.54 W∙m-2 and 71.24 W∙m-2, respectively, and IPUS showed the largest errors in ET 29 

estimation. The RMSE of LE between the TSFA and IPUS methods was 51.30 W∙m-2, and the 30 

RMSE of LE between the TSFA and TRFA methods was 16.48 W∙m-2. Furthermore, additional 31 

analysis shows that the TSFA method can capture the sub-pixel variations of land surface tempera-32 

ture and integrate the effects of overlooked landscapes in mixed pixels. 33 

Index Terms: heterogeneous surface, temperature sharpening, area weighting, energy balance, evapo-34 

transpiration, spatial scale, HJ-1B satellite 35 

1. Introduction 36 

Five types of methods have been developed to estimate evapotranspiration (ET) or latent heat 37 

flux (LE) via remote sensing. (1) Surface energy balance models calculate LE as a residual term. 38 

According to the partitioning of the sources and sinks of the Soil-Plant-Atmosphere Continuum 39 

(SPAC), surface energy balance models can be classified as one-source (Bastiaanssen et al., 1998; 40 



 

 

Su, 2002; Allen et al., 2007; Long and Singh, 2012a) or two-source models (Shuttleworth and Wal-1 

lace, 1985; Norman et al., 1995; Xin and Liu, 2010; Zhu et al., 2013). (2) Penman-Monteith models 2 

are used to calculate LE by using the Penman-Monteith equation and numerous surface resistance 3 

parameterization schemes that control the diffusion of evaporation from land surfaces and transpi-4 

ration from plant canopies. These two-source Penman-Monteith models separate soil evaporation 5 

from plant transpiration (Cleugh et al., 2007; Mu et al., 2011; Leuning et al., 2008; Chen et al., 2013; 6 

Sun et al., 2013; Mallick et al., 2015). (3) Land surface temperature-vegetation index (LST-VI) space 7 

methods assign the dry and wet edges of the LST-VI feature space as minimum and maximum ET, 8 

respectively. These methods interpolate the media using the Penman-Monteith or Priestley-Taylor 9 

equation to calculate the LE (Jiang and Islam, 1999, 2001; Sun et al., 2011; Long and Singh, 2012b; 10 

Yang and Shang, 2013; Fan et al., 2015; Zhang et al., 2005). (4) Priestley-Taylor models expand the 11 

range of the Priestley-Taylor coefficient in the Priestley-Taylor equation (Jiang and Islam, 2003; Jin 12 

et al., 2011) or combine the physiological force factors with the energy component of ET (Fisher et 13 

al., 2008; Yao et al., 2013). (5) Additional methods include empirical/statistical methods (Wang and 14 

Liang, 2008; Yebra et al., 2013) and the use of complementary based models (Venturini et al., 2008) 15 

and land-process models with data assimilation schemes (Bateni and Liang, 2012; Xu et al., 2015). 16 

All these ET estimation models are usually developed for simple and homogeneous surface 17 

conditions. When these remotely sensed models are applied to calculate the regional ET via satellite 18 

data, large spatial scale errors occur. Because heterogeneity is a natural attribute of the Earth’s sur-19 

face, non-linear operational model is another important issue of remotely sensed spatial scale error. 20 

However, it is difficult to develop linear operational models due to the complexity of mass and heat 21 

transfer processes between the atmosphere and land surface. 22 

In previous studies, researchers have coupled high- and low-resolution satellite data and statis-23 

tically quantified the inhomogeneity of mixed pixels to correct the scale error in ET estimations by 24 

using temperature downscaling that converts images from a lower (coarser) to higher (finer) spatial 25 

resolution using statistical-based models with regression or stochastic relationships among param-26 

eters (Kustas et al., 2003; Norman et al., 2003; Cammalleri et al., 2013; Ha et al., 2013), the correc-27 

tion-factor method that uses sub-pixel landscapes information to regress the correction factor of 28 

scale bias (Maayar and Chen, 2006) and the area-weighting method that calculates roughness length 29 

and sensible heat flux based on sub-pixel landscapes (Xin et al., 2012).These correction methods 30 

mainly focus on two problems: inhomogeneity of landscapes and inhomogeneity of surface varia-31 

bles.  32 

Studies have shown that different landscapes (Blyth and Harding, 1995; Moran et al., 1997; 33 

Bonan et al., 2002; McCabe and Wood, 2006) and the sub-pixel variations of surface variables, such 34 

as stomatal conductance (Bin and Roni, 1994), leaf area index (Bonan et al., 1993; Maayar and 35 

Chen, 2006) can cause errors in turbulent heat flux estimations. Surface variables inhomogeneity is 36 

rather difficult to evaluate as the sub-pixel variation of surface variables could be large even in the 37 

pure pixel. For example, generally, temperatures over the land surfaces vary strongly in space and 38 

time, and it is not unusual for the LST to vary by more than 10 K over just a few centimeters of 39 

distance or by more than 1 K in less than a minute over certain cover types (Z. Li et al., 2013). But 40 

in mixed pixels, surface variables such as land surface temperature are set as singular to represent 41 

the entire pixel area in ET estimation models. 42 

The focus of this study is on the effects of surface heterogeneity when estimating ET. Accord-43 

ing to the current satellites operation situation, three methods were used to analyze the uncertainty 44 



 

 

produced by surface heterogeneity. Input parameter upscaling (IPUS) does not consider the surface 1 

heterogeneities at all. It was designed to simulate the satellites that have identical spatial resolution 2 

both in visible near-infrared (VNIR) and thermal infrared bands (TIR), such as the land surface 3 

products of Moderate-Resolution Imaging Spectroradiometer (MODIS) satellites. Temperature 4 

resampling and flux aggregation (TRFA) only does not consider the heterogeneity of LST, and tem-5 

perature sharpening and flux aggregation (TSFA) consider all the surface heterogeneities. They 6 

were designed for the majority of satellites data or products that have inconsistent spatial resolution 7 

between VNIR and TIR, such as Landsat and HJ-1B satellites. 8 

Surface variables in this paper mainly derived from HJ-1B satellite data were used for this 9 

purpose. The Chinese HJ-1A/B satellites were launched on September 6, 2008, and were designed 10 

for disaster and environmental monitoring, as well as other applications. The HJ-1B satellites are 11 

equipped with two charge-coupled device (CCD) cameras and one infrared scanner (IRS) with spa-12 

tial resolutions of 30 m and 300 m, respectively. Compared with high-temporal-resolution satellites, 13 

such as the MODIS satellite, or high-spatial-resolution satellites, such as the Landsat 7 or 8 satellites, 14 

HJ-1B has the advantage of a high spatial-temporal resolution. Since the satellites were launched, 15 

the HJ-1/CCD time series data have been widely used in China to accurately classify land cover 16 

(Zhong et al., 2014a) and monitor various environmental disasters (Wang et al., 2010). Land-based 17 

variables, such as leaf area index (LAI), land surface temperature (LST), and downward longwave 18 

radiation (Ld), have been retrieved by the HJ-1 satellites using algorithms developed by Chen et al. 19 

(2010), H. Li et al. (2010, 2011) and Yu et al. (2013), respectively. These variables lay the foundation 20 

for ET research. 21 

Although the HJ-1B satellites provide CCD data with a high spatial resolution of 30 m, the 22 

spatial resolution of the thermal infrared (TIR) band is only 300 m. Thus, surface heterogeneity 23 

effects must be considered when estimating the heat flux.  24 

2. Methodology 25 

2.1. Temperature-sharpening method based on statistical relationships 26 

Surface thermal dynamics are a driving force of ET. The spatial resolution of TIR images is 27 

usually not as high as the spatial resolution of visible near-infrared bands (VNIR) because the energy 28 

of VNIR photons is higher than the energy of thermal photons. Thus, the inhomogeneity of TIR 29 

images would be greater than the inhomogeneity of VNIR images. Once the inhomogeneity of TIR 30 

images is enhanced, the uncertainty of the variables is calculated in the TIR band, and variables 31 

such as the land surface temperature become unpredictable. Therefore, we would like to derive land 32 

surface temperature data with a high spatial resolution. 33 

The different spatial resolutions of TIR and VNIR images make it possible to obtain the land 34 

surface temperature at the spatial resolution of the VNIR images, which is referred to as tempera-35 

ture-sharpening. Kustas et al. (2003) proposed a statistical temperature-sharpening method that 36 

could be applied to remotely sensed evapotranspiration models. This method assumes that the neg-37 

ative correlation between the Normalized Difference Vegetation Index (NDVI) and LST is invariant. 38 

The NDVI reflects vegetation growth and cover, and the LST reflects surface thermal dynamics. 39 

The LST decreases with increasing vegetation cover. The resulting scatter plots form a feature space 40 

that is applicable at different scales when enough pixels exist. 41 

HJ-1B satellite images can provide vegetation and thermal information at spatial resolutions of 42 



 

 

30 m and 300 m, respectively. However, the 300 m resolution thermal data cannot be use to discrim-1 

inate the surface temperatures of small targets within pixels. This deficiency can be addressed by 2 

using the functional relationship between NDVI and LST. A flowchart of temperature sharpening is 3 

shown in Fig. 1, and the LST at the NDVI pixel resolution can be derived based on the following 4 

steps (Kustas et al., 2003): 5 

(1) The selection of a subset of pixels from the scene where the NDVI is the most uniform at a 6 

pixel resolution of 300 m. Calculate the coefficient of variation (CV) by using the original NDVI 7 

data (NDVI30) with a resolution of 30 m and sort the values from smallest to largest. The CV is 8 

calculated as follows: 9 

 CV =
STD

mean
 (1) 10 

where STD and mean are the standard deviation and the average values, respectively, among the 11 

10×10 pixels that make up each 300-m NDVI (NDVI300) aggregated from NDVI30. 12 

(2) Next, the NDVI300 is divided into several classes (0 ≤ NDVI300 < 0.2, 0.2 ≤ NDVI300 <13 

0.5 and 0.5 ≤ NDVI300). Lower CV values correspond with more homogeneous land surface val-14 

ues, and a specific fraction should guarantee that a sufficient number of pixels is available for fitting 15 

a least-squares expression between NDVI300 and T300. Then, the fractions (25%) of the pixels 16 

having the lowest CV are selected from each class. 17 

(3) A least-squares expression is fit between NDVI300 and T300 using the selected pixels. 18 

 T̂300(NDVI300) = a + b × NDVI300 + c × NDVI300
2  (2) 19 

 20 

Figure 1. Flowchart of temperature sharpening. 21 

(4) For each 30-m pixel within the 300-m pixel, T̂30can be computed according to Eq. (2) as 22 

follows: 23 

 T̂30(NDVI30) = a + b × NDVI30 + c × NDVI30
2 + ∆T̂300 (3)  24 

where ∆T̂300 = T300 − T̂300 is the deviation between the regressed temperature and the tempera-25 

ture that was observed by the satellite at 300 m.  26 

2.2. Area-weighting method based on landscape information 27 

Coarse pixels are inhomogeneous because various types of land use may be included. Using a 28 

dominant type to represent such a large landscape is irrational. When a sharpened temperature is 29 



 

 

obtained, the spatial details could be provided by surface variables at a high resolution, and the 1 

inhomogeneous problem could be greatly diminished as the landscape is divided into finer pixels.  2 

Combined with a high-resolution classification map, sub-pixel scale parameters can be applied 3 

to the ET algorithm, which is more rational than using a dominate-class type because different land-4 

scapes might require different ET algorithms. The surface energy flux can be averaged linearly due 5 

to the conservation of energy (Kustas et al., 2003), and a simple average that calculates the arithme-6 

tic mean over sub-pixels is the best choice for flux upscaling approaches (Ershadi et al., 2013b). 7 

Thus, the aggregated flux at a low resolution F(x, y) is the arithmetic mean of all of the n × n 8 

sub-pixel fluxes that constitute the contributing flux F(xi, yj) at coordinate (xi, yj) as follows: 9 

