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Abstract 13 

The one-dimensional hydrodynamic-ice model, DYRESM-WQ-I, was modified to simulate 14 

ice cover and thermal structure of dimictic Lake Mendota, WI, USA, over a continuous 104-15 

year period (1911-2014). The model results were then used to examine the drivers of changes 16 

in ice cover and water temperature, focusing on the responses to shifts in air temperature, 17 

wind speed, and water clarity at multi-year time scales. Observations of the drivers include a 18 

change in the trend of warming air temperatures from 0.081 °C per decade before 1981 to 19 

0.334 °C per decade thereafter, as well as a shift in mean wind speed from 4.44 m s-1 to 3.74 20 

m s-1 in 1994. Observations show that Lake Mendota has experienced significant changes in 21 

ice cover: later ice on (9.0 days later per century), earlier ice-off (12.3 days per century), 22 

decreasing ice cover duration (21.3 days per century), while model simulations indicate a 23 

change in maximum ice thickness (12.7 cm decrease per century). Model simulations also 24 

show changes in the lake thermal regime of: earlier stratification onset (12.3 days per 25 

century), later fall turnover (14.6 days per century), longer stratification duration (26.8 days 26 

per century), and decreasing summer hypolimnetic temperatures (-1.4 oC per century). 27 

Correlation analysis of lake variables and driving variables revealed ice cover variables, 28 
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stratification onset, epilimnetic temperature, and hypolimnetic temperature were most closely 1 

correlated with air temperature, whereas freeze-over water temperature, hypolimnetic heating, 2 

and fall turnover date were more closely correlated with wind speed. Each lake variable (i.e., 3 

ice-on and ice-off dates, ice cover duration, maximum ice thickness, freeze-over water 4 

temperature, stratification onset, fall turnover date, stratification duration, epilimnion 5 

temperature, hypolimnion temperature, and hypolimnetic heating) was averaged for the three 6 

periods (1911-1980, 1981-1993 and 1994-2014) delineated by abrupt changes in air 7 

temperature and wind speed. Average summer hypolimnetic temperature and fall turnover 8 

date exhibit significant differences between the third period and the first two periods.  9 

Changes in ice cover (ice-on and ice-off dates, ice cover duration, and maximum ice 10 

thickness) exhibit an abrubt change after 1994which was related in part to the warm El Niño 11 

winter of 1997−1998. Under-ice water temperature, freeze-over water temperature, 12 

hypolimnetic temperature, fall turnover date, and stratification duration demonstrate a 13 

significant difference in the third period (1994−2014), when air temperature was warmest and 14 

wind speeds decreased rather abruptly. The trends in ice cover and water temperature 15 

demonstrate responses to both long-term and abrupt changes in meteorological conditions that 16 

can be complemented with numerical modelling to better understand how these variables will 17 

respond in a future climate. 18 

 19 

1 Introduction 20 

Many studies have shown that lake temperatures and ice cover can strongly affect water 21 

chemistry, individual organism physiology, population abundance, community structure, and 22 

food-web dynamics (Weyhenmeyer et al. 1999; Straile, 2000; Gerten and Adrian 2000; 23 

Arhonditsis et al. 2004b). Air temperature, wind speed, and water clarity are important factors 24 

driving these lake ecosystem properties. Understanding how lakes respond to changes in these 25 

drivers is of great interest to predict how lakes may change in the future (Robertson 1989; 26 

Magnuson et al. 1997; Fang and Stefan 2009). The long-term response of lake ice and water 27 

temperature to changing air temperature and wind speed is integral to assessment of the 28 

potential impacts of climate change on water quality and ecology of lakes.  29 

Over the past 100 years, climate has been changing and will continue to change (IPCC 2013). 30 

Globally-averaged combined land and ocean surface temperature data show a linear warming 31 

trend of 0.85 °C from 1880−2012 (IPCC 2013). This warming was most pronounced from 32 
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1979−2012, greater than 0.25 oC per decade (Hartmann et al., 2013) Increases in air 1 

temperature alter the ice cover of lakes (Robertson et al. 1992; Magnuson et al. 2000; Butcher 2 

et al. 2015) and affect their thermal structures (Robertson and Ragotzkie 1990), evidenced by 3 

increasing epilimnetic temperatures (Schindler et al. 1990; Arhonditsis et al. 2004a; Dobiesz 4 

and Lester 2009), warming of the lake surface temperature (Schneider and Hook, 2010; 5 

Shimoda et al. 2011), increasing temperature gradient across the thermocline (King et al. 6 

1997; Livingstone 2003), changing thermocline depth (Schindler et al. 1990; King et al. 7 

1997), advancing the onset of summer stratification (Austin and Colman 2007), delaying fall 8 

turnover (King et al. 1997), increasing the strength of thermal stratification (Rempfer et al, 9 

2010), and prolonging the stratified period (Robertson and Ragotzkie 1990; Wilhelm and 10 

Adrian 2008). 11 

Trends in wind speed over the last 30–50 years have been reported in several studies that have 12 

analyzed historical wind speed records across the globe (Jiang et al. 2010; Wan et al. 2010). 13 

Klink (2002) examined 22- to 35-year records (ranging between 1959–1995) of wind speed at 14 

seven stations in and around Minnesota and found decreasing annual wind speeds at five of 15 

the seven stations. Pryor et al. (2009) reported that the 50th and 90th percentile annual wind 16 

speeds over the period 1973–2005 across most of the U.S. have also decreased. Decreased 17 

wind speeds increase thermal stratification and can reduce whole-lake average temperature 18 

(Tanentzap et al. 2008). Interestingly, an opposing trend (increasing wind speed) has been 19 

observed in Lake Superior, North America, where the lake surface temperatures have been 20 

warming faster than air temperatures (Austin and Colman 2007). Desai et al. (2009) suggest 21 

that the larger increase in water temperatures than air temperatures reduced the air-water 22 

temperature gradient and destabilized the atmospheric surface layer above Lake Superior, 23 

which resulted in  increasing wind speed at a rate of nearly 5% per decade. Differences in 24 

wind-driven mixing may explain different temperature responses of hypolimnetic waters in 25 

large and small lakes (Winslow et al. 2015). While the importance of wind in lake heat 26 

transfer (Fu et al. 2009; Read et al. 2012), mixing, and thermal structure (Schindler et al. 27 

1990; Desai et al. 2009) has been recognized, studies on the effects of wind speed alterations 28 

on seasonal ice cover and thermal structure of lakes are still rare.  29 

Water clarity, which controls the amount of solar radiation penetrating into a lake, plays an 30 

important role in heat budgets in lakes. Increased water clarity can result in warmer deep 31 

waters (Stefan et al, 1996), while reduced light penetration can result in decreased mixing 32 
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depth and cooler deep waters (Hocking and Straskraba, 1999; Tanentzap et al., 2008). 1 

Previous studies have also shown that increased water clarity was correlated with deeper 2 

mixed-layer depth (Mazumder and Taylor 1994; Fee et al. 1996; Schindler et al. 1996) and 3 

increased hypolimnetic heating rate (Yan 1983). Water clarity has important consequences for 4 

photosynthesis and vertical distribution of biota. Accompanied by a warming climate, 5 

increased evaporation and changes in precipitation patterns can alter the inputs of nutrients 6 

and dissolved organic carbon (DOC) into lakes, resulting in changes in water clarity 7 

(Schindler et al. 1990; Schindler et al. 1996).   8 

Abrupt shifts, rather than linear changes, can occur in both climate and lake variables over 9 

long time scales. In the past, the majority of referenced studies used some form of linear 10 

regression analysis to look for changes, which assumes that lakes undergo monotonic changes 11 

over time (Van Cleave et al., 2014). This assumption can mask the occurrence of step changes 12 

(Liu et al., 2013; North et al., 2013) and can hide the underlying mechanisms that are 13 

responsible for the changes (North et al., 2014). As noted in other studies (Mueller et al., 14 

2009; Van Cleave, 2014), long-term changes in lake thermodynamic variables can be 15 

associated with a pronounced, nonlinear step change that indicates a rapid switch between 16 

stable states or regimes (Scheffer et al., 2001; Rodionov, 2004; North et al., 2013). Identifying 17 

this type abrupt change in climate drivers and corresponding abrupt or gradual change in lake 18 

variables may shed light on the role of changing climate on the corresponding ecosystem. 19 