 F(x, y) =
1

n×n
∑ ∑ F(xi, yj)

n
j=1

n
i=1  (4) 10 

Because the average of the sub-pixels fluxes is equal to the area-weighted sum of each land-11 

type result, the final coarse result can be derived by the area-weighted sum of each land-type result 12 

within the landscape. The main steps of the area-weighting process are shown below (Xin et al., 13 

2012): 14 

(1) Geometric correction and registration of the VNIR and TIR input datasets. 15 

(2) Count area ratio of different land-cover types within each pixel of a low-spatial-resolution 16 

classification image. 17 

(3) According to the fine-classification data, different parameterization schemes can be used in 18 

the ET algorithm to calculate the sub-pixel flux, such as net radiation (Rn), soil heat flux (G) and 19 

sensible heat flux (H). 20 

(4) To calculate the regional flux, the flux of the large pixel is calculated by the area-weighting 21 

method as follows: 22 

 F = ∑ wi ∙ Fi
n
i=1  (5) 23 

where wi is the fractional area contributing flux Fi of class type i, and F is the aggregated flux 24 

at the coarse resolution. The LE is computed as a residual of the surface energy balance in the TSFA 25 

(Temperature Sharpening and Flux Aggregation, see Sect. 2.3) process, in which a high-spatial-26 

resolution image is used to reduce the mixed pixels. 27 

2.3. Pixel ET algorithm 28 

The surface energy balance describes the energy between the land surface and atmosphere. The 29 

energy budget is commonly expressed as follows: 30 

 Rn = LE + H + G (6) 31 

where Rn is the net radiation, G is the soil heat flux, H is the sensible heat flux, and LE is the 32 

latent heat flux absorbed by water vapor when it evaporates from the soil surface and transpires 33 

from plants through stomata. The widely used one-source energy balance model considers the ho-34 

mogeneous SPAC medium and ignores the inhomogeneity and structure. The LE can be expressed 35 

as follows: 36 

  LE =
ρcp

γ
∙

es−ea

ra+rs
 (7) 37 

where γ is the psychometric constant; es and ea are the aerodynamic saturation vapor pressure 38 

and atmospheric water vapor pressure, respectively; and ra and rs are the water vapor transfer 39 

aerodynamic resistance and surface resistance, respectively. Surface resistance includes soil re-40 



 

 

sistance and canopy resistance. The surface resistance is influenced by the physiological character-1 

istics of the vegetation and the water supply of roots. Thus, it is difficult to obtain surface resistance 2 

by using remote sensing, and surface resistance is highly uncertain, particularly over heterogeneous 3 

surfaces. To avoid error introduced by the uncertainty of the surface resistance, the LE is computed 4 

as a residual of the surface energy balance equation.  5 

Rn is the difference between incoming and outgoing radiation and is calculated as follows: 6 

 Rn = Sd(1 − α) + εsLd − εsσTrad
4

 (8) 7 

where Sd  is the downward shortwave radiation, α is the surface broadband albedo, εs  is the 8 

emissivity of the land surface, Ld is the downward atmospheric longwave radiation, σ = 5.67 ×9 

10−8W ∙ m−2 ∙ K−4 is the Stefan-Boltzmann constant, and Trad is the surface radiation tempera-10 

ture. 11 

G is commonly estimated by deriving empirical equations that consider surface variables, such 12 

as Rn. Because the canopy exerts a significant influence on G, the fractional canopy coverage FVC 13 

is used to determine the ratio of G to Rn as follows: 14 

 G = Rn × [Γc + (1 − FVC) × (Γs − Γc)] (9)  15 

where Γs is 0.315 for bare soil and Γc is 0.05 for a full vegetation canopy (Su, 2002). H is the 16 

transfer of turbulent heat between the surface and atmosphere that is driven by a temperature differ-17 

ence and is controlled by resistances that depend on local atmospheric conditions and land cover 18 

properties (Kalma et al., 2008). According to gradient diffusion theory, 19 

 H = ρcp
Taero−Ta

ra
 (10) 20 

where ρ is the density of the air; cp is the specific heat of the air at a constant pressure; Taero is 21 

the aerodynamic surface temperature obtained by extrapolating the logarithmic air-temperature pro-22 

file to the roughness length for heat transport; Ta is the air temperature at a reference height; and 23 

ra is the aerodynamic resistance, which influences the heat transfer between the source of turbulent 24 

heat flux and the reference height. Aerodynamic resistance was calculated based on the Monin-25 

Obukhov similarity theory (MOST) using a stability correction function (Paulson, 1970; Ambast et 26 

al., 2002). The zero-plane displacement height, d, and roughness length, z0m, were parameterized 27 

by the schemes proposed by Choudhury (Choudhury and Monteith, 1988). 28 

In this approach, H must be accurately estimated. However, calculating H by using Eq. (10) 29 

is difficult. Because remote sensing cannot obtain Taero, the value of Taero is usually replaced by 30 

the radiative surface temperature Trad, which is not always equal to Taero. The difference between 31 

these terms for homogeneous and fully covered vegetation is approximately 1-2℃ (Choudhury et 32 

al., 1986), or up to 10℃ in sparsely vegetative areas (Kustas, 1990). The method that corrects for 33 

this discrepancy adds “excess” resistance rex to ra. We used the brief method rex = 4/u∗, which 34 

was proposed by Chen (1988), to calculate rex. 35 

Fig. 2 shows a flowchart for merging ET retrieval and temperature sharpening based on HJ-1B 36 

satellites. 37 



 

 

 1 

Figure 2. Flowchart of ET retrieval using the “Temperature Sharpening and Flux Aggregation” method. 2 

The spatial scale effect is usually revealed by a discrepancy between different upscaling meth-3 

ods: the upscaling of aggregate parameters to the large scale to calculate the heat flux and the cal-4 

culation of the heat flux at the small scale before upscaling it to the large scale. In this paper, the 5 

resolution of the final output result is 300 m. To evaluate the reduced heterogeneity effect of TSFA, 6 

two other upscaling methods called IPUS and TRFA were used (see Fig. 3). When using IPUS, the 7 

surface-parameter retrieving algorithms (see Sect. 3.2.1.1) are applied to HJ-1 CCD data. Then, the 8 

variable results are aggregated at a spatial resolution of 300 m. These 300 m outputs are used as 9 

input parameters in the one-source energy balance model to obtain the four energy-balance compo-10 

nents at 300 m. In TRFA, the LST at 300 m is resized to 30 m using nearest neighbor sampling. 11 

Then, the resampled LST and surface VNIR variables at 30 m are applied to ET algorithm. The 12 

outputs of the four energy-balance components of the TRFA are obtained using the area-weighting 13 

method shown in Sect. 2.2. 14 

 15 
Figure 3. Flowchart of the three upscaling methods for retrieving evapotranspiration. 16 
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3. Study area and Dataset 1 

3.1. Study area 2 

Our study was conducted in the middle stream of the Heihe River Basin (HRB), which is lo-3 

cated near the city of Zhangye in the arid region of Gansu Province in northwestern China 4 

(100.11°E-100.16°E, 39.10°N-39.15°N). The middle reach of the HRB is a typical desert-oasis ag-5 

riculture ecosystem dominated by maize and wheat. A large portion of the Gobi Desert and the 6 

alpine vegetation of Qilian Mountain are located near the study area (see Fig. 4). The artificial oasis 7 

is highly heterogeneous, which impacts the thermal-dynamic and hydraulic features. Consequently, 8 

the water use efficiency and ET are variable. The Heihe River Basin has long served as a test bed 9 

for integrated watershed studies as well as land surface or hydrological experiments. Comprehen-10 

sive experiments, such as Watershed Allied Telemetry Experimental Research (WATER) (Li et al., 11 

2009), and an international experiment - the Heihe Basin Field Experiment (HEIFE) in World Cli-12 

mate Research Programme (WCRP) have taken place in the Heihe River Basin. One major objective 13 

of HiWATER is to capture the strong land surface heterogeneities and associated uncertainties 14 

within a watershed (Li et al., 2013). 15 

 16 

Figure 4. Study area and distribution of EC towers in HiWATER-MUSOEXE 17 

3.2. Dataset 18 

In this paper, the data are mainly derived from the HJ-1B satellite. We combined these data 19 

with ancillary data and the in situ “Multi-Scale Observation Experiment on Evapotranspiration over 20 

heterogeneous land surfaces of The Heihe Watershed Allied Telemetry Experimental Research” 21 

(HiWATER-MUSOEXE) data to estimate and validate the HJ-B land surface variables and heat 22 

fluxes. 23 



 

 

3.2.1. Remote sensing data 1 

3.2.1.1. HJ-1B satellite data 2 

The specifications of HJ-1B are shown in Table 1. These satellites have quasi-sun-synchronous 3 

orbits at an altitude of 650 km, a swath width of 700 km and a revisit period of 4 days. Together, the 4 

revisit period of the satellites is 48 h. Because HJ-1 CCDs lack an onboard calibration system, 5 

scholars have proposed cross-calibration methods for calibrating the CCD instruments (Zhong et al., 6 

2014b; Zhang et al., 2013). The image quality of HJ-1A/B CCDs is stable, the performances of each 7 

band are balanced (Zhang et al., 2013), and the radiometric performance of the HJ-1A/B CCD sen-8 

sors is similar to the performances of the Landsat-5 TM, Advanced Land Imager, and ASTER sen-9 

sors. The image quality of HJ-1 CCDs is very similar to the image quality of Landsat-5 TM (Jiang 10 

et al., 2013). In addition, the accuracy of the TIR band’s onboard calibration meets land surface 11 

temperature retrieval requirements but not sea surface temperature retrieval requirements (J. Li et 12 

al., 2011). China Center for Resources Satellite Data and Application (CRESDA) releases calibra-13 

tion coefficients once each year on its website (http://www.cresda.com). These data are freely avail-14 

able from the CRESDA website (http://218.247.138.121/DSSPlatform/index.html). 15 

Table 1. Specifications of the HJ-1B main payloads 16 

Sensor Band Spectral range (µm) Spatial resolution (m) Swath width (km) Revisit time (days) 

CCD 

1 0.43-0.52 

30 
360 (single) 

700 (two） 
4 

2 0.52-0.60 

3 0.63-0.69 

4 0.76-0.90 

IRS 

5 0.75-1.10 

150 
720 4 

6 1.55-1.75 

7 3.50-3.90 

8 10.5-12.5 300 

 17 

Figure 5. Flowchart of the land surface variable retrieval. The abbreviations are defined as follows: SZA: solar 18 

zenith angle; SAA: solar azimuth angle; VZA: view zenith angle; AOD: aerosol optical depth; ABT: at-nadir bright-19 

ness temperature; Sd: downward shortwave radiation; USR: upward shortwave radiation, ULR: upward longwave 20 

radiation; and Ld: downward longwave radiation. 21 

We used the HJ-1B satellite data for the HRB region in 2012. Because many variable-retrieving 22 

algorithms required clear-sky conditions for calculating ET, we combined data-quality information 23 

with visual interpretation to select satellite images without clouds. Considering the time period of 24 

the ground observations discussed in Sect. 3.2.2, we obtained data for 11 days: June 19, June 30, 25 

July 8, July 27, August 2, August 15, August 22, August 29, September 2, September 13 and Sep-26 

tember 14. 27 



 

 

The HJ-1B satellite data from the HRB were pre-processed and included geometric correction, 1 

radiometric calibration, and atmosphere correction. For Eq. (1) to (10), the following surface varia-2 

bles are needed: downward shortwave radiation, downward longwave radiation, emissivity, albedo, 3 

fractional vegetation coverage (FVC), cloud mask data, meteorological data, LAI and LST. Fig. 5 4 

contains a flowchart showing the retrieval of these variables. 5 

(1) Surface albedo. According to the algorithm proposed by Liang et al. (2005) and Q. Liu et 6 

al. (2011), surface albedo was obtained from the top of the atmosphere (TOA) reflectance by the 7 

HJ-1 satellite with a lookup table based on an angular bin regression relationship. The surface albedo 8 

and bidirectional reflectance distribution function (BRDF) of the HJ-1 satellite in the regression 9 

procedure were monitored by using POLDER-3/PARASOL BRDF datasets, and BRDF was used to 10 

obtain the TOA reflectance using the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) 11 

radiation transfer mode. 12 

(2) NDVI, FVC and LAI. The NDVI is the central regression of temperature sharpening and 13 

was used to calculate the FVC. Atmospherically corrected surface reflectance values were used to 14 

calculate the NDVI as follows: 15 

 NDVI =
ρnir−ρred

ρnir+ρred
 (11) 16 

and 17 

 18 

 FVC =
NDVI−NDVIs

NDVIv+NDVIs
 (12) 19 

where ρnir  and ρred  are the reflectances in the near-infrared and red band, respectively, and 20 

NDVIv and NDVIs are the fully vegetated and bare soil NDVI values, respectively. As an im-21 

portant input for the parameterization of surface roughness length and aerodynamic resistance, the 22 

LAI was determined using the following equation (Nilson, 1971): 23 

 P(θ) = e−G(θ)∙Ω∙LAI/cos(θ) (13) 24 

 P(θ) = 1 − FVC (14) 25 

where θ is the zenith angle, P(θ) is the angular distribution of the canopy gap fraction, G(θ) is 26 

the projection coefficient (0.5), and Ω is the total foliage clumping index, which can be obtained 27 

from the GLC global clumping index database according to the type of land use (He et al., 2012). 28 

(3) Land surface emissivity (LSE). LSE is needed to calculate the Rn and is extremely im-29 

portant for retrieving LST. In this paper, LSE was calculated using the FVC as follows (Valor and 30 

Caselles, 1996): 31 

 ε = εv ∙ FVC + εg(1 − FVC) + 4 < 𝑑𝜀 >∙ FVC ∙ (1 − FVC) (15) 32 

where ε is the LSE, < 𝑑𝜀 > is an effective value of the cavity effect of emissivity, the mean dε 33 

of all vegetation species in this study is <dε>=0.015, and εv and εg are the vegetation and ground 34 

emissivity, respectively. 35 

(4) Land surface temperature. A single-channel parametric model for retrieving LST based on 36 

HJ-1B/IRS TIR data developed by H. Li et al. (2010) was applied. This model was developed from 37 

a parametric model based on MODTRAN4 using NCEP atmospheric profile data. 38 

(5) Downward shortwave radiation. The algorithm proposed by L. Li et al. (2010) was applied. 39 

MOD05, TOMS, aerosol, and solar angle data were used to estimate the direct light flux and diffuse 40 

light flux by using a lookup table that was generated using the 6S radiation transfer mode (Vermote 41 

et al., 2006). This method considered the influences of complex terrain, and a topographic correction 42 



 

 

was performed by using products of the ASTER DEM. 1 

(6) Downward longwave radiation (Ld). The TOA brightness temperature of the HJ-1B thermal 2 

channel was used to substitute the atmospheric effective temperature. Effective atmospheric emis-3 

sivity was parameterized as an empirical function of the water vapor content. These values were 4 

substituted for atmospheric temperature and atmospheric emissivity to estimate the value of Ld. 5 

Because this Ld retrieval method proposed by Yu et al. (2013) was only valid for clear-sky conditions, 6 

cloud masking information was used to determine clear skies. When cloud contamination existed in 7 

the image, the brightness temperature was relatively low, causing the Ld to be lower than that in the 8 

cloudless images. 9 

3.2.1.2. Ancillary data 10 

Ancillary data were used because the bands of the satellite could not invert all of the variables 11 

needed for retrieving ET. 12 

(1) Atmospheric water vapor data. MODIS provides water vapor data (MOD05), including a 13 

1-km near-infrared product and a 5-km thermal-infrared product, every day. The 1-km near-infrared 14 

water vapor product was used to retrieve Ld in this study. 15 

(2) Surface elevation data. We used the 30-m resolution Global Digital Elevation Model 16 

(GDEM) based on ASTER, which covers 83°N–83°S, to derive Sd. 17 

(3) Atmosphere ozone data. A Total Ozone Mapping Spectrometer (TOMS), which was carried 18 

on an Earth Probe (EP) satellite, was used to derive Sd. The TOMS-EP provided daily global at-19 

mosphere ozone data at a resolution of 1°×1.25° (Li et al., 2010b). 20 

(4) Atmosphere profile data. Global reanalysis data from the National Centers for Environmen-21 

tal Prediction (NCEP) were used to derive LST. These data were generated globally every 6 hours 22 

(0:00, 06:00, 12:00, 18:00 UTC) for every 1° of latitude and longitude (Li et al., 2010a). 23 

3.2.2. HiWATER experiment dataset 24 

The in situ HRB observation data were provided by HiWATER. From June to September 2012, 25 

HiWATER designed two nested observation matrices over 30 km×30 km and 5.5 km×5.5 km within 26 

the middle stream oasis in Zhangye to focus on the heterogeneity of the scale effect in the so-called 27 

HiWATER-MUSOEXE. 28 

In a larger observation matrix, four eddy covariance (EC) systems and one superstation were 29 

installed in the oasis–desert ecosystem. Each station was supplemented with an automatic meteor-30 

ological station (AMS) to record meteorological and soil variables and monitor the spatial–temporal 31 

variations of ET and its impact factors (Li et al., 2013). The station information is shown in Table 32 

2, and the distribution of the stations is shown in Fig. 4. Within the artificial oasis, an observation 33 

matrix composed of 17 EC towers and ordinary AMSs exists where the superstation was located. 34 

The land surface was heterogeneous and dominated by maize, maize inter-cropped with spring 35 

wheat, vegetables, orchards, and residential areas (Li et al., 2013). Because the EC16 and HHZ 36 

stations lacked Rn and G observation data, they were excluded from this study. 37 

Table 2. The in situ HiWATER-MUSOEXE station information 38 

Station Longitude (°) Latitude (°) Tower height (m) Altitude (m) Land cover 

EC1 100.36E 38.89N 3.8 1552.75 vegetation 

EC2 100.35E 38.89N 3.7 1559.09 maize 

EC3 100.38E 38.89N 3.8 1543.05 maize 



 

 

EC4 100.36E 38.88N 4.2 1561.87 building 

EC5 100.35E 38.88N 3 1567.65 maize 

EC6 100.36E 38.87N 4.6 1562.97 maize 

EC7 100.37E 38.88N 3.8 1556.39 maize 

EC8 100.38E 38.87N 3.2 1550.06 maize 

EC9 100.39E 38.87N 3.9 1543.34 maize 

EC10 100.40E 38.88N 4.8 1534.73 maize 

EC11 100.34E 38.87N 3.5 1575.65 maize 

EC12 100.37E 38.87N 3.5 1559.25 maize 

EC13 100.38E 38.86N 5 1550.73 maize 

EC14 100.35E 38.86N 4.6 1570.23 maize 

EC15 100.37E 38.86N 4.5 1556.06 maize 

EC17 100.37E 38.85N 7 1559.63 orchard 

GB 100.30E 38.91N 4.6 1562 uncultivated land-Gobi 

SSW 100.49E 38.79N 4.6 1594 uncultivated land-desert 

SD 100.45E 38.98N 5.2 1460 swamp land 

The ground observation data include the H and LE. Reliable methods were used to ensure the 1 

quality of the turbulent heat flux data. Before the main campaign, an intercomparison of all instru-2 

ments was conducted in the Gobi Desert (Xu et al., 2013). After basic processing, including spike 3 

removal and corrections for density fluctuations (WPL-correction), a four-step procedure (data were 4 

rejected when (1) the sensor was malfunctioning, (2) precipitation occurred within 1 h before or 5 

after collection, (3) the missing ratio was greater than 3% in the 30-min raw record and (4) the 6 

friction velocity was below 0.1 ms-1 at night) was performed to control the quality of the EC data, 7 

and EC outputs were available every 30 min (for more details see Liu et al., 2011b; Xu et al., 2013; 8 

Liu et al., 2016). G was measured by using three soil heat plates at a depth of 6 cm at each site, and 9 

the surface G was calculated using the method proposed by Yang and Wang(2008) based on the soil 10 

temperature and moisture above the plates. Surface meteorological variables, such as wind speed, 11 

wind direction, relative humidity and air pressure, were used to interpolate images using the inverse-12 

distance weighted method. Researchers can obtain these data from the websites of the Cold and Arid 13 

Regions Science Data Center at LanZhou http://card.westgis.ac.cn/ or the Heihe Plan Data Manage-14 

ment Center http://www.heihedata.org/. 15 

An energy imbalance is common in ground flux observations. The conserving Bowen ratio 16 

(H/LE) and residual closure technique are often used to force energy balance. Computing the LE as 17 

a residual variable may be a better method for energy balance closure under conditions with large 18 

LEs (small or negative Bowen ratios due to strong advection) (Kustas et al., 2012). Thus, the resid-19 

ual closure method was applied because the “oasis effect” was distinctly observed in the desert-20 

oasis system on clear days during the summer (Liu et al., 2011b). 21 

4. Results and analysis 22 

4.1. Evaluation of surface variables 23 

To control the model input variables and analyze sources of error, the coarse-resolution land 24 

surface temperature, downward shortwave radiation, downward longwave radiation, Rn  and G 25 



 

 

were evaluated using in situ data.  1 

The ground-based land surface temperature, Ts, was calculated using the Stefan-Boltzman 2 

Law from the AMS measurements of the longwave radiation fluxes (Li et al., 2014) as follows: 3 

 Ts = [
L↑−(1−εs)∙L↓

εs∙σ
]

1

4
 (16) 4 

in which L↑ and L↓ are in situ surface upwelling and atmospheric downwelling longwave radiation, 5 

respectively, and εs is the surface broadband emissivity, which is regarded as the pixel value of the 6 

HJ-1B at the AMS. The coefficient of determination R2, mean bias error (MBE) and root mean 7 

square error (RMSE) of the LST are 0.71, -0.14 K and 3.37 K, respectively. As seen in Table 3, the 8 

accuracy of EC4 is low. The main causes of the large errors are as follows: (1) because buildings 9 

and soil/vegetation are distinct materials, the LSE algorithm may not be suitable for buildings and 10 

(2) the EC4 foundation is non-uniform and is not suitable for validation. After removing the EC4 11 

data, the R2, MBE, and RMSE of the LSTs were 0.83, 0.69 K and 2.51 K, respectively. The LST 12 

errors of SSW and SD were large due to large errors on particular days. For example, although it 13 

was briefly cloudy above station SSW on July 27, this area was not identified as cloudy in the cloud 14 

detection process. 15 

Table 3. Station validation results of land surface temperature 16 

station R2 MBE (K) 
RMSE 

(K) 
station R2 MBE (K) RMSE (K) 

EC1 0.82  0.18  1.74  EC11 0.42  1.59  2.98  

EC2 0.82  0.59  1.54  EC12 0.87  0.62  1.51  

EC3 0.69  0.38  1.90  EC13 0.83  0.44  1.48  

EC4 0.83  -9.87  10.04  EC14 0.73  1.43  2.44  

EC5 0.83  1.71  2.34  EC15 0.74  1.53  2.41  

EC6 0.61  0.30  2.44  EC17 0.78  1.20  2.32  

EC7 0.82  0.39  1.40  GB 0.69  0.12  2.33  

EC8 0.83  0.45  1.55  SSW 0.59  1.38  3.82  

EC9 0.63  2.31  3.15  SD 0.76  -3.83  4.84  

EC10 0.68  1.32  2.45      

The R2, MBE, and RMSE values of Sd were 0.81, 13.80 W∙m-2, and 25.35 W∙m-2, respectively. 17 