The purpose of this study is to investigate how long-term changes in air temperature, wind 20 

speed, and water clarity affect the ice cover and thermal structure of a dimictic Lake Mendota, 21 

Wisconsin, USA during the past century using a long-term 104-year simulation model. We 22 

hypothesize that changes in lake ice cover (ice-on and ice-off dates, ice cover duration, and 23 

maximum ice thickness) and thermal structure (stratification onset, fall turnover date, 24 

stratification duration, water temperatures, hypolimnetic heating) variables may be 25 

characterized by periods of abrupt change rather than gradual trends, based on observations of 26 

rapid change in the climate drivers of air temperature and wind speed. To address this, a one-27 

dimensional hydrodynamic model with ice cover is first validated using a long-term (104- 28 

year) observational dataset. The model is then employed to simulate long-term (1911-2014) 29 

ice cover and water temperature in the lake. With the knowledge of lake responses to these 30 

past conditions, we aim to reveal how lakes might respond to future changes in air 31 

temperature, wind speed, and water clarity.       32 
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 5 

2 Methods 1 

2.1 Hydrodynamic model 2 

An ice and snow model was added to the DYRESM-WQ model (Hamilton and Schladow 3 

1997), a physically-based one-dimensional hydrodynamic model for simulating vertical 4 

mixing and advective transport in lakes and reservoirs. The resulting model, DYRESM-WQ-I, 5 

is validated and employed to simulate daily changes in the vertical distribution of water 6 

temperature and ice cover in Lake Mendota from 1911-2014. In this model, the lake is 7 

represented by a series of Lagrangian horizontal layers with uniform properties that may 8 

change in elevation and thickness in response to inflows/outflows and surface mass fluxes 9 

(evaporation and precipitation). Layer thickness is updated using an algorithm to give 10 

appropriate vertical density resolution at each time step. Mixing in the model is represented 11 

by merging the layers when the sum of available turbulent kinetic energy (TKE) produced by 12 

wind stirring, convective turnover, and shear stress exceeds the potential energy required to 13 

mix the adjacent layer below. Hypolimnetic mixing is modeled with an eddy diffusivity 14 

coefficient, which is a function of the dissipation of TKE and strength of stratification. More 15 

detailed descriptions of the simulation of water temperature and mixing are provided by 16 

Imberger and Patterson (1981). 17 

The ice model is based upon a quasi-steady state assumption that the time scale for heat 18 

conduction through the ice is short relative to the time scale of meteorological forcing 19 

(Patterson and Hamblin, 1988; Rogers et al., 1995). This assumption is valid under a Stefan 20 

Number <0.1 (Hill and Kucera, 1983). The ice module is applied when the simulated surface 21 

water temperature first drops below 0 oC; the initial ice thickness is set to a value of 5 cm 22 

(Patterson and Hamblin, 1988; Vavrus et al., 1996). Upward conductive heat flux between 23 

ice/snow cover and the atmosphere, 0q , is determined by numerically solving the quasi-24 

steady state heat conduction equations (Rogers et al., 1995) and assigning appropriate 25 

boundary conditions to the water, ice, and atmospheric interfaces. At the ice (or snow) 26 

surface, a heat flux balance provides the condition for surface melting, and accretion or 27 

ablation of ice is determined through the heat flux at the ice-water interface. Imbalance 28 

between heat conduction through ice and the heat flux from the water to the ice gives the rate 29 

of change of ice thickness at the ice-water interface. Snow conductivity is estimated from its 30 

density using an empirical equation (Ashton, 1986), and snow compaction is based on an 31 
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exponential decay formula (McKay, 1968), with snow compaction parameters based on air 1 

temperature and  snowfall/rainfall (Rogers et al., 1995). Snow (white) ice is generated in 2 

response to flooding, when the mass of snow that can be supported by the ice cover is 3 

exceeded. The uppermost solid layer of ice or snow is adjusted in thickness at the end of each 4 

1-hr model time step according to the balance of the heat budget. When ice thickness 5 

decreases to less than 5 cm, open water conditions are restored. 6 

Sediment heat flux, the main external source of heat after freezing, is important to water 7 

temperatures beneath ice cover (Ellis et al., 1991). Sediment heat flux (Fang and Stefan, 8 

1996) is included as a source/sink term for each Lagrangian layer to closely simulate under-9 

ice water temperatures. A simple diffusion relation (Rogers et al., 1995) is used to estimate 10 

heat transfer from the sediments to the water column, qsed: 11 

z

T
Kq sedsed

d

d
 .           (1) 12 

where Ksed is the sediment conductivity (=1.2 W m-1 oC-1). dT/dz, the temperature gradient 13 

across the sediment-water interface, is estimated as: 14 

sed

ws

z

TT

z

T 


d

d
.           (2) 15 

where Ts is the sediment temperature, Tw is the water temperature adjacent to the sediment 16 

surface, which varies hourly and with depth, and zsed is the distance beneath the water-17 

sediment interface at which the sediment temperature becomes largely invariant. From data 18 

collected at four locations on Lake Mendota (Birge et al., 1927), it was found that sediment 19 

temperatures varied little at 5 m depth below the sediment-water interface, so zsed is set to be 5 20 

m. In addition, data from Birge et al. (1927) is used to fit a curve to describe the seasonal 21 

variation of Ts 22 

2 ( 151)
9.7 2.7sins

D
T

TD

  
   

 
         (3) 23 

where D is the number of days from the start of the year and TD is the total number of days 24 

for the year of interest (365 or 366). The vertical transfer of heat in the water column beneath 25 

the ice is regulated by an assigned thermal diffusion coefficient. The formulation is the same 26 

as that originally used in DYRESM-WQ (Hamilton and Schladow, 1997) to simulate heat 27 
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transfer throughout the open water period. This produced diffusivities that were within the 1 

range of measurements by Ellis et al. (1991) of 1-3 times greater than molecular values. 2 

Input for the model includes lake morphometry (lake volume and surface area as a function of 3 

elevation), initial vertical profiles for water temperature and salinity, Secchi depth, 4 

meteorological variables, and inflows/outflows. The model calculates the surface heat fluxes 5 

using meteorological variables: total daily shortwave radiation, daily cloud cover, air vapor 6 

pressure, daily average wind speed, air temperature, and precipitation. During the simulation, 7 

all parameters/coefficients in the model are kept constant. The time step in the model for 8 

calculating water temperature, water budget, and ice thickness was set to 1 hr. Snow ice 9 

compaction, snowfall and rainfall components are updated at a daily time step, corresponding 10 

to the frequency of meteorological data input. Cloud cover, air pressure, wind speed, and air 11 

temperature are assumed to be constant throughout the day, and precipitation is assumed 12 

uniformly distributed. Shortwave radiation distribution throughout the day is computed based 13 

on the lake latitude and the day or year. The DYRESM-WQ-I model is calibrated using 14 

measured lake variables including water level, temperature profiles, ice thickness, and ice on 15 

and ice off dates. The overall simulation period was 104 years, starting with an isothermal 16 

(measured) water column temperature of 3.1 °C on 7 April 1911 and ending on 31 October 17 

2014. 18 

2.2 Piecewise regression algorithm 19 

Breakpoints in the air temperature trend over the study period were determined using a 20 

piecewise linear regression (PLR) method (Toms and Lesperance, 2003; Tome and Miranda, 21 

2004, Ying et al, 2015) that assumes continuity in the trendlines across the breakpoint. The 22 

piecewise linear regression model finds the breakpoint, B, that minimizes the residual sum of 23 

squares (RSSPLR) of the model between the two phases (Ying et al, 2015) 24 

   
2

PLR 1 2 1

1

max ,0
n

i i i

i

RSS y a k x k k x B


            (4) 25 

where xi and yi are the time and air temperature data corresponding to the i-th data point, 26 

respectively, and k1 and k2 are the slopes of the linear fit to data before and after the 27 

breakpoint B. The parameter ɑ is the intercept of the linear fit to data below the estimated 28 

breakpoint B, and n is the series length. 29 
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An F-test was used to compare the residual sum of squares of an ordinary linear regression 1 

model with the piecewise linear regression model with a level of α = 0.05 used to indicate 2 

significance, and the breakpoint year was determined to pass with p = 0.0016.  3 

2.3 Sequential t-test analysis of abrupt changes 4 

Abrupt changes in mean annual wind speeds and lake ice cover and temperature variables 5 

were detected using the sequential t-test STARS (Rodionov, 2004), which can automatically 6 

detect multiple change points. A shift occurs when a statistically significant difference exists 7 

between the mean value of the variable before and after a certain point based on the t-test. The 8 

variables were tested using a threshold significance level p = 0.05, a Huber weight parameter, 9 

h = 1 (Rodionov, 2006; North et al, 2013), and a cut-off length L = 15 years (North et al, 10 