The station validation results are shown in Table 4. The accuracy of SSW is low. Because cloudy 18 

conditions occurred briefly on July 27, few ground observations were obtained, and Sd was signif-19 

icantly overestimated. After removing these data, the R2, MBE, and RMSE values of Sd at SSW 20 

were 0.87, 10.90 W∙m-2 and 21.13 W∙m-2, respectively.  21 

Table 4. Station validation results of downward shortwave radiation 22 

station R2 
MBE 

(W∙m-2) 

RMSE 

(W∙m-2) 
station R2 

MBE 

(W∙m-2) 

RMSE 

(W∙m-2) 

EC1 0.97  25.23  27.73  EC11 0.90  30.11  33.76  

EC2 0.84  28.29  33.57  EC12 0.96  24.35  26.43  

EC3 0.97  17.56  19.25  EC13 0.93  12.41  17.92  

EC4 0.98  6.07  9.34  EC14 0.98  32.40  33.49  

EC5 0.98  10.60  12.29  EC15 0.94  26.71  29.71  

EC6 0.93  27.68  30.71  EC17 0.94  -20.25  24.54  



 

 

EC7 0.89  -17.69  27.59  GB 0.89  25.34  30.63  

EC8 0.83  15.63  25.50  SSW 0.63  18.51  34.93  

EC9 0.96  -2.27  9.96  SD 0.98  5.70  13.82  

EC10 0.94  -3.50  11.97      

The R2, MBE, and RMSE of the HRB Ld were 0.73, 0.28 W∙m-2, and 21.24 W∙m-2, respectively. 1 

As seen in Table 5, the accuracies at EC3, SD and SSW were low. The low accuracies at EC3 and 2 

SD potentially resulted from (1) high humidity, which resulted in low at-nadir brightness tempera-3 

tures and low retrieved Ld, or (2) instrument error, which occurred because the EC3 ground obser-4 

vations were always greater than those of the other stations during the same period. Although SSW 5 

was located in a desert, the ground-air temperature difference was large. The Ld retrieval may have 6 

a large error because the models use surface temperature when estimating Ld to approximate or 7 

substitute the near-surface temperature (Yu et al., 2013). The corrected error of our Ld retrieving 8 

algorithm resulted from the ground-air temperature difference in non-vegetated areas. The inaccu-9 

racy of the SSW LST may influence the Ld results. 10 

Table 5. Station validation results of downward longwave radiation 11 

station R2 
MBE 

(W∙m-2) 

RMSE 

(W∙m-2) 
station R2 

MBE 

(W∙m-2) 

RMSE 

(W∙m-2) 

EC1 0.85  4.16  17.21  EC11 0.93  -2.72  10.55  

EC2 0.88  0.11  14.23  EC12 0.87  -0.84  14.80  

EC3 0.91  -35.65  37.88  EC13 0.86  -7.28  15.98  

EC4 0.88  3.36  16.38  EC14 0.82  4.07  16.42  

EC5 0.88  -0.79  15.02  EC15 0.85  17.67  23.06  

EC6 0.84  2.55  15.43  EC17 0.90  -1.11  12.87  

EC7 0.75  -5.90  19.72  GB 0.88  9.50  27.82  

EC8 0.80  -1.35  17.49  SSW 0.85  25.33  34.50  

EC9 0.86  10.44  17.99  SD 0.85  -26.54  34.08  

EC10 0.87  7.98  16.05      

The R2, MBE, and RMSE of the HRB Rn were 0.70, -9.64 W∙m-2, and 42.77 W∙m-2, respec-12 

tively. The station Rn validation results are shown in Table 6, which indicate that the accuracies of 13 

EC4, EC7, EC17 and SSW were relatively low. According to the sensitivity analysis of Eq. (8), Ld 14 

and Sd are highly sensitive variables when calculating Rn, while the albedo, LSE and LST are not 15 

as sensitive. Although LST was not a sensitive variable, the EC4’s LST, MBE and RMSE reached -16 

9.87 K and 10.04 K because the land cover of EC4 was maize at the 300 m resolution. However, 17 

the observation tower was in a built-up area, which potentially caused errors when estimating Rn. 18 

The accuracies of the EC7 Sd and Ld were low on several days, and after removing these data, 19 

MBE=-43.40 W∙m-2 and the RMSE=50.50 W∙m-2. EC17 was within an orchard, and the signal that 20 

was received by the sensors at EC17 were affected by the complex vertical structure of the orchard 21 

ecosystem. The information on substrate plants may be ignored, leading to albedo retrieval errors. 22 

Although the albedo was not a sensitive variable, a 0.03 bias can lead to an Rn error of approxi-23 

mately 20 W∙m-2 when the solar incoming radiation is large. As previously mentioned, it was briefly 24 

cloudy on July 27, and after removing that data, the R2, MBE, and RMSE values of the Rn obtained 25 

at SSW were 0.72, 8.20 W∙m-2, and 37.60 W∙m-2, respectively. 26 

Table 6. Station net radiation validation results 27 



 

 

station R2 
MBE 

(W∙m-2) 

RMSE 

(W∙m-2) 
station R2 

MBE 

(W∙m-2) 

RMSE 

(W∙m-2) 

EC1 0.76  -2.55  30.61  EC11 0.86  -15.13  28.05  

EC2 0.79  2.52  25.24  EC12 0.90  -8.46  19.38  

EC3 0.86  -35.84  42.97  EC13 0.88  -25.73  32.34  

EC4 0.84  76.64  80.25  EC14 0.90  4.23  18.18  

EC5 0.85  -24.41  32.34  EC15 0.84  8.33  23.01  

EC6 0.82  4.35  23.44  EC17 0.89  -62.62  68.11  

EC7 0.61  -58.66  67.83  GB 0.77  -10.40  38.86  

EC8 0.83  -20.62  32.45  SSW 0.44  23.05  62.93  

EC9 0.87  -29.60  36.27  SD 0.75  19.98  35.24  

EC10 0.83  -24.35  33.51      

The R2, MBE, and RMSE of the G in the HRB were 0.57, 8.51 W∙m-2, and 29.73 W∙m-2, re-1 

spectively. The station G validation results are shown in Table 7. For EC5, the soil temperature and 2 

moisture were the same at different depths after July 19, which resulted in a surface G that was equal 3 

to the G at a depth of 6 cm. The G below the surface was usually less than the G at the soil surface; 4 

thus, the validation results of the G at EC5 indicate that G was overestimated. For SSW, the brief 5 

cloudy period decreased the observed soil surface temperature, which decreased the calculated sur-6 

face G. However, the remotely sensed G did not reflect this situation. In this case, the G was over-7 

estimated because the Rn was overestimated. After removing the data on July 27, the R2, MBE, 8 

and RMSE of the G at SSW were 0.17, 19.34 W∙m-2, and 33.30 W∙m-2, respectively. 9 

Table 7. Station validation results of the soil heat flux 10 

station R2 
MBE 

(W∙m-2) 

RMSE 

(W∙m-2) 
station R2 

MBE 

(W∙m-2) 

RMSE 

(W∙m-2) 

EC1 0.50  19.73  31.53  EC11 0.71  4.23  19.23  

EC2 0.24  20.78  28.72  EC12 0.53  20.29  24.79  

EC3 0.03  -1.15  36.28  EC13 0.91  -0.89  17.27  

EC4 0.45  18.50  22.29  EC14 0.82  -1.89  18.72  

EC5 0.38  41.87  60.19  EC15 0.78  6.68  15.80  

EC6 0.83  -5.91  14.57  EC17 0.49  8.26  33.59  

EC7 0.28  7.50  24.65  GB 0.29  -17.86  26.81  

EC8 0.68  -5.73  20.15  SSW 0.01  30.41  51.87  

EC9 0.61  6.83  26.96  SD 0.71  -4.79  13.71  

EC10 0.41  7.68  28.67      

4.2. Validation of heat fluxes by TSFA  11 

Fig. 6 provides the turbulent heat flux results calculated by TSFA on September 13, 2012. The 12 

spatial distribution of the turbulent heat flux is obvious. The H of buildings and uncultivated land, 13 

including the Gobi Desert, barren areas and other deserts, was high, in addition to the LEs of the 14 

water and agricultural areas in the oasis. The southern areas of the images show uncultivated barren 15 

land bordering the Qilian Mountains that resulted from snowmelt and the downward movement of 16 

water. In these areas, the groundwater levels are high and the soil moisture content is approximately 17 

30% based on in situ measurements at a depth of 2 cm. Therefore, the LE is higher in the south than 18 



 

 

in the southeast desert, although both areas were classified as uncultivated land. 1 

Studies have shown that validation methods that consider the source area are more appropriate 2 

for evaluating ET models than traditional validation methods based on a single pixel (Jia et al., 2012; 3 

Song et al., 2012). In this study, a user-friendly tool presented by Neftel et al. (2008) and based on 4 

the Eulerian analytic flux footprint model proposed by Kormann and Meixner (2001) was used to 5 

calculate the footprints of the function parameters. The continuous footprint function was dispersed 6 

based on the relative weights of the pixels on which the source area fell. 7 

 8 

Figure 6. Maps of the four energy components, (a) Rn, (b) G, (c) H and (d) LE, calculated by TSFA on September 9 

13, 2012. 10 

 11 
Figure 7. Scatter plot of the TSFA turbulent heat flux results 12 



 

 

The footprint validation results of the TSFA turbulent heat fluxes are shown in Fig. 7 and Table 1 

8. The R2, MBE, and RMSE of the H were 0.61, 0.90 W∙m-2 and 50.99 W∙m-2, respectively, and the 2 

corresponding terms for the LE were 0.82, -20.54 W∙m-2 and 71.24 W∙m-2, respectively. Because 3 

the LE was calculated as a residual term, it was impacted by the Rn, surface G and H. The errors 4 

of all of these variables may contribute to the LE, which complicates the error source of the LE and 5 

is discussed in Sects. 4.3.2 and 4.4. 6 

Table 8. In situ validation results of heat flux of TSFA 7 

 TSFA-H(W∙m-2) TSFA-LE(W∙m-2) 

date R2 MBE RMSE R2 MBE RMSE 

0619 0.39  44.73  66.38  0.69  -44.15  80.60  

0630 0.73  23.71  38.96  0.88  -63.81  77.83  

0708 0.55  32.70  58.72  0.85  -43.02  72.32  

0727 0.90  -34.34  43.59  0.92  26.74  57.60  

0803 0.80  -4.77  18.92  0.78  -4.58  47.86  

0815 0.74  -18.37  38.82  0.93  4.75  35.41  

0822 0.40  31.64  66.21  0.65  -44.44  93.81  

0829 0.79  23.01  38.36  0.79  -50.45  77.99  

0902 0.21  -45.10  74.81  0.54  24.39  69.31  

0913 0.25  -9.64  41.01  0.59  -59.36  82.77  

0914 0.31  -34.11  50.88  0.47  27.99  67.50  

As seen in Fig. 7, most of the H values are small because June, July, August and September 8 

constitute the growing season when ET greatly cools the air. The differential temperature between 9 

the land surface and air is small, leading to a low H. The points with large H values are influenced 10 

by uncultivated land. In our study area, bare soil, the Gobi Desert, and desert areas compose the 11 

uncultivated land. The points in the scatter plot with large H values represent desert, where the H 12 

values reach approximately 300 W∙m-2. Some points in the H scatter plot are less than 0 due to 13 

inversion from the “oasis effect” or irrigation. For example, HiWATER’s soil moisture data show 14 

that irrigation occurred on August 22, 2012. Irrigation is the main source of water within the oasis 15 

and cools the land surface to temperatures below the air temperature. In addition, irrigation leads to 16 

errors in LST retrieval because it increases the atmospheric water vapor content, as discussed in 17 

Sect. 4.1. The model error is further analyzed in Sect. 4.4. 18 

4.3. Comparison between TSFA, TRFA and IPUS 19 

To verify whether the TSFA method can simulate the heterogeneities of the land surface, the 20 