2013).   11 

 12 

3 Model input data 13 

3.1 Bathymetry 14 

Lake Mendota (43°40’N, 89°24’W) has a surface area of 39.4 km2 and maximum fetch of 9.8 15 

km (Kitchell, 1992). The mean depth is 12.7 m, and maximum depth is 25.3 m. For detailed 16 

bathymetry refer to Kamarainen et al. (2009). 17 

3.2 Meteorological variables 18 

Daily meteorological data required to run the DYRESM-WQ-I model include solar radiation, 19 

air temperature, vapor pressure, wind speed, cloud cover, rainfall, and snowfall.  Daily air 20 

temperatures are computed as the average of daily maximum and minimum temperatures. 21 

Vapor pressure, wind speed, and cloud cover are also entered as daily average values while 22 

solar radiation, rainfall, and snowfall are daily accumulation values. 23 

Meteorological data for the Madison area have been continuously recorded since 1869, 24 

however, the station and techniques have changed several times. Robertson (1989) 25 

constructed a continuous, homogeneous daily meteorological dataset from 1884 to 1988 by 26 

adjusting for changes in site location and observation time, and resultant changes in the 27 

surface roughness (e.g. height of surrounding trees and buildings). These data were appended 28 

with the most recent weather station of the National Climate Data Center (NCDC, NOAA) 29 
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located in Madison (MSN) Dane County Regional Airport (Truax Field), the same site as that 1 

used in 1988. Since Robertson (1989) adjusted all historical data to that collected in 1988, no 2 

adjustments are applied to the recent data except for wind. In 1996, a discontinuity in the 3 

wind record was caused by change in observational techniques and sensor locations (McKee 4 

et al. 2000). To address the non-climatic changes in wind speed, data from MSN are carefully 5 

compared with those collected from the tower of the Atmospheric and Oceanic Science 6 

Building at the University of Wisconsin-Madison  7 

(http://ginsea.aos.wisc.edu/labs/mendota/index.htm). Hourly data from both sites (UMSN,hourly 8 

and UAOS,hourly) during 2003–2010 were used to form a 4×12 (four components of wind 9 

direction × 12 months) matrix (K4,12) of wind correction factors, yielding UAOS,daily= 10 

Ki,j×UMSN,daily. A comparison of results indicated that the MSN weather station demonstrated a 11 

higher magnitude in winds out of the east by 5% and lower magnitude in winds out of the 12 

west and south by 30% and 10%, respectively. The adjusted wind data (=Ki,j×UMSN,daily) are 13 

employed and used in the model simulation. Overall the adjusted wind data show a decline in 14 

mean wind velocities of 16% from 1988−93 to 1994−2014) compared to 7% at a nearby 15 

weather station with no known observational changes (St. Charles, Illinois; 150 km southeast 16 

of Lake Mendota). 17 

3.3 Light extinction 18 

Seasonal Secchi depths can be used to determine the light extinction coefficient for 19 

DYRESM-WQ-I. Lathrop et al. (1996) compiled Secchi depth data for Lake Mendota 20 

between 1900 and 1993 (1,701 daily Secchi depth readings from 70 calendar years), and 21 

summarized the data for six seasonal periods: winter (ice-on to ice-out), spring turnover (ice-22 

out to 10 May), early stratification (11 May to 29 June), summer (30 June to 2 September), 23 

destratification (3 September to 12 October), and fall turnover (13 October to ice-on). After 24 

1993, Secchi depths were obtained from the North Temperate Lakes – Long Term Ecological 25 

Research (NTL-LTER) (https://portal.lternet.edu/nis/home.jsp#). For years with no Secchi 26 

data, the long-term mean seasonal Secchi depth was used to estimate light extinction. Light 27 

extinction coefficients are calculated as a function of Secchi depth using the equation, 28 

0.731.1/ sk z  (Williams et al. 1980), where k is the light extinction coefficient and zs is the 29 

measured Secchi depth, in meters.  30 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2015-488, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 19 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



 10 

3.4 River inflow and outflow 1 

Daily inflow measurements have been made on selected Lake Mendota tributaries since 1974, 2 

and daily outflow from the lake has been measured since 1975. These measurements were 3 

used to calculate total daily inflow and outflow. Total daily inflow and outflow from 1930 to 4 

1974 were estimated from measurements made at the gauging station downstream of the lake 5 

using the drainage-area ratio method (Maidment 1993). Prior to 1930, total inflow and 6 

outflow were calculated using a water budget approach, i.e., the balance of inflow/outflow, 7 

precipitation, evaporation, and lake level changes. The inflow/outflow is the residual 8 

unknown term of the water balance where other terms include evaporation, rainfall, and water 9 

level. The calculation is performed at the interval of water level measurements and the 10 

residual term is then distributed evenly across the number of days between water level 11 

measurements. Water level of Lake Mendota has been recorded since 1916 at the Yahara 12 

River inlet in the north of the lake. Prior to 1916, the long-term mean lake level was assumed 13 

in water budget calculations. River water temperature has been recorded at the Yahara River 14 

inlet since 2002 (U.S. Geological Survey, http://waterdata.usgs.gov/nwis). To estimate daily 15 

river temperatures prior to 2002, river temperatures were estimated from air temperatures. A 16 

linear regression was used to correlate river temperatures and weekly average air temperature 17 

data during 2002–2009 for air temperatures above the freezing temperature (r2 = 0.86), and a 18 

separate polynomial regression analysis was performed for air temperatures below the 19 

freezing temperature (r2 = 0.68). 20 

3.5 Lake ice cover and water temperature 21 

Observed data from 1911-2014 (available at NTL-LTER website: 22 

https://portal.lternet.edu/nis/home.jsp#), showed that Lake Mendota, on average, freezes on 23 

22 December (ice-on date), breaks up on 31 March (ice-off date), and has an ice duration of 24 

98 days.  Ice thickness and snow depth during the study period were compiled from various 25 

sources: 1911–1916 (unpublished data from E. Birge, University of Wisconsin); daily ice 26 

thickness during 1961–1962, 1962–1963, and for part of the winter 1963–1964 (Stewart 27 

1965); 1975–1995 (unpublished data, D. Lathrop, Wisconsin Department of Natural 28 

Resources); after 1995, ice thickness and snow depth were sampled once or twice every 29 

winter by the NTL-LTER Program (https://portal.lternet.edu/nis/home.jsp#). In addition, 30 

during winters of 2008-2009 and 2009–2010, blue ice, snow ice, total ice (blue ice + snow 31 

ice), and snow cover depth were measured weekly at multiple locations on the lake (Hsieh, 32 
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2012). In total, there are 251 measurements of total ice, 21 for blue ice, 21 for snow ice, and 1 

49 for snow depth during 1911 to 2014. 2 

Long-term water temperature records were obtained from Robertson (1989) and the NTL-3 

LTER dataset (https://portal.lternet.edu/nis/home.jsp#). The frequency of water temperature 4 

data varied widely from only one or two profiles per year to several profiles for a given day, 5 

while there were no data collected in some years between 1931 and 1970.  The vertical 6 

resolution of the water profiles varied from 0.5 m to 2 m and sometimes 5 m when the water 7 

column was weakly stratified. 8 

 9 

4 Results 10 

4.1 Shifts in air temperature, wind speed, and water clarity 11 

Annual air temperature (Fig. 1a) had a relatively small increase from 1910 until 1980, but has 12 

increased dramatically since 1981. Based on a piecewise linear regression algorithm, there 13 

was a small warming trend of 0.081oC per decade during 1911−1980, followed by a dramatic 14 

change (a warming trend of .334oC per decade) from 1981−2014. Figure 1b shows that mean 15 

annual wind speed was 4.44 m s-1 until 1994, when a significant shift occurred to 3.74 m s-1 16 