TRFA and IPUS methods were compared for estimating the ET. These three methods were evaluated 21 

using (1) validation of TRFA and IPUS based on in situ measurements and (2) qualitative analysis 22 

based on the spatial distribution and scatter plots of the four energy balance components. 23 

4.3.1. Validation of TRFA and IPUS heat fluxes 24 

Table 9 provides the footprint in situ validation results of the H and LE calculated using the 25 

IPUS and TRFA methods. The R2, MBE, and RMSE of the LE between TSFA and TRFA were 0.99, 26 

-7.81 W∙m-2 and 16.48 W∙m-2, respectively. And the R2, MBE, and RMSE of the LE between TSFA 27 

and IPUS were 0.91, -4.10 W∙m-2 and 51.30W∙m-2, respectively. Comparing with validation results 28 

of TSFA in Table 8, the TSFA method had a better retrieval accuracy than the TRFA method, and 29 



 

 

TRFA method was better than the IPUS method on all days, because the MBE and RMSE of TSFA 1 

decreased and the R2 of TSFA increased on most days. Table 9 shows that the improvement in the 2 

accuracy that resulted from temperature resampling (TRFA) when comparing with the IPUS method 3 

was relatively higher than the improvement observed from temperature sharpening (TSFA) when 4 

comparing with the TRFA method. Compared with the IPUS method, the TRFA results were similar 5 

to the TSFA results since the sub-pixel landscapes and sub-pixel variations of most variables were 6 

considered. Thus, TRFA could effectively decrease the scale error that resulted from heterogeneity 7 

because the VNIR data of satellite were fully used. However, the performance of the TRFA method 8 

is unstable. For example, on August 3 and August 29, the TRFA results were slightly worse than the 9 

IPUS results, and the TSFA results were obviously better. This difference occurred because the dif-10 

ferent sub-pixel landscape temperatures were treated as equal to the values estimated at the 300-m 11 

resolution. Thus, when the 300-m-resolution LST has large retrieving errors, the turbulent heat flux 12 

retrieving error may be amplified by the sub-pixel landscapes. 13 

Table 9. In situ validation results of turbulent heat fluxes of IPUS and TRFA 14 

 IPUS-H(W∙m-2) IPUS-LE (W∙m-2) TRFA-H (W∙m-2) TRFA-LE (W∙m-2) 

date R2 MBE RMSE R2 MBE RMSE R2 MBE RMSE R2 MBE RMSE 

0619 0.32  48.53  71.70  0.66  -47.68  86.02  0.39  52.28  70.98  0.65  -46.71  85.93  

0630 0.50  41.45  67.30  0.80  -81.75  102.33  0.69  42.64  60.85  0.86  -78.50  93.98  

0708 0.34  44.17  77.45  0.63  -66.75  118.63  0.44  54.20  76.00  0.82  -63.82  89.11  

0727 0.81  -33.14  50.01  0.83  25.61  74.26  0.84  -23.53  41.76  0.86  14.82  65.21  

0803 0.84  -5.23  33.50  0.74  -3.98  60.49  0.80  7.76  37.51  0.76  -18.23  62.71  

0815 0.64  -23.28  47.89  0.85  10.32  54.98  0.70  -14.77  39.99  0.89  0.59  45.22  

0822 0.31  41.50  74.81  0.61  -53.60  102.12  0.40  40.63  69.94  0.65  -54.17  98.97  

0829 0.72  27.15  44.16  0.76  -54.76  83.20  0.75  30.79  44.97  0.77  -59.43  86.22  

0902 0.28  -52.44  83.25  0.51  32.89  76.48  0.21  -45.77  75.84  0.52  24.37  71.69  

0913 0.08  -11.45  57.50  0.61  -57.38  81.83  0.06  -11.89  49.63  0.54  -57.78  84.58  

0914 0.12  -36.52  67.38  0.28  19.46  89.30  0.03  -34.34  64.85  0.38  25.41  75.96  

Surface landscape inhomogeneity can be classified using two conditions: nonlinear vegetation 15 

density variations between sub-pixels (e.g., different types of vegetation mixed with each other or 16 

with bare soil) and coarse pixels containing different landscapes (e.g., vegetation or bare soil mixed 17 

with buildings or water). And landscapes variation always corresponding to inhomogeneity of sur-18 

face variable. To evaluate the effects of TSFA, stations with a typical severe heterogeneous surface, 19 

such as EC4, a weak heterogeneous surface, such as EC11 and a typical pixel (called “TP” hereafter) 20 

at the boundary of the oasis and bare soil (sample 62, line 102 in the image of study area), and a 21 

uniform surface, such as EC15, were selected to analyze the temperature sharpening results. 22 

EC4 is used as an example because its land cover and sub-pixel variation of temperature were 23 

complicated. Table 11 compares the turbulent heat fluxes calculated using the IPUS, TRFA and 24 

TSFA methods. Significant differences were observed between the TSFA and IPUS results and be-25 

tween the TRFA and IPUS results due to the heterogeneity of the surface. The LE calculated using 26 

the TSFA method was more consistent with in situ measurements than the LE calculated using the 27 

IPUS method because the MBE and RMSE decreased greatly, the R2 increased, and the accuracy 28 

was improved by approximately 40 W∙m-2. However, the LE calculated by using the TRFA was 29 

more accurate than the LE calculated by using the TSFA, as discussed below.  30 

The H calculated by using the TSFA method was more accurate than the H calculated by using 31 



 

 

the TRFA and IPUS methods. The accuracy of the results from the TRFA method was relatively 1 

close to the accuracy of the results from the TSFA method because the TRFA method also considers 2 

the effects of the heterogeneity of landscapes. In addition, the H values obtained from the TRFA 3 

method were always greater than those obtained from the TSFA method. Because the TSFA turbu-4 

lent heat flux results are the same as the TRFA turbulent heat flux results for buildings and water 5 

bodies in our pixel ET algorithm, so the difference between TSFA and TRFA depends on the veg-6 

etation and bare soil. And the 300-m-resolution LST is larger than the LST of the sub-pixels, such 7 

as pixels containing vegetation or bare soil, for two reasons: (1) the coarse pixels contain buildings 8 

and result in a larger 300-m-resolution LST and (2) the LSTs were underestimated at EC4 (as shown 9 

in Table 3), which would underestimate the value of ∆T̂300 in Eq.(3) and, consequently, the sharp-10 

ening temperature at 30 m and H. Because the LE was calculated as a residual item in the energy 11 

balance equation, the errors of the other three energy balance components would accumulate in the 12 

LE. At EC4, the Rn was overestimated by approximately 80 W∙m-2, but the scale effect of Rn was 13 

not obvious, as discussed in Sect. 4.1, and the G was overestimated by approximately 20 W∙m-2. 14 

These results would lead to low accuracy of the available energy and overestimate the error by 60 15 

W∙m-2. As TRFA overestimates H, the underestimation of H in TSFA would result in larger over-16 

estimation of LE than TRFA. Consequently, the LE calculated by using the TSFA method is less 17 

accurate than the LE calculated by using the TRFA method. 18 

Table 10. Comparison of the turbulent heat flux results at EC4 19 

EC4 H(W∙m-2) LE(W∙m-2) 

Date EC IPUS TRFA TSFA EC IPUS TRFA TSFA 

0619 150.65  105.86  154.71  142.13  278.55  402.60  344.05  357.79  

0630 138.32  99.91  153.53  126.88  341.98  419.83  358.12  386.07  

0708 117.04  63.47  131.79  112.16  361.16  502.60  424.85  444.01  

0727 136.41  4.87  85.99  72.33  306.53  543.48  452.01  467.96  

0803 68.97  36.51  111.73  74.76  389.63  498.21  414.67  454.23  

0815 104.60  12.69  88.26  82.56  357.34  522.31  436.43  441.95  

0822 125.34  85.93  120.68  93.18  318.08  415.15  370.76  400.99  

0829 82.93  73.06  103.84  74.76  317.68  362.04  322.77  355.16  

0902 162.05  93.74  144.49  132.60  280.41  375.42  315.16  326.29  

0913 119.42  151.44  157.07  130.85  263.18  234.93  222.62  249.59  

0914 110.02  88.24  128.37  99.33  262.33  333.82  285.04  314.91  

units: W∙m-2 20 

 IPUS TRFA TSFA 

Variable R2 MBE RMSE R2 MBE RMSE R2 MBE RMSE 

EC4-H 0.11  -44.65  61.73  0.25  5.88  26.33  0.51  -16.93  26.54  

EC4-LE 0.49  99.21  119.55  0.56  42.69  62.40  0.60  63.92  76.78  

Fig. 8 shows that the classes and temperatures of 10×10 sub-pixels at 30 m correspond to the 21 

pixels with a resolution of 300 m at the EC tower. In the IPUS upscaling scheme, the 300-m pixels 22 

included buildings and maize and vegetable crops at the 30-m resolution and were identified as 23 

maize. The canopy height gap between maize and vegetables was large during our study period, 24 

resulting in the overestimation of the canopy height. For more details see the error analysis in Sect. 25 

4.4. However, because buildings corresponded with H = 0.6Rn in this paper, ignoring the contri-26 

butions of buildings would result in the underestimation of H. Fig. 8(a) shows the temperature-27 



 

 

sharpening results for the EC4 pixel on August 29. The temperature achieved at a resolution of 300 1 

m was 303.49 K. Compared with the in situ measurement of 313.24 K, the temperature at a resolu-2 

tion of 300 m was underestimated. Even when substituting the in situ temperature into the ET model, 3 

the value of H reached 399.60 W∙m-2 and the LE became 0 W∙m-2. When substituting the in situ 4 

temperature in the TRFA method, H was 396.49 W∙m-2 and LE was 18.7 W∙m-2, indicating that the 5 

LE was underestimated and the H was overestimated with large errors. After processing by temper-6 

ature sharpening, the distribution of the temperature at the 30-m resolution agreed with the classifi-7 

cation. Temperature sharpening improved the description of heterogeneity based on the thermody-8 

namic-driven force of the turbulent heat flux. These results apply to the ET model with the classifi-9 

cation map and high-resolution variables and correspond with more accurate sensible heat flux es-10 

timations. 11 



 

 

 1 

Figure 8. Distribution of classes and temperatures over the extreme heterogeneous surface (a) EC4, homogeneous 2 

surface (b) EC15, weak heterogeneous surface (c) EC11 and (d) a typical pixel on August 29, 2012. 3 

The land surface of EC15 was uniform and comprised of pure pixels covered by maize. The 4 

temperature distribution at the 30-m resolution was as homogeneous as the land cover, and the var-5 

iation range of the surface temperature was small (approximately 1.6 K). Table 11 shows the in situ 6 

validation results of EC15, for which the overall accuracy is not high due to the low LST retrieval 7 



 

 

accuracy on July 8, which is discussed in Sect. 4.4.1. For the homogeneous surface, the gaps be-1 

tween IPUS, TRFA and TSFA were not large (within 10 W∙m-2), and the accuracy did not improve 2 

(MBE and RMSE did not have obvious variations). Statistically sharpening the temperature may 3 

increase the uncertainty of the model results for a homogeneous surface; however, this influence 4 

could be omitted. 5 

Table 11. Comparison of the turbulent heat fluxes results at EC15 6 

EC15 H (W∙m-2) LE (W∙m-2) 