(15% reduction) based on the sequential t-test STARS method (Rodionov, 2004). Figure 1c 17 

shows Secchi depth for Lake Mendota; however, no statistical trend was obtained due to the 18 

incompleteness of the data.  19 

Combining the statistically significant breakpoint in air temperature trend that occurred in 20 

1981 and the shift in wind speed in 1994, the Madison climate may be broken into three 21 

different periods. The first, from 1911−1980, was a relatively cool period and had an average 22 

wind speed of 4.44 m s-1. The second period (1981−1993) occurred after the breakpoint in the 23 

air temperature trend and had a warmer air temperature and a wind speed of 4.44 m s-1. The 24 

third period (1994−2014) occurred after the shift in wind speed from 4.44 m s-1 to 3.74 m s-1 25 

and had even warmer air temperatures.  26 

4.2 Model validation and long-term simulations 27 

Here we provide results of model validity comparisons followed by results of long-term 28 

changes in both observed (where available) and simulated conditions for: snow and ice 29 
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thickness, ice-on and ice-off dates, lake water temperature, summer stratification, and 1 

thermocline depth.  2 

4.2.1 Ice and snow thickness 3 

Figure 2 shows the comparison of the long-term (from 1911 to 2014) simulation and 4 

measured data for blue ice, white ice, and total ice thickness and snow depth. Mean absolute 5 

differences between simulated and measured thickness of total ice, blue ice, snow ice, and 6 

snow cover are 7.8 cm (n=251; RMSE=7.9 cm), 5.5 cm (n=21; RMSE=3.3 cm), 1.9 cm 7 

(n=21; RMSE= 2.3 cm), 4.1 cm (n=49; RMSE= 3.7 cm), respectively. Some discrepancy 8 

between the model results and measurements may be due to the 1-D structure of the model. 9 

The DYRESM-WQ-I model provides only the lakewide average ice and snow depths, hence 10 

no horizontal variation. For a medium-to-large lake, such as Lake Mendota, spatial variations 11 

in ice and snow depths should be expected (Bengtsson 1986). In the winters of 2008–2009 12 

and 2009–2010, ice measurements were made at multiple locations on Lake Mendota (Hsieh 13 

2012). Data in 2008–2009 showed variations in ice thickness. Total ice thickness in the 14 

middle of the lake was approximately 12 cm greater than that at a littoral location (water 15 

depth=2 m) in late winter. In 2009–2010, ice cover was fairly spatially uniform through the 16 

entire sampling period. Consequently, discrepancy between model results and measurements 17 

is expected in those years when ice thickness varied spatially. The accuracy of predictions 18 

from DYRESM-WQ-I was compared with other models: MINLAKE (Fang and Stefan 1996) 19 

produced standard errors of 11 cm for total ice thickness and 6 cm for snow cover for Thrush 20 

Lake, Minnesota, and 12 cm for total ice and 7 cm for snow cover for the north basin of Little 21 

Rock Lake, Wisconsin. Other models including LIMNOS (Vavrus et al. 1996) on Lake 22 

Mendota, Wisconsin; MLI (Rogers et al. 1995) on Harmon Lake, British Columbia; and 23 

CLIMo (Duguay et al. 2003) on lakes in Barrow, Alaska; Poker Flat, Alaska; and Churchill, 24 

Manitoba produced similar errors to Lake Mendota between modeled and observed ice 25 

thickness and snow cover. In general DYRESM-WQ-I predicts the ice and snow depths fairly 26 

accurately. Figure 3a shows the evolution of simulated ice and snow thickness with multiple 27 

ice and snow thickness measurements taken during the winter of 2009-2010. Once ice 28 

develops, water beneath the ice continues to freeze, adding to the ice thickness, as heat is 29 

conducted from water to the air. In this year, lake ice grew fast initially and then slowed 30 

substantially. Eventually, the ice reaches its maximum thickness and stops growing (Ashton 31 

1986). Once air temperatures begin to warm up, ice quickly thins until ice out. Overall, the 32 
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model is able to capture the growing ice cover as well as the temporally variable snow cover 1 

found on the lake. 2 

Figure 3b shows the long-term (1911–2014) simulated annual maximum ice thickness during 3 

each winter. The annual maximum thickness varied widely from 20.1 cm (1997–1998) to 72.0 4 

cm (1911–1912) during the 1911–2014 period. The timing when ice reached its maximum 5 

thickness also varied considerably, from 17 January (1973) to 7 April (1923). In 73 out of 103 6 

winters, ice reached its maximum thickness in March. Linear regression analysis on simulated 7 

maximum ice thicknesses indicates that it has decreased at a rate of 12.7 cm per century 8 

during 1911–2014. A t-test of the mean values shows a statistically significant (p<0.05) 9 

difference in the mean annual maximum ice thickness between period 1 (1911−1980) and 10 

period 3 (1994−2014). Period 2 was not statistically different from either of the other two 11 

periods. 12 

4.2.2 Ice-on and ice-off dates 13 

Figure 4 shows measured and simulated ice-on date, ice-off date, and ice duration on the lake. 14 

The measured ice-on date is defined as the first day when the lake becomes fully ice-covered, 15 

and the ice-off date is the last day of the ice breakup before the open water season. Simulated 16 

results and observations are in good agreement, with a mean absolute difference of 2.3 days 17 

(RMSE =2.4 days) for ice-on date and 5.7 days (RMSE = 4.8 days) for ice-off date. It is noted 18 

that both the mean error and RMSE are much smaller than the interannual variability in the 19 

observed ice-on dates (standard deviation SD = 11.2 days) and ice-off dates (SD = 10.6 days). 20 

Interannual variations in ice cover on Lake Mendota were large in the past century. Observed 21 

ice-on dates ranged from 3 December (1929) to 30 January (1931): a range of 58 days. Ice-off 22 

dates ranged from 27 February (1998) to 20 April (1923): a range of 51 days. The model 23 

successfully captures the interannual variations of ice-on and ice-off dates. For example, it 24 

reproduces the unusual late ice-on date in 1930-1931, and several noticeable early ice 25 

breakups associated with intense El Niño -Southern Oscillation (ENSO) events, i.e., 1965, 26 

1972, 1982, and 1997 (Anderson et al. 1996; Magnuson et al. 2000; Robertson et al. 2002). 27 

Figure 4b shows the ice duration, defined as the period between ice-on and ice-off dates. The 28 

mean absolute difference in ice duration between the model results and observations is 6.6 29 

days (RMSE = 6.1 days), compared to the observed SD of 17.9 days.  Overall, we consider 30 

the model performs well in simulating ice on and off dates and ice cover duration. 31 
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Long-term trends in ice formation are examined by applying linear regression to the model 1 

results and observed data. Figure 4 clearly shows progressively later freezing, earlier breakup, 2 

and shorter duration in Lake Mendota from 1911 to 2014. Based on model results, ice-on 3 

dates became later by 9.0 days, ice-off dates became earlier by 12.3 days, and ice duration 4 

shortened by 21.3 days. Model results are in good agreement with those obtained from the 5 

observed data (7.4 days later ice-on dates, 9.3 days earlier for ice-off dates, and 18.0 days 6 

shorter duration). All linear trends from the observed and simulated data are statistically 7 

significant (p<0.05).  Mean values of ice-on, ice-off, and ice duration for the three selected 8 

periods, i.e., 1911–1980, 1981–1993, and 1994–2010, (see Table 1 and Fig. 4) show a 9 

statistically significant (p<0.05, based upon t-test) difference between period 1 (1911−1980) 10 

and period 3 (1994−2014) for all ice cover variables and a statistically significant (p<0.05) 11 

difference between period 1 and period 2 (1981−1993) for ice cover duration. 12 

4.2.3 Water temperature 13 

The performance of the model in simulating water temperatures in the lake is presented in 14 

Figures 5 and 6. For temperatures at the near-surface, we use the simulated volume-weighted 15 

mean water temperatures between depths of 0 and 10m. The simulated epilimnetic 16 

temperatures compare well with those estimated from the measured data; the annual mean 17 

absolute error is 0.69 oC (n=3,239; RMSE=0.30 oC), demonstrating the ability of the model to 18 

simulate the heat budget in the upper mixed layer of the lake. Near-surface temperatures range 19 

from about 0 oC in winter to 26.1 oC in summer, and strongly respond to the net surface heat 20 

flux, as illustrated by the 2–3 oC variations that occur in both simulated and measured data, 21 

e.g. in the summer of 1921, 1960, 1994, and 2009 (Fig. 5). Overall the model captures 22 

interannual variations in epilimnetic temperatures even during extreme years; for example, the 23 

relatively high maximum epilimnetic temperatures (> 25 oC) in the summers of 1949, 1955, 24 

1963, 1987, 1988, and 1999, and relatively cold annual maximum epilimnetic temperatures (~ 25 

22 oC) in the summers of 1915, 1924, and 1942. 26 

Figure 6 shows the comparison between the simulated volume-weighted near-bottom (within 27 

the hypolimnion) temperatures over the depths between 20−25 m and those estimated from 28 

the measured data. The mean absolute error is 1.04 oC (n=3,239; RMSE=0.53 oC). Near-29 

bottom temperatures range from 0.2oC in winter to 19.1oC in autumn, which is approximately 30 

10 oC less than the variation in near-surface temperatures. Near-bottom temperatures are 31 

lowest when the lake first freezes, and then slowly increase because of heat released from the 32 
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bottom sediment although we cannot discount that cold inflows could also penetrate into the 1 

lake and affect temperature at the selected depths (20-25 m).After ice break-up and just prior 2 

to seasonal stratification, temperature in near-bottom waters is usually identical to surface 3 

waters and the whole water column undergoes a period of sustained increase in temperature. 4 

Hypolimnetic temperatures then stay relatively constant during the stratified period with 5 

limited heat exchange associated with strong temperature gradients across the thermocline. 6 

To further examine the model’s capability of simulating the extreme differences in 7 

temperature, we compare measured and modeled temperatures under years with cold (1924) 8 

and warm (1963) epilimnion temperatures and cold (1972) and warm (1926) hypolimnion 9 

temperatures. Figure 7 shows that the model accurately captures the extreme conditions in 10 

those four years. For plotting, measurement values are assumed to remain constant for the 11 

duration of time between measurements. Measurements are generally taken at 1 m intervals 12 

over the depth of the water column, but in instances with irregular measurement intervals, 13 

temperatures are interpolated at intervals of 1 m for the depth of the lake. Slight variation in 14 

temperatures at each depth may be attributed to differences between the averaged seasonal 15 

Secchi depth values used to drive the model and the observed Secchi depth values. To 16 

demonstrate the model’s ability to simulate changes in ice conditions and water temperature 17 

under the ice, measured and simulated conditions for these extreme years are presented in Fig. 18 

8. In this figure, the time frame and temperature scales are adjusted to highlight the subtle 19 

changes in winter and ice conditions and modeled ice and snow thickness are added to the top 20 

of the plots. While some discrepancies in temperature are recognized in the model 21 

comparison, the model generally captures the inverse stratification under the ice cover. 22 

Updated measurements of sediment temperature during winter may provide a better estimate 23 

of the sediment heat flux during ice-cover conditions, and improve under-ice temperature 24 

predictions. Overall, the model can reliably simulate water temperature in open water and ice 25 

seasons for extreme cold and warm years. 26 

Mid-summer (averaged between 16 July and 15 August when the thermocline was well-27 

established) epilimnetic (0−10m) and hypolimnetic (20−25m) simulated temperatures from 28 

1911 to 2014 are shown in Fig. 9a. Epilimnetic temperatures range from 19.7 oC to 24.8 oC. 29 

There is no statistically significant temporal trend in the mid-summer epilimnetic 30 

temperatures, which may be partly explained by the lack of a warming trend for the mid-31 

summer air temperature in the Madison area based on the measured meteorological data 32 
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(Kucharik et al. 2010). In contrast, hypolimnetic temperatures range from 7.8 oC to 16.2 oC. 1 

The interannual variation in hypolimnetic temperatures (SD = 1.74oC) is greater than that in 2 

epilimnetic temperatures (SD = 1.0oC). Simulated hypolimnetic temperatures show a 3 

decreasing trend of -1.4 oC per century (p<0.05). Figure 9b shows that the decreased 4 

hypolimnetic temperatures resulted in the epilimnion-hypolimnion temperature difference 5 

increasing by 2.0 oC per century (p<0.05). Mid-summer hypolimnetic temperature and 6 

epilimnion (0-10 m)-hypolimnion (20-25 m) temperature difference both exhibit significant 7 

(p<0.05) mean differences between period 1 (1911−1980) and period 3 (1994−2014), as 8 

shown in Table 1.  9 

Figure 10 shows the simulated long-term (104-year) mean under-ice water temperature 10 

(volume-weighted average of all depths) ranging from 0.78 oC to 3.07 oC (mean = 1.74 oC; 11 

SD = 0.54 oC). Based on model results, under-ice temperatures reveal a significant increasing 12 

trend (p<0.05) of 0.48 °C per century during 1911–2014, suggesting that air temperature and 13 

wind speed may affect under-ice water temperature. For the selected regimes, the under-ice 14 

(bold lines) and freeze-over (dashed lines; volume-weighted average of all depths) water 15 

temperatures exhibit interesting features. The difference between the water temperature over 16 

the entire ice-covered period and the freeze-over water temperature has decreased through 17 

time, indicating less heat gain during the winter, which may relate to a shorter time to transfer 18 

heat and a smaller gradient in temperatures between the lake and the bottom sediments. The 19 

under-water ice temperatures and freeze-over water temperatures both show significant 20 

(p<0.05) differences between regime 1 (1911-1981) and regime 3 (1994-2014), as shown in 21 

Table 1. 22 

4.2.4 Summer stratification period and thermocline depth 23 

We characterize summer stratification by the dates of the onset of stratification and fall 24 

turnover, and the total duration of stratification. Accurately describing these conditions 25 

requires high frequency observations, which is challenging for long-term datasets. As a result, 26 

we used modeled data to determine these variables. The dates of stratification onset/fall 27 

turnover are defined as the day when the surface-to-bottom temperature difference is 28 

greater/less than 2 oC (Robertson and Ragotzkie 1990). Figure 11 shows the dates of onset of 29 

stratification breakdown (fall turnover), and the total duration of stratification. The onset dates 30 

varied between 17 April (1977) and 30 June (1981), and the date of fall turnover varied from 31 

02 August (1965) to 19 October (2013). Over 1911–2014, the onset of thermal stratification 32 
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has become earlier by 12.3 days (p<0.05), and fall turnover has become later by 14.6 days 1 

(p<0.05), resulting in the stratification period increasing by 26.8 days (p<0.05). Stratification 2 

onset date shows no significant difference among the three regimes (see Table 1); however, 3 

fall turnover date is significantly (p<0.05) different between periods 2 and 3 and between 4 

period 1 and 3, and the duration of stratification is significantly (p<0.05) different between 5 

periods 1 and 3, as shown in Table 1.  6 

The thermocline depth, defined as the depth of maximum temperature gradient, is determined 7 

from the model results (not shown in figure for brevity). During 1911−2014, the mid-summer 8 

thermocline depth in Lake Mendota varied from 8.3 m to 12.4 m (mean = 10.7 m; SD = 0.84 9 

m) with no significant long-term change.  10 

 11 

5 Discussion 12 

5.1 Significance of lake drivers 13 

Changes in long-term simulated ice cover and thermal variables in Lake Mendota from 14 

1911−2014 appear to occur over short time frames within this period, synchronous with rapid 15 

changes in measured drivers (i.e., air temperature, wind speed, and water clarity). The 16 

variables examined included ice on/off dates, maximum ice thickness, freeze-over water 17 

temperature, mid-summer epilimnetic and hypolimnetic temperatures, summer hypolimnetic 18 

heating, and dates of stratification onset and fall turnover. To identify the the relationship 19 

between the drivers and each of these variables, we employed Pearson correlation analysis on 20 

the detrended driver and simulation data. While using this method does not allow us to 21 

directly determine causality, we may identify possible related drivers to changes in lake 22 

variables and the relative importance of relationship of the three drivers (i.e. air temperature, 23 

wind speed, and water clarity) to the lake variables. To calculate correlation coefficients, each 24 

lake driver was averaged over a fixed period (e.g. April-May or November-December) and 25 

then paired with each of the simulated lake variables from the same period. The averaging 26 

period for air temperature and wind speed was chosen based on the fixed period that yielded 27 

the best correlation. We chose to employ fixed periods because thorough testing indicated that 28 

using a dynamic period introduced seasonal meteorological variations into the analysis. For 29 

instance, the correlation coefficient between onset date and the mean air temperature averaged 30 

over the prior month is expected to be high simply due to the seasonal variations over the 31 
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course of the year, i.e., the later in the spring, the warmer air temperature. Seasonal Secchi 1 

depths were compiled for six seasonal periods: winter, spring turnover, early stratification, 2 

summer, destratification, and fall turnover (Lathrop et al. 1996), and the period closest to the 3 

averaging period used for air temperature and wind speed was used for correlation analysis. 4 