Date EC IPUS TRFA TSFA EC IPUS TRFA TSFA 

0619 92.55  106.60  109.25  99.81  419.47  427.19  419.99  429.98  

0630 42.37  43.99  45.51  44.67  551.73  527.12  525.17  526.09  

0708 18.34  217.53  235.48  209.90  620.95  425.71  397.49  424.86  

0727 27.68  21.22  31.11  24.30  597.76  589.58  579.43  586.47  

0803 2.33  33.32  -0.07  0.01  592.37  565.20  601.33  601.33  

0815 48.81  32.31  46.28  44.62  553.74  561.92  547.48  549.11  

0822 54.59  154.34  151.77  158.60  473.68  408.37  410.80  405.07  

0829 9.80  94.97  95.01  90.91  473.54  399.25  398.52  402.93  

0913 176.96  265.62  209.65  257.81  307.72  165.40  221.68  173.58  

0914 188.34  198.15  197.04  196.60  274.98  275.07  276.05  276.56  

units: W∙m-2 7 

 IPUS TRFA TSFA 

Variable R2 MBE RMSE R2 MBE RMSE R2 MBE RMSE 

EC15-H 0.40  40.64  74.64  0.33  45.93  80.81  0.40  40.36  72.88  

EC15-LE 0.74  -52.11  83.48  0.71  -48.80  82.51  0.74  -49.00  81.94  

The weak heterogeneous land surface EC11 contained barley, maize and vegetables in a coarse 8 

pixel with a fractional area of 48:41:1 and was classified as barley at the 300-m resolution. The 9 

distributions of the classes and temperatures are shown in Fig. 8(c), and the pixel belongs to the first 10 

conditions of heterogeneity (nonlinear vegetation density variation between sub-pixels) that are 11 

classified in the introduction. Table 12 shows the in situ validation results of EC11, for which the 12 

improvements in the accuracies of H and LE by temperature resampling or sharpening were not as 13 

obvious as the improvements at EC4, which contained total different landscapes (the other inhomo-14 

geneous scenario in introduction).  15 

Theoretically, the LE pixel values from the TSFA and TRFA methods at EC11 should be 16 

smaller than the IPUS values in the energy balance system. The height of maize (range 0.3 ~ 2 m) 17 

was usually higher than the height of barley (range 0.9 ~ 1.1 m) in the study area from June to 18 

August. Taller vegetation resulted in greater surface roughness and smaller aerodynamic resistance, 19 

which led to larger H values, smaller LE values, and vice versa (e.g., vegetables with a canopy 20 

height of 0.2 m). When using the TSFA and TRFA methods, patch landscapes consisting of different 21 

crops, such as maize and vegetables, were considered. Thus, the LE was smaller than the IPUS LE. 22 

On June 19, the canopy height of maize was 0.74 m, which was lower than the canopy height of 23 

barley (1 m) and indicated that the H values resulting from the TRFA and TSFA methods were less 24 

than the H resulting from the IPUS method. Because our validation method considered the influence 25 

of source area, the in situ turbulent heat flux validation results included the effects of neighboring 26 

pixels (i.e., on August 3, the turbulent heat flux values of the pixel corresponding with the location 27 

of EC11 was only weighted 37% in the source area).  28 



 

 

The differences between the TSFA and TRFA methods was small and resulted from the LST 1 

differences between the 30-m resolution temperature sharpening results and the LST retrieved at the 2 

300-m resolution and were not evident at EC11. For example, on August 29, the temperature range 3 

was 1.4 K, as shown in Fig. 8(c). This temperature was even less than the temperature range at EC15 4 

because the observation system at EC15 was a superstation with a 40-m tall tower that may cause a 5 

large shadow and a large temperature range. Hence the temperature sharpening effect is not obvious 6 

after aggregating flux at the 300-m resolution under dense vegetation canopies. However, tempera-7 

ture sharpening can still decrease the heterogeneity that results from thermal dynamics. 8 

The excess errors resulted from the relatively low LST accuracy, with R2, MBE, and RMSE 9 

values of 0.42, 1.59 K and 2.98 K, respectively. On August 29, the temperature at a resolution of 10 

300 m was 301.6 K, and the observed temperature of the ground was 300.20 K. The LST at the 300-11 

m resolution was slightly overestimated. When the in situ temperature was substituted into the IPUS 12 

algorithm, the value of H decreased to 16.06 W∙m-2 and the LE became 467.43 W∙m-2. When sub-13 

stituting the in situ temperature in the TRFA scheme, the value of H was 22.43 W∙m-2 and the LE 14 

was 461.58 W∙m-2, which were more similar to the ground observations. 15 

Table 12. Comparison of the turbulent heat flux results at EC11 16 

EC11 H(W∙m-2) LE(W∙m-2) 

Date EC IPUS TRFA TSFA EC IPUS TRFA TSFA 

0619 33.94  173.69  158.12 158.18  531.46  391.60  407.42  407.40  

0630 25.03  3.29  23.12 21.37  635.22  586.37  566.48  568.28  

0708 32.29  68.17  97.16 96.13  601.98  567.73  538.77  539.81  

0727 21.42  -1.17  -1.58 -3.77  587.70  618.80  619.19  621.46  

0803 7.01  24.85  20.34 19.52  614.28  575.03  585.29  586.16  

0815 38.94  12.51  15.52 16.02  567.07  584.31  581.31  580.82  

0822 69.25  73.45  83.11 84.38  516.07  483.23  473.60  472.40  

0829 29.77  48.21  60.9 60.81  473.22  427.92  415.32  415.45  

0902 193.97  154.58  197.01 197.49  306.62  361.96  319.54  319.03  

0913 288.37  168.42  176.4 177.71  160.29  216.53  208.49  207.19  

0914 240.33  268.91  256.29 256.40  199.52  156.00  168.63  168.55  

units: W∙m-2 17 

 IPUS TRFA TSFA 

Variable R2 MBE RMSE R2 MBE RMSE R2 MBE RMSE 

EC11-H 0.61  -1.07  61.31  0.57  -0.36  63.24  0.67  -0.21  55.50  

EC11-LE 0.88  -19.83  63.16  0.89  -18.12  60.02  0.90  -21.29  58.11  

Another typical pixel located at the boundary of the bare soil and the oasis with no flux meas-18 

urements was used to evaluate the correction effects of landscapes and temperature sharpening. The 19 

land surface of TP contained maize, vegetables and bare soil at a fraction of 35:31:34. Table 13 20 

shows that when neither the heterogeneity of the landscape nor the LST are considered, the relative 21 

error of LE could reach 180 W∙m-2. In addition, if only the LST heterogeneity is not considered, the 22 

LE relative error could reach 48 W∙m-2. This result also reveals that the influences of landscape 23 

inhomogeneity are greater than the influences of inhomogeneity on the LST in mixed pixels. 24 

Table 13. Comparison of the turbulent heat flux results at TP 25 

  H (W∙m-2) LE (W∙m-2) 

Date IPUS TRFA TSFA IPUS TRFA TSFA 



 

 

0619 186.31  149.73  143.98  321.04  358.22  364.79  

0630 383.65  191.59  158.79  67.03  259.36  292.89  

0708 498.36  240.20  204.18  0.29  259.25  293.41  

0727 276.79  136.06  84.01  206.52  347.64  402.23  

0803 214.14  75.45  53.72  252.37  392.08  416.41  

0815 214.14  98.24  72.05  252.37  368.64  393.68  

0822 436.48  369.28  276.70  0.00  67.79  162.80  

0829 235.29  117.16  67.21  183.62  302.41  356.75  

0902 423.61  212.15  180.92  0.00  211.77  241.36  

0913 338.00  285.04  216.26  0.00  53.62  122.58  

0914 270.44  148.20  100.19  115.19  238.43  286.51  

units: W∙m-2 1 

  IPUS TRFA 

Variable R2 MBE RMSE R2 MBE RMSE 

TP-H 0.62  174.47  185.49  0.95  42.28  48.01  

TP-LE 0.71  -175.91  186.63  0.97  -43.11  49.04  

4.3.2. Comparison of TRFA and IPUS methods 2 

Using September 13 as an example, the spatial distributions of the four components of the 3 

energy balance calculated by IPUS and TRFA are shown in Fig. 9 and Fig. 10, respectively. TSFA 4 

minus IPUS and TSFA minus TRFA, which show the spatial distributions of the heterogeneity ef-5 

fect, are shown in Fig. 11. Scatterplots of TSFA versus IPUS and TRFA are shown in Fig. 12. 6 

Comparing Fig. 6 with Fig. 9, the spatial distribution of the fluxes greatly changes, except for 7 

Rn. The TSFA results are synoptically smoother than the IPUS results because the land types and 8 

temperature distributions in mixed pixels that cannot be considered in IPUS appear in TSFA. For 9 

example, the boundary between the oasis and uncultivated land becomes a belt of intermediate G, 10 

H and LE because mixed pixels include uncultivated land and vegetation. However, mixed pixels 11 

are classified as the dominant land use type in the parameterization process of IPUS. This result 12 

overlooks the contributions of heat flux from complex land use types and overestimates or underes-13 

timates the heat flux by approximately 50 W∙m-2. However, TSFA can integrate the effects of these 14 

land areas and reveals the relative actual surface conditions. The results of this analysis vary less 15 

dramatically than the results obtained using IPUS, as shown in the figures. The results are similar 16 

in the oasis. 17 

Based on the overviews presented in Fig. 6 and Fig. 10, the TRFA and TSFA methods are 18 

similar. Because the TRFA method considers the sub-pixel landscapes that could be a significant 19 

source of error in ET models, the difference between the TSFA and TRFA methods result from the 20 

differences between the sharpened and retrieved LST for the sub-pixels at the 300 m resolution. In 21 

addition, the bias between the TSFA and TRFA is not as obvious as the bias between the TSFA and 22 

IPUS methods, as shown in Fig. 11(c)(d)(e)(f). Furthermore, Fig. 11(f) shows that the LEs calcu-23 

lated by using the TSFA method for most oasis areas were slightly greater than the LEs calculated 24 

by using the TRFA method, which were approximately 20 W∙m-2.  25 

The quadrangular with a relatively unstable bias shown in Fig. 11(a) is caused by the Ld that 26 

was calculated from the MOD05 water vapor product which exists quadrangular even after prepro-27 

cessing the instrument malfunction gap. From Fig. 11, the differences of the four energy components 28 



 

 

of the pure pixels between these three methods are within 5 W∙m-2, and the mixed pixels have dif-1 

ferent ranges. 2 

 3 

Figure 9. Maps of the four energy components, (a) Rn, (b) G, (c) H and (d) LE, calculated using the IPUS method 4 

on September 13, 2012. 5 



 

 

 1 

Figure 10. Maps of the four energy components, (a) Rn, (b) G, (c) H and (d) LE, calculated using the TRFA method 2 

on September 13, 2012. 3 



 

 

 1 

Figure 11. Maps of the bias of the energy balance components calculated using the TSFA method minus the IPUS 2 

method: (a) Rn, (b) G, (c) H, (d) LE, TSFA minus TRFA: (e) H and (f) LE. 3 



 

 

 1 

Figure 12. Scatter plots between the TSFA and IPUS results: (a) Rn, (b) G, (c) H and (d) LE; TSFA and TRFA (e) 2 

Rn, (f) G, (g) H and (h) LE. MBD and RMSD are the mean bias deviation and root mean square deviation between 3 

the TSFA and IPUS results, respectively. 4 

Fig. 12 shows the scatter plots between the results from the TSFA method and the other two 5 



 

 

methods for all four energy balance components in the image. Fig. 11(a)(e) shows that Rn does not 1 

vary much between the three methods because the scatter is centralized around the 1:1 line. However, 2 

regarding the spatial scale effect, the differences in G, H and LE calculated by using the IPUS 3 

and TSFA methods are obvious: the scatter plots are dispersed at the mixed pixels, and the differ-4 

ences between the TRFA and TSFA results are relatively smaller. When using the TSFA method, the 5 

temperature sharpening results can be divided into results that are higher and lower than the LST 6 

retrieved at 300 m. Compared with the LST retrieved at 300 m when using the TRFA method, a 7 

higher LST would be counterbalanced by a lower LST when calculating H. Thus, the heterogeneous 8 

effect of temperature is neutralized in this case. This observation potentially resulted from the tem-9 

perature sharpening algorithms because they tend to overestimate the sub-pixel LST for cooler land-10 

scapes and underestimate the sub-pixel LST for warmer areas in the image (Kustas et al., 2003). 11 