The averaging periods used for calculating correlation coefficients of each pair of variables 5 

are listed in Table 2. We discuss below the correlations for each pair of variables, shown in 6 

Figure 12. 7 

5.1.1 Ice cover variables 8 

Ice-on and ice-off dates have been shown to be sensitive to climate conditions (Robertson et 9 

al. 1992; Livingstone 1997; Magnuson et al. 1997). For both air temperature and wind speed, 10 

the averages from 1 November to 31 December (ND) give the highest correlation with ice-on 11 

date; in agreement with the results of Assel and Robertson (1995) and similar to Gao and 12 

Stefan (1999). Averaged air temperature and wind speed over the period from 1 February to 13 

31 March (FM) provide the highest correlation with ice-off date, consistent with the study by 14 

Gao and Stefan (1999), who found that ice-off dates for ten Minnesota lakes correlated 15 

significantly with February to April air temperatures. The strong positive correlation (r = 16 

0.82) between ice-on date and N-D air temperature indicates a relationship between warmer 17 

N-D air temperatures and later freezing dates. Strong negative correlation between ice-off 18 

date and F-M air temperature (r = –0.70) indicates a realationship between earlier ice breakup 19 

and warmer F-M air temperatures. In contrast to air temperature, ice cover is only weakly 20 

related to the seasonal average wind speed. Nevertheless the correlation between ice-on date 21 

and wind speed (r = -0.26) is significant, indicating a relationship between decreasing wind 22 

speed and earlier ice-on. Since large wind events prevent ice formation by breaking up skim 23 

ice, decreased wind speeds allow ice cover to form slightly earlier in the year. In the Madison 24 

area, the decreasing wind speeds may act to slightly mitigate the effects of increasing air 25 

temperature in later ice freezing. Correlation between ice dates and Secchi depths is low (r = 26 

0.24 for ice on and r = -0.22 for ice off), indicating that water clarity has only a minor 27 

relationship with ice dates, in agreement with  the simulation results of Fang and Stefan 28 

(1997). For both ice-on and ice-off dates, correlations with wind speed and Secchi depth are 29 

much less significant than with air temperature, indicating that air temperature has a more 30 

significant relationship with ice-on and ice-off dates and may be a more significant indicator 31 

of ice cover dates and ultimately ice cover duration. 32 
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Annual maximum ice thickness is negatively correlated with the 1 January – 31 March (J-F-1 

M) averaged air temperature (r = - 0.77) and weakly correlated with J-F-M wind speed (r = 2 

0.21), indicating a better relationship between annual maximum ice thickness and air 3 

temperature than for wind speed. The relationship of air temperatures on ice phenology is 4 

consistent with previous findings for lakes in Northern Wisconsin, Canada, and Maine (Gao 5 

and Stefan 2004).  6 

The strong correlations between air temperature and ice cover variables agree with several 7 

earlier studies (Anderson et al. 1996; Goa and Stefan 2004; Vavrus et al. 1996; Livingstone 8 

1997; Williams et al. 2004). Snowfall has also been shown to be related to ice-off date 9 

(Jensen et al. 2007) and ice thickness (Vavrus et al. 1996; Duguay et al. 2003) because 10 

snowfall changes surface albedo and isolates ice cover from the atmosphere. We found 11 

simulated number of snow days (number of days when the lake has snow cover) is strongly 12 

correlated with ice-off date (r = 0.70) and maximum ice thickness (r = 0.75), indicating 13 

snowfall is also significantly related to ice cover.  14 

5.1.2 Water temperature and stratification 15 

Figure 10 shows that the simulated water temperatures in Lake Mendota at the time of 16 

freezing have been increasing since 1911. The correlation between freeze-over water 17 

temperature and lake drivers during 1 November and 31 December (N-D) is significant but 18 

with low r values for wind speed (r = –0.37) and air temperature (r = –0.24) and insignificant 19 

for Secchi depth (r = 0.18). This result indicates that wind mixing is related to cooling of the 20 

water column before Lake Mendota freezes. 21 

The simulated onset dates of stratification are negatively correlated with April-May (A-M) air 22 

temperature (r = –0.55) and positively correlated with A-M wind speed (r = 0.35). In Lake 23 

Mendota, the combination of increasing air temperatures and decreasing wind speeds are both 24 

related to earlier onset of stratification. Austin and Colman (2007) suggested that the 25 

declining ice cover combined with higher air temperatures cause the earlier onset of 26 

stratification in Lake Superior at a rate of 0.5 day yr-1. However, no correlation between ice-27 

off date and the onset of stratification was found for Lake Mendota in this study.  28 

Mid-summer (16 July – 15 August) epilimnetic temperatures are most strongly correlated 29 

with the air temperature and wind speed averaged over the corresponding period. Epilimnetic 30 

temperature is highly correlated with air temperature (r = 0.77) and not significantly 31 
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correlated with wind speed averaged over the corresponding period (r = –0.11) and Secchi 1 

depth (r = 0.09). Mid-summer hypolimnetic temperatures depend on the timing of 2 

stratification (how long the near-bottom water is heated before the onset of stratification) and 3 

the amount of heat mixed into hypolimnion before and during the stratification period. 4 

Hypolimnetic temperatures are weakly correlated with air temperatures (r = -0.23) and not 5 

significantly correlated with wind speed (r = 0.11) and Secchi depth (r = –0.02). Summer 6 

hypolimnetic heating (temperature change between 1 July and 31 August, J-A) is most 7 

strongly correlated with J-A wind speed (r = 0.49), moderately correlated with Secchi depth 8 

averaged over 30 June – 2 September (r = 0.35), and not significantly correlated with J-A air 9 

temperature (r = –0.02). This indicates a relationship between stronger winds and clearer 10 

water and deeper heat mixing.  11 

Fall turnover occurs when the lake water cools, driven largely by colder air temperature and 12 

wind-induced mixing. The date of fall turnover is significantly negatively correlated with 13 

September wind speed (r = -0.43) so that higher wind speed is related to earlier fall turnover. 14 

Air temperature (r = 0.11) and Secchi depth (r = –0.15) are not significantly correlated with 15 

the timing of fall mixing. Interestingly, the mid-summer epilimnion-hypolimnion temperature 16 

difference has a higher correlation with turnover date (r = 0.62) than any of the three lake 17 

drivers. This finding suggests that the influences of spring conditions may be transmitted to 18 

the following summer and fall seasons. In other words, the cooler hypolimnion and the greater 19 

epilimnion-hypolimnion temperature difference after a warmer and less windy spring may be 20 

related to later fall turnover and a longer stratification period. 21 

 22 

5.2 Abrubt changes in lake variables 23 

To investigate the effects of abrupt changes in air temperature and wind speed on lake ice 24 

cover and water temperatures, we used the hydrodynamic model DYRESM-WQ-I to describe 25 

changes in several lake variables during 1911−2014. Simulation results were used to examine 26 

differences in mean values of these lake variables between specific periods (see Sect. 4.1).  27 

For each period of the selected periods, mean lake variables were calculated and the 28 

differences between periods were analysed with t-tests to determine if they were significantly 29 

different. Table 1 lists the mean values and differences for the nine lake variables during the 30 

three selected periods. Comparison of period 1 (1911-1980) to period 2 (1981-1993) of lake 31 
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variables shows a shift to warmer air temperature; period 2 to period 3 (1994-2014) represents 1 

an abrupt change to lower wind speed; and period 1 to period 3 represents a shift in to warmer 2 

air temperature combined with an abrupt change to lower wind speeds.  3 

5.2.1 Ice cover  4 

Three simulated ice cover variables (maximum ice thickness, ice-on date, and ice-off date) 5 

show no significant difference in means between period 1 and 2. In other words, the abrupt 6 

change in air temperature trend does not result in a different ice regime even though the ice 7 

cover variables are all highly correlated with air temperature (r >0.70). This may be because 8 

the change in air temperatures was not of sufficient magnitude to cause a particularly large 9 

change in ice cover or it may signify that other drivers are contributing to changes in ice cover 10 

variables. Additionally, no significant difference is observed between period 2 and period 3 11 

for the ice cover variables since the wind speed and ice cover variables are only weakly 12 

correlated. The ice variables do show a statistically significant difference in mean values 13 

between periods 1 and 3, indicating that a significant shift in these variables occurs only after 14 

a sufficiently large increase in air temperature and an abrupt shift in wind speed within the 15 

time between periods 1 and 3. In other words, air temperature need to increase sufficiently to 16 

observe a statistically significant difference in ice cover. Ice cover duration, however, shows a 17 

significant difference in the mean between all regimes (1−2, 2−3, and 1−3), indicating that 18 

distinct differences in ice cover duration can be affected by both trends in air temperature 19 

(i.e., there was a large enough change in air temperature between each period) and an abrupt 20 

shift in the wind speed. The combined effects of slightly later ice-on dates and earlier ice-off 21 

dates during each of the three periods resulted in statistically significant difference in mean 22 

ice cover duration values between each of the three periods.  23 

Analysis of simulated maximum ice thickness, ice-on, ice-off, and ice cover duration using 24 

the method of Rodionov (2004) shows that the most statistically significant timing of the shift 25 

in these ice cover variables occurs in the winter of 1997-1998, but a major shift in the air 26 

temperature or wind speed data was not observed at that time. The unusual winter of 1997-27 

1998 strongly drove the statistically significant difference in mean values between periods 1 28 

and 3 rather than the abrupt shift in wind speed in 1994. Interestingly, similar results have 29 

been reported in Lake Superior, where statistically significant step changes were found in 30 

winter ice duration and maximum wintertime ice extent; these step changes account for most 31 

of the long-term trends in ice cover for the lake (Van Cleave et al, 2014). This timing of this 32 
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may be attributed to a combination of the longer term changes in meteorological conditions 1 

and the short-term annual change occuring in the warm El Niño winter of 1997-1998 (Van 2 

Cleave et al. 2014). Mueller et al. (2009) found that a similar climate shift between 1997 and 3 

1998 initiated a change in lake ice phenology from infrequent to frequent summer loss in 4 

several high-Arctic lakes. 5 

5.2.2 Water temperature and stratification 6 

Means of five simulated lake variables (under-ice water temperature, freeze-over water 7 

temperature, epilimnion-hypolimnion temperature difference (indicative of strength of 8 

stratification), and duration of stratification) over the three periods have significant (p<0.05) 9 

differences only between period 1 and period 3. This change likely occurs because of the 10 

combined effects of large changes in air temperature and a change in wind speed. Both air 11 

temperature and wind speed are significantly correlated with these five lake variables. Each 12 

driver alone may not be strong enough to cause a major shift in the lake variables, but their 13 

combined effects may reinforce the drivers of abrupt change in ice and thermal phenology. 14 

Further work is required to examine how the major drivers may either reinforce or dampen 15 

lake ice and temperature responses, particularly in relation to directional shifts predicted 16 

under climate change. 17 

Fall turnover date, highly correlated with wind speed, exhibits a significant (p <0.05) shift in 18 

the mean value in 1994, corresponding with the abrupt shift in the wind speed. Interestingly, 19 

hypolimnetic water temperatures, which are not significantly correlated with wind speed, but 20 

are correlated with air temperatures, also show a significant (p<0.05) shift in the mean value 21 

in 1994. Hypolimnetic heating, significantly correlated with wind speed (r = 0.49), does not 22 

exhibit a significant breakpoint, nor are any of the mean differences among the three periods 23 

significant. Given the high correlation between wind speed and hypolimnetic heating, it is 24 

hypothesized that there should be a shift in hypolimnetic heating caused by the abrupt shift in 25 

wind speed in 1994. The lack of statistically significant step change may be explained by the 26 

simultaneous high correlation between Secchi depth and hypolimnetic heating (r = 0.35), 27 

indicating that water clarity may act to inhibit heating regardless of changes in wind speed, or 28 

it may be acting to filter or mitigate the effects of the wind speed shift. Finally, mean onset 29 

date of stratification and mid-summer epilimnetic temperature exhibit no difference among 30 

the three periods. This may be due to two processes: (i) the climate signal is being filtered out 31 
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the lake; or (ii) the external perturbation of the system is not yet strong enough to trigger a 1 

major shift in the system's internal dynamics.  2 

5.3 Ecological significance of long-term changes in lake variables 3 

Changes in lake ice cover and thermal structure are of great ecological significance. Summer 4 

stratification inhibits the vertical transport of oxygen and nutrients. The vertical temperature 5 

gradient in Lake Mendota increased (Fig. 9b), which should decrease the depth of vertical 6 

mixing and oxygen penetration and decrease the transport of nutrients from the hypolimnion 7 

to the epilimnion (Fee et al. 1994). Thus, increases in air temperature may increase the 8 

epilimnetic-hypolimnetic temperature gradient and decrease the extent of summer algal 9 

blooms in the Lake Mendota where internal loading of phosphorus has been shown to be 10 

significant to its summer phosphorus budget (Soranno et al. 1997; Lathrop et al. 1998). 11 

Additionally, phosphorus entrainment predominately occurs during periods of high wind 12 

(Stauffer and Armstrong 1986; Kamarainen et al. 2009). Algal blooms have been associated 13 

with increases in epilimnetic phosphorus due to these high-wind episodes (Stauffer and 14 

Lee1973; Soranno et al. 1997; Robarts et al. 1998). Changes in the frequency of high wind 15 

episodic events may further impact the growth of algal blooms within Lake Mendota (Kara et 16 

al. 2012). Elevated water temperatures can affect plankton community composition and 17 

abundance (Elliot et al. 2005; Findlay et al. 2001; Francis et al. 2014; Rice, 2015) and fish 18 

populations (Magnuson et al. 1990; Carpenter et al. 1992; Destasio et al. 1996; Gunn 2002). 19 

High water temperatures have been also shown to enhance the dominance of cyanobacteria 20 

(Huber et al. 2008; Johnk et al. 2008). Such changes in algal blooms, zooplankton 21 

populations, and fish populations may have drastic effects on the overall food-web within 22 

Lake Mendota (Carpenter et al. 2007). Variations in ice-cover conditions have impacts on 23 

ecosystems by dramatically changing habitat factors such as light and temperature (Adrian et 24 

al. 1999; Quayle et al. 2002). Such changes impact the distribution, behavior, community 25 

composition, reproduction, and evolutionary adaptations of organisms (Sala et al. 2000). 26 

Previous studies have shown that climate change will likely affect the biodiversity of 27 

freshwater ecosystems (Wrona et al, 2006; Heino et al. 2009; Mantyka-Pringle et al. 2014). 28 

Climate change can bring asynchronies in biotic communities that may result in a 29 

phenological decoupling of trophic relationships (Stenseth and Mysterud, 2002). 30 

 31 
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6 Conclusions 1 

The 1-D hydrodynamic-ice model, DYRESM-WQ-I, is developed and validated, then used to 2 

simulate the ice cover and thermal structure of Lake Mendota, WI from 1911−2014. The 3 

model reliably reproduces the interannual variations and long-term (104-year) changes in ice 4 

cover and thermal structure. To our knowledge, this study presents the first attempt to 5 

continuously model both ice cover and thermal structure of a lake over a period as long as a 6 

century. Simulated ice cover over this period has changed dramatically: freezing later (9.0 7 

days per century), breaking up earlier (12.3 days per century), resulting in shorter ice duration 8 

(21.3 days per century), and thinner maximum ice thickness (12.7 cm per century). These 9 

results agree well with the observed data and previous studies. For lake thermal structure, 10 

results of the continuous model simulation indicate an earlier onset of thermal stratification 11 

(12.3 days per century), later fall turnover (14.6 days per century), and a longer stratification 12 

period (26.8 days per century) during this period. In addition, simulated mid-summer 13 

hypolimnetic temperature decreased (–1.4oC per century), causing mid-summer epilimnetic-14 

hypolimnetic temperature differences (strength of stratification) to increase (2.0oC per 15 

century). Interestingly, there is no significant trend in mid-summer epilimnetic temperatures. 16 