However, LE is calculated as a residual; thus, the difference of LE resulted from the G and H. 12 

When the 300 m mixed pixels contain various types of land, they may be categorized as one type of 13 

land because of the coarse resolution of the IPUS results and because a single temperature value is 14 

used to evaluate the thermal dynamic effects when using the TRFA method. Pixels with highly dif-15 

ferent G, H and LE values are mainly distributed near the mixed pixels, as shown in Fig. 10. An 16 

explanation for these deviations is provided below.  17 

The parameterization of G and H is based on the land cover type. For example, for buildings, 18 

G = 0.4Rn(Kato and Yamaguchi, 2005) (which is usually greater than the G of vegetation and bare 19 

soil deduced from Eq.(9)) and H = 0.6Rn, and for water, G = 0.226Rn and LE = Rn − G. From 20 

the land cover map shown in Fig. 4, four major classes exist in the study area, buildings with a high 21 

H, uncultivated land with a relatively high H, cropland with a relatively low H, and water with 22 

H = 0. 23 

(1) If a pixel contains cropland and buildings and is categorized as cropland the building area 24 

within the pixel is ignored when using the IPUS method. In this case, G and H are underestimated 25 

and LE is overestimated. In addition, after considering the landscapes by using the TRFA method, 26 

the LE is underestimated and H is overestimated because the pixels contain buildings that are still 27 

reflected indistinctly by LST at 300 m because the detailed temperature heterogeneity cannot be 28 

represented by the TRFA method. These points are shown in green in Fig. 11. However, if the pixel 29 

is categorized as built-up, the building area within a pixel is exaggerated, which causes G and H 30 

to be overestimated and LE to be underestimated when using the IPUS method. This situation is 31 

similar to the points shown in green for the TRFA results and is shown by red points in Fig. 11. 32 

(2) At the margin of the oasis and uncultivated land, the mixed pixels are divided into cropland, 33 

the LE is overestimated, G and H are underestimated in the IPUS method, and vice versa. The 34 

LE is also overestimated in the pixels containing water and other types of land cover (generally 35 

bare soil in our study area). These pixels are categorized as water and are shown as blue points in 36 

Fig. 11. Some of the blue LE points calculated by using the TSFA method are slightly smaller than 37 

those calculated by using the TRFA method for pixels containing vegetation, and the temperature 38 

of vegetation is lower than the temperature of water bodies at noon in our study area. 39 

(3) In mixed pixels that contain various crops, such as maize and vegetables, the LE is under-40 

estimated if the area of maize within the pixel is overestimated because the canopy height of the 41 

maize would be taller than that of vegetables, which would result in the overestimation of H when 42 

using the IPUS and TRFA methods. In addition, G depends on the FVC of the crops when using 43 

the IPUS method, and is nearly the same as the values of G obtained when using the TRFA and 44 



 

 

TSFA methods because it depends on Rn. 1 

At the study area scale, we compared TRFA and IPUS to quantify the ability of the TSFA 2 

method to simulate the heterogeneities of the land surface on September 13 (see Table 14). For pure 3 

pixels, the LE biases among the IPUS, TRFA and TSFA methods were small. In mixed pixels, the 4 

LE bias between the TSFA and IPUS methods varied from 35.36 to 65.66 W∙m-2, and the bias be-5 

tween the TSFA and TRFA methods varied from 4.41 to 22.53 W∙m-2. More class types in mixed 6 

pixels correspond to larger biases. Table 15 shows the bias of the mixed pixels that contain buildings 7 

and bare soil between the three methods. For mixed pixels with buildings, the IPUS and TRFA 8 

methods usually underestimated the LE, with a large bias compared with the TSFA method. For 9 

mixed pixels without buildings and bare soil, the bias between TRFA (or IPUS) and TSFA was 10 

relatively small, which indicates that the landscape and temperature inhomogeneity are accounted 11 

for by the TSFA method. The aforementioned analyses demonstrate that the TSFA method can con-12 

sider the heterogeneous effects of mixed pixels. 13 

Table 14. Comparison of the latent heat flux in pixels containing different numbers of class types 14 

Number of class IPUS (W∙m-2) TRFA (W∙m-2) Pixel 

types in pixels R2 MBD RMSD R2 MBD RMSD number 

1 1.00  0.21  0.21  1.00  0.05  0.61  11,398 

2 0.85  -7.18  35.36  1.00  -0.35  4.41  8212 

3 0.66  -2.32  52.55  0.98  -7.33  12.56  4762 

4 0.49  1.88  65.66  0.96  -11.56  16.55  2824 

5 0.98  -30.92  62.69  0.96  -16.90  22.53  4 

Notes: Number of class types in mixed pixels means the number of classification types that were contained in 15 

the pixels. For example, 1 represents the pure pixels, 2 represents mixed pixels containing two land use types, etc. 16 

MBD and RMSD are the mean bias deviation and root mean square deviation, respectively, between the TSFA 17 

results and the TRFA and IPUS results. 18 

Table 15. Comparison of the latent heat fluxes of typical mixed pixels  19 

Types of mixed pixels 
IPUS (W∙m-2) TRFA (W∙m-2) Pixel 

R2 MBD RMSD R2 MBD RMSD number 

mixed pixels contain buildings 0.58  -1.02  61.94  0.97  -9.64  14.66  4918 

mixed pixels do not contain buildings 0.81  -5.49  39.21  0.99  -2.12  7.60  10,884 

mixed pixels contain bare soil 0.73  -1.52  49.04  0.98  -5.96  11.86  9049 

mixed pixels do not contain bare soil 0.65  -7.55  45.28  0.98  -2.46  7.83  6753 

Considering the landscapes and inhomogeneous distribution of LST, the TSFA method ensures 20 

that none of the end members (30 m pixel) are ignored or exaggerated. Thus, the distribution of LE 21 

calculated using the TSFA method is smoother and more rational than the distributions of LE cal-22 

culated using the other methods. At the regional scale, the TSFA method describes the heterogeneity 23 

of the land surface more precisely. And how much the estimation accuracy can be improved is dis-24 

cussed in the following sections. 25 

4.4. Error analysis 26 

Since LE is calculated as a residual term in the energy balance equations, the sensitivity of H 27 

was analyzed at first. Land surface variables (including LST, LAI, canopy height, and FVC) and 28 

meteorological variables (including wind speed, air temperature, air pressure and relative humidity) 29 

are needed to estimate H in this paper. To locate the error source when retrieving H, a sensitivity 30 



 

 

analysis was performed by adding errors at each 10% step (except LST). Fig. 13 presents the sensi-1 

tivity analysis results: LST = 303.9 K (ranging from 298.4~309.4 K with a step size of 0.5 K), 2 

LAI=1.4 (ranging 0.14~2.66 with a step size of 0.14), canopy height equals 1 m (ranging 0.1~1.9 m 3 

with a step size of 0.1 m), FVC=0.5, wind speed u=2.48 m∙s-1, air temperature Ta=297.9 K, air 4 

pressure = 97.2 kPa, and RH=40.29%. In addition, the land use type is maize, and the reference H 5 

is 230.2 W∙m-2. 6 

 7 

Figure 13. Sensitivity analysis of the surface variables for sensible heat flux 8 

The air pressure is stable over a short period and has little effect on the ET results. Although 9 

“excess resistance” was calculated from the friction velocity, the meteorological data were provided 10 

by ground observations; thus, the meteorological data are relatively accurate. As shown in Fig. 13, 11 

LAI, canopy height and LST are sensitive variables. 12 

The parameterization of the momentum roughness length indicates that LAI is sensitive to H, 13 

with decreasing sensitivity when the LAI is greater than 1. When the LAI is less than 1, the momen-14 

tum roughness length increases as the LAI increases and the H and turbulent exchange are enhanced. 15 

However, when the LAI is greater than 1, the plant canopy could be regarded as a continuum that is 16 

not sensitive to H. Because our study area is dominated by agriculture and the study period was 17 

from July to September, the crops in the HRB middle stream grew quickly, so the LAI was generally 18 

greater than 1. Thus, LST and canopy height are the main sources of error. 19 

4.4.1. The error of LST 20 

As shown in Fig. 13 using monitoring data, a 1 K LST bias would result in 21% error of H, 21 

about 48.3 W∙m-2. However, the sensitivity of the LST is unstable and depends on the strength of 22 

the turbulence. The strength of the turbulence determines the mass and energy transport and the 23 

resistance of heat transfer, which influences the sensitivity of the LST. A weaker turbulence corre-24 

sponds to a weaker LST sensitivity and vice versa. 25 

The influence of LST was analyzed based on the sensitivity analysis and LE results. We chose 26 

homogeneous stations to analyze the LST error so that other errors could be ignored. These results 27 

are shown in Table 16. The LE results obtained from the observed LST are consistent with the in 28 

situ observations but have less bias. The LE was overestimated when the LST was underestimated 29 

and vice versa. Because the magnitude of LE was greater than H, the relative error of LE was less 30 

than the relative error of H. However, 1 K of LST bias would result in an average LE error of 30 31 

W∙m-2, which is consistent with the sensitivity analysis of H shown in Fig. 13. Specifically, 1 K of 32 

LST bias would result in LE biases of 8.7 W∙m-2 (in desert, SSW) to 84.4 W∙m-2 (in oasis, EC8), 33 

which may prove that the sensitivity of LST is unstable. 34 

Table 16. Results of the LST error analyses at the homogeneous stations 35 



 

 

Station Date 
retrieved 

LST (K) 

observed 

LST (K) 

LST 

bias 

(K) 

EC-LE 

(W∙m-2) 

LE from  

retrieved 

LST 

(W∙m-2) 

LE from 

observed 

LST 

(W∙m-2) 

LE  

relative 

error 

(%) 

H  

relative 

error 

(%) 

EC8 0619 304.92 301.74 3.18 415.89  321.80  399.78  -22.62  68.58 

EC7 0630 302.5 299.35 3.15 611.22  453.59  557.97  -25.79  886.08 

EC10 0708 303.58 300.5 3.08 617.83  504.44  549.53  -18.35  390.24 

EC15 0708 303.55 300.13 3.42 620.95  425.71  603.73  -31.44  450.57 

EC7 0727 298.87 300.55 -1.68 577.59  643.56  566.62  11.42  -132.47 

SSW 0727 307.86 316.82 -8.96 119.35  238.07  78.43  99.48  -60.36 

EC2 0822 299.79 298.05 1.74 501.12  411.43  486.28  -17.90  67.20 

EC8 0822 299.58 297.77 1.81 543.56  416.23  467.42  -23.42  88.59 

EC10 0822 301.61 298.04 3.57 503.82  398.82  513.67  -20.84  138.61 

EC15 0822 300.59 297.69 2.9 473.68  408.37  495.49  -13.79  129.60 

EC8 0829 301.54 300.44 1.1 514.31  402.93  428.78  -21.66  63.91 

EC15 0829 301.41 299.84 1.57 473.54  399.25  459.66  -15.69  182.34 

SSW 0902 304.9 303.42 1.48 226.88  127.96  149.83  -43.60  11.36 

Notes: “LST bias” is calculated as the retrieved LST minus the observed LST; “EC-LE” is the in situ latent heat flux; 1 

“LE relative error” is the relative error between the retrieved and observed LST and is expressed as ((LE from 2 

retrieved LST)-(LE from observed LST))/(LE from observed LST)×100%, “H relative error” is calculated in the 3 

same way.  4 

4.4.2. The error of canopy height 5 

In this paper, canopy height was obtained from a phenophase and classification map. Thus, the 6 

accuracy of the canopy height was mainly dependent on the classification accuracy and plant growth 7 

state. Even within the same region, the canopy height of a crop can differ due to differences in 8 

seeding times and soil attributes, such as soil moisture and fertilization. 9 

The land use at EC17 was orchard. However, in our land classification map, the land use at 10 