Correlations comparing simulated lake conditions with seasonally averaged meteorological 17 

conditions indicate that, among the three drivers, air temperature has the largest relationship 18 

with the ice cover variables (ice-on and ice-off dates, and maximum ice thickness) and with 19 

three stratification variables (date of the onset of stratification, epilimnetic temperatures, and 20 

hypolimnetic temperatures). Freeze-over water temperature, summer hypolimnetic heating, 21 

and data of fall turnover all have the largest correlation with wind speed. Both air temperature 22 

and wind speeds are highly correlated with the onset of stratification. Secchi depth does not 23 

appear to have a strong relationship with interannual variablity of these variables for Lake 24 

Mendota, but in combination with wind speed may be related to hypolimnetic heating.  25 

Changes in meteorological factors over the past 104 years were examined to determine if 26 

there have been abrupt shifts, rather than linear changes. Based on a change in the trend of air 27 

temperature increase occurring in 1981 and a major shift in wind speed in 1994, the Madison 28 

climate is divided into three distinct periods: 1911−1980, with relatively low air temperatures 29 

and mean wind speeds of 4.44 m s-1; 1981−1993, with higher air temperatures and mean wind 30 

speeds of 4.44 m s-1; and 1994-2014 with still higher air temperatures and mean wind speed 31 

of 3.74 m s-1. Ice cover duration exhibited a significant difference in the mean among all three 32 
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periods, while ice-on, ice-off, and maximum ice thickness only show a significant difference 1 

between period one and three, indicating that only with a large change in air temperature and 2 

an abrupt shift in wind speeds are change in the ice cover variables statistically different. Mid-3 

summer hypolimnetic temperature and fall turnover date both reveal significant (p <0.05) 4 

differences in the mean value in 1994, corresponding with the abrupt shift toward lower wind 5 

speeds. Some lake variables (under-ice water temperature, freeze-over water temperature, 6 

epilimnion-hypolimnion temperature difference, and stratification duration) may not be driven 7 

by either the change in air temperature trend or the abrupt shift in wind speed alone, but a 8 

shift in the mean of the lake variables does occur in 1994 when both the air temperatures are 9 

warmest and the wind speed experienced an abrupt shift.  The exact timing of shifts may be 10 

difficult to define because of extreme changes in weather in specific years and it may mask 11 

the longer term changes in meteorological conditions (i.e. abrupt shifts).  12 

Linear trends from the extensive data collection may be misleading as they masks these 13 

sudden shifts in the air temperature and wind speed drivers and lake ice cover and thermal 14 

structure variables. Examining the mean differences in lake variables in response to shifts in 15 

air temperature and abrupt shifts in wind speeds provide a better understanding of how the 16 

Madison Area Wisconsin climate has changed and what impact those changes have on shifts 17 

in the ice cover and water temperature of dimictic Lake Mendota. It is shown that air 18 

temperature and wind speed changes have occurred in stages and lake variables have 19 

responded in a non-linear way to these changes.  20 
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Table 1. Mean values of climate drivers and lake variables of three hypothesized periods during 1911−2014.  Asterisks (*) mark significant 1 

differences between two period (p < 0.05).2 

   

Period 

 

Difference in Mean 

Driver/Variable Unit 

(1)1911-

1980 

(2)1981-

1993 

(3)1994-

2014 
(1) and (2) (2) and (3) (1) and (3) 

Lake driver 

  

 

 

 

 

 

Air temperature (slope) oC decade-1 0.081 0.334 0.334  

 

 

Wind speed  m s-1 4.44 4.44 3.74  

 

 

Lake variables 
  

 
 

 
 

 

Maximum ice thickness cm 49.8 44.9 40.7 –4.9 –4.2 -9.1* 

Ice-on date (model) Date 21-Dec 23-Dec 29-Dec 2 days 6 days 8 days* 

(observation) Date 21-Dec 24-Dec 29-Dec 3 days 5 days 8 days* 

Ice-off date (model) Date 9-Apr 2-Apr 30-Mar –7 days –3 days -10 days* 

 (observation) Date 3-Apr 27-Mar 26-Mar –7 days –1 days -8 days* 

Ice duration (model) Days 108.7 99.5 91.1 –9.2* –8.4* -17.6* 

(observation) Days 103.2 92.9 85.6 –10.3* –7.3* -17.6* 

Under-ice water temperature oC 1.74 1.81 2.08 0.07 0.27 0.34* 

Freeze-over water temperature oC 1.03 1.14 1.66 0.11 0.52 0.63* 

Stratification onset date 
 

24-May 17-May 18-May –7 days –1 days -6 days 

Mid-summer epilimnetic temperature oC 23.0 23.2 23.4 0.2 0.2 0.4 

Mid-summer hypolimnetic temperature oC 12.0 11.8 10.9 –0.2 –0.9* -1.1* 

Epilimnion-hypolimnion temp. difference oC 10.9 11.4 12.5 0.5 1.1 1.6* 

Hypolimnetic heating (1 July−31 August) oC 0.699 0.688 0.583 -0.011 –0.105 -0.116 

Turnover date Date 20-Sept 21-Sept 3-Oct 1 day 12 days* 13 days* 

Stratification Duration Days 119.4 127.4 138.6 8.0 11.2 19.2* 
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Table 2.  Averaging periods for lake drivers used for calculating correlation coefficients of 1 

each  pair of variables. 2 

Lake variables Air temperature/wind speed Secchi depth1 

Ice-on date November – December 13 October – ice-on 

Ice-off date February – March ice-on – ice-off 

Max. ice thickness January – March ice-on – ice-off 

Freeze-over water temperature November – December 13 October – ice-on 

Date of stratification onset  April – May ice-out – 10 May 

Epilimnetic temperature 16 July – 15 August 30 June – 2 September 

Hypolimnetic temperature May ice-out – 30 June 

Hypolimnetic heating July – August 30 June – 2 September 

Date of fall turnover September 3 September – 12 October 

1Six seasonal periods defined in Lathrop et al. (1996)  

3 
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Figure 1: Historical record of annual average (a) air temperature and (b) wind speed in 4 

Madison, WI, USA, and (c) Secchi depth in Lake Mendota.  5 

6 
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Figure 2. Comparison between observations and simulated total ice, snow cover, white ice, 2 

and blue ice 3 
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Figure 3: (a) simulated ice and snow with measured values for the winter 2009-2010 and (b) 3 

simulated annual maximum total ice thickness. 4 
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Figure 4: Observed and simulated (a) ice-on and ice-off dates and (b) ice cover duration. The 3 

annual ice cover was plotted in the first year of the winter, e.g., the winter 1911-1912 was 4 

plotted in the year 1911. Stationary means for three selected periods are denoted by solid 5 

lines. 6 
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Figure 5: Time series of the simulated and observed volume-weighted near-surface 6 

(epilimnetic) temperature (0−10m) from 1911−2014. 7 
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Figure 6: Time series of the simulated and observed volume-weighted near-bottom 6 

(hypolimnetic) temperatures (20−25 m) from 1911−2014. 7 
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 1 

 2 

Figure 7: Comparison between the measured and simulated water temperatures as a function 3 

of time and depth under the cold epilimnetic year (1924), warm epilimnetic year (1963), cold 4 

hypolimnetic year (1972), and warm hypolimnetic year (1926) in Lake Mendota.  Arrows 5 

mark the dates of onset of stratification and fall turnover. 6 
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1 

 2 

Figure 8: Comparison between the measured and simulated water temperatures and ice/snow 3 

thickness under the cold epilimnetic year (1924), warm epilimnetic year (1963), cold 4 

hypolimnetic year (1972), and warm hypolimnetic year (1926) in Lake Mendota during the 5 

ice-covered period. Time series are simulated ice and snow thickness (solid lines) with 6 

measurements (open circles). 7 
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Figure 9: (a) Simulated mid-summer (16 July − 15 August) volume-averaged epilimnion and 3 

hypolimnion temperatures, and (b) epilimnion-hypolimnion temperature difference. 4 

Stationary means for three selected periods are denoted by solid lines 5 

6 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2015-488, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 19 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



 48 

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Year

U
n

d
e
r-

ic
e
 w

a
te

r 
te

m
p

e
ra

tu
re

 (
 o
C

)

 

 

Simulated under-ice temperatures

Stationary under-ice means

Stationary freeze-over temperature means

 1 

Figure 10: Simulated mean under-ice water temperatures (volume