EC17 was other crops, which includes vegetables and orchards. Thus, it was difficult to set the 11 

canopy height. In our study area, most of the other crops were vegetables (canopy height of 0.2 m), 12 

and the height of the orchard was approximately 4 m; thus, a value of 0.2 m would overestimate the 13 

LE. The LE results with incorrect canopy heights and correct orchard canopy heights at EC17 are 14 

shown in Table 17. The days of large LST bias were removed, and the bias between the model and 15 

ground observations decreased. The excess errors were caused by errors in the LST and other land 16 

use types, such as buildings and maize in the mixed pixels. 17 

Table 17. Results of the canopy height error analyses at EC17 18 

Date EC-LE (W∙m-2) 
LE from incorrect 

canopy height (W∙m-2) 

LE from correct 

canopy height (W∙m-2) 

LE relative  

error (%) 

20120815 499.62 562.06  521.83  7.71  

20120822 366.27 519.01  396.54  30.88  

20120902 377.96 471.68  336.52  40.16  

20120914 465.38 352.78  258.07  36.70  

Except for the error source discussed before, the following sources of error were unavoidable: 19 

(1) Although the remotely sensed turbulent heat flux is instantaneous, the EC data are averaged 20 



 

 

over time. Thus, the time scales do not match in the validation. 1 

(2) The calibration coefficient of HJ-1B satellite’s CCD and IRS drifts because of the aging 2 

instruments. 3 

(3) Geometric correction causes half-pixel bias equal to or less than the deviation of the artifi-4 

cially subjective interpretation. 5 

A one-source model and simplified parameterization schemes for determining surface rough-6 

ness lengths and heat transfer coefficients were used in this paper. The one-source model combines 7 

soil evaporation and plant transpiration and assumes that SPAC is a one-source continuum for cal-8 

culating ET. This assumption is reasonable when the surface is densely covered by vegetation but 9 

relies on the accuracy of the difference between the LST and air temperature, as previously men-10 

tioned. When a one-source model is applied to an area covered by sparse vegetation, such a semi-11 

arid or arid areas, this assumption is irrational. 12 

5. Discussion  13 

As mentioned in the results and analysis, the TSFA method describes the surface heterogeneity 14 

more clearly than the IPUS and TRFA methods. The IPUS method aggregates the land surface pa-15 

rameters achieved by CCDs from 30 m to 300 m, which results in the loss of surface information 16 

and leads to the scale effect. Although the TRFA method uses VNIR information and partially de-17 

creases the heterogeneity caused by landscape and VNIR variables, it treats the pivotal variable LST 18 

as homogeneous within mixed pixels, which results in considerable error. In summary, the superi-19 

ority of the TSFA method is described as follows: 20 

(1) The temperature sharpening algorithm in TSFA uses the NDVI at 30 m to monitor the LST 21 

at 30 m and is capable of decreasing the influences of the heterogeneity of the LST, which agrees 22 

with previous research results (Kustas et al., 2003; Bayala and Rivas, 2014; Mukherjee et al., 2014). 23 

As analyzed in Sect. 4.3, the ignorance of the heterogeneity of LST in mixed pixels is irrational and 24 

causes errors when estimating ET. 25 

(2) In the one-source energy balance model, different landscapes used different parameteriza-26 

tion schemes. In the IPUS method, a single land cover type is assigned to a mixed pixel, which 27 

results in a large error. However, the TSFA method is used to calculate the surface flux at 30 m and 28 

is aggregated to 300 m using the area-weighting method, which considers all of the sub-pixel land-29 

scapes and improves the retrieval accuracy. 30 

Some problems exist in the temperature sharpening algorithms. The temperature-downscaling 31 

method used in this paper caused boxy anomalies in parts of the sharpened-temperature field be-32 

cause of the constant residual term, ∆T̂300, in Eq. (3) within large pixels. This situation also oc-33 

curred in the temperature sharpening algorithm proposed by Agam et al. (2007). In addition, our 34 

temperature sharpening algorithm tends to overestimate the sub-pixel LST for cooler landscapes 35 

and underestimate the sub-pixel LST for warmer areas (Kustas et al., 2003). This inaccurate estima-36 

tion causes errors that are difficult to evaluate when estimating turbulent heat flux. For example, the 37 

small turbulent heat flux bias between TSFA and TRFA was caused by the counterbalanced effect 38 

as analyzed in Sect. 4.3.1. The evaluation of more temperature sharpening algorithms under heter-39 

ogeneous surfaces with real datasets when applied in ET models would be helpful (Ha et al., 2011). 40 

Our surface variable retrieval methods were validated against other areas considered in remote 41 

sensing measurement campaigns. For example, the albedo algorithm was previously applied to re-42 



 

 

trieve Global Land Surface Satellite (GLASS) Products (Liang et al., 2014), the LST retrieval algo-1 

rithm was validated in the Haihe River Basin in northern China (Li et al., 2011), and the soil heat 2 

flux correction algorithm was validated in the GAME-Tibet campaign (Yang and Wang, 2008). 3 

Since the surface of the Heihe River Basin is extreme heterogeneous, additional comparisons of our 4 

algorithm in other areas of research would be better. 5 

In addition, to correct the discrepancy between remotely sensed radiative surface temperature 6 

and aerodynamic temperature at the source of heat transport, a brief and well-performed parameter-7 

ization scheme (under uniformly flat plant surface) of “excess” resistance was used to calculate the 8 

aerodynamic resistance of heat transfer (Jiao et al., 2014). Since the objects of our study are mixed 9 

pixels, more parameterization methods should be compared to select the optimum method. 10 

Because of the sensitive variables of the one-source energy balance model used in this paper, 11 

the accuracy of the LST and canopy height greatly influenced the turbulent heat flux. HJ-1B IRS is 12 

a single-thermal channel, the single-channel LST-retrieving algorithm may be unstable under wet 13 

atmospheric conditions (water vapor contents higher than 3 g/cm2) (H. Li et al., 2010), which may 14 

create a bottleneck for ET estimations by HJ-1B. The canopy height is a priori knowledge based on 15 

phenophase classifications and would influence the accuracy of the surface roughness, the length of 16 

a heterogeneous surface or the seasonal transition. Multi-source remote sensing data could be used 17 

to improve the accuracy of calibrations and land surface variable estimations. Active microwave 18 

and LiDAR data (Colin and Faivre, 2010) could be used to obtain the canopy height, which would 19 

decrease the dependence on the accuracy of the classification. 20 

The energy balance closure has significant influence on evaluation of the model calculated heat 21 

flux results. In our study area, the EC energy balance closure ratio was greater than 0.75 (Liu et al., 22 

2011b). Studies have shown that the not-captured low-frequency eddies(Von Randow et al., 2008), 23 

extension of averaging time (Charuchittipan et al., 2014), and lack of an accurate accounting of heat 24 

storage terms(Meyers and Hollinger, 2004) are potential reasons for the energy imbalance and so 25 

forth. The conserving Bowen ratio and residual closure technique are often used to force energy 26 

balance. We chose the residual closure at last because the conserving Bowen ratio method conducted 27 

irrational sensible heat flux due to small or negative Bowen ratios (large LEs due to “oasis effect”) 28 

in the oasis-desert system. Energy balance closure was problematic at times for turbulent flux sys-29 

tem and tended to be associated with significant discrepancies in LE (Prueger et al., 2005). 30 

Since a footprint model was used in the validation, the footprints discrepancy between in situ 31 

measurements and remote sensing pixel may cause biases. For example, model validation results 32 

were calculated by the relative weights of the footprint model, and multiply heat flux results of the 33 

coarse pixels which were covered by source area from upwind direction. However, the heat fluxes 34 

of coarse pixels included the contribution of not-overlapped sub-pixels within the coarse pixel. In-35 

fluenced by the heterogeneity of underlying surface, it would cause uncertainties in the validation. 36 

6. Conclusion 37 

We studied the effects of surface heterogeneity in ET estimation by the IPUS, TRFA and TSFA 38 

methods over heterogeneous surface based on spatial resolution characteristic of different satellites, 39 

and applied them to HJ-1B satellite data based on operational satellites’ instrumental characteristics. 40 

Compared with the IPUS and TRFA methods, the TSFA method is more consistent with in situ 41 

measurements (energy balance forced by residual closure method) according to the footprint vali-42 

dation results. If ET estimating algorithm does not consider surface heterogeneity at all (i.e. IPUS), 43 



 

 

it would cause significant error (i.e. 186 W∙m-2) of heat fluxes. If ET estimating algorithm does not 1 

consider heterogeneity of LST only (i.e. TRFA), it would cause non-negligible error (i.e. 49 W∙m-2) 2 

in heat fluxes calculating. The TSFA method reduces the uncertainties produced by surface land-3 

scapes and LST inhomogeneity. As a sensitive variable of the ET model, canopy height is mainly 4 

determined by classification, and the application of classification at a 30-m resolution can improve 5 

the accuracy of the canopy height. As another sensitive variable, the sharpened surface temperature 6 

at a resolution of 30 m decreases the thermodynamic uncertainty caused by land surface heteroge-7 

neities. The TSFA method can capture the heterogeneities of the land surface and integrate the ef-8 

fects of landscapes in mixed pixels that are neglected at coarse spatial resolutions. 9 

HJ-1B satellite data are advantageous because of their high spatiotemporal resolution and free 10 

access. Because the satellites are still in operation, long-term data have promising applications for 11 

monitoring energy budgets. 12 
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Appendix 21 

Notation 
 Application 

 (for calculating) 

6S radiation 

transfer mode 

Second Simulation of a Satellite Signal in the Solar Spectrum 

radiation transfer mode 
Albedo, Sd 

α Surface broadband albedo Sd, Rn 

ABT At-nadir brightness temperature (K) Ld 

AMS Automatic meteorological station   

AOD Aerosol optical depth Sd 

BRDF Bidirectional reflectance distribution function α 

CCD Charge-coupled device  

CV Coefficient of variation Sharpened LST 

EC Eddy covariance  

FVC Fractional vegetation coverage LSE, G, LAI 

G Soil heat flux (W∙m-2)  

G(𝜃) G function, Foliage angle distribution LAI 

H Sensible heat flux (W∙m-2)  

HRB The Heihe River Basin  

IPUS Input parameter upscaling scheme  

IRS Infrared scanner  

Ld Downward atmospheric longwave radiation (W∙m-2) Rn 

LSE/ε Land surface emissivity LST 



 

 

εv/εg The vegetation/ground emissivity  

LST/Trad Land surface temperature/Surface radiation temperature (K) H 

MBE/MBD Mean bias error (deviation)  

NCEP National Centers for Environmental Prediction LST 

NDVI/NDVI30 Normalized difference vegetation index FVC, Sharpened LST 

NDVI300 300-m NDVI aggregated from NDVI Sharpened LST 

NDVIs/NDVIv 
Normalized difference vegetation index of bare soil/fully cov-

ered vegetation 
FVC 

P(𝜃) Angular distribution of the canopy gap fraction LAI 

ra Aerodynamic resistance (s∙m-1) H 

rex “Excess” resistance (s∙m-1) heat transfer resistance 

Rn Net radiation (W∙m-2)  

RMSE/RMSD Root mean square error (deviation)  

Sd Downward shortwave radiation (W∙m-2) Rn 

SPAC The soil-plant-atmosphere continuum  

SZA Solar zenith angle Sd 

Ta Air temperature (K) H 

Taero 

Aerodynamic surface temperature obtained by extrapolating the 

logarithmic air-temperature profile to the roughness length for 

heat transport (K) 

H 

TOA Top of the atmosphere  

TOMS Total ozone mapping spectrometer Sd 

TRFA Temperature resampling and flux aggregation  

TSFA Temperature sharpening and flux aggregation  

ULR Upward longwave radiation (W∙m-2) Rn 

USR Upward shortwave radiation (W∙m-2) Rn 

VNIR Visible/near-infrared  

VZA/𝜃 View zenith angle Ld, LAI 
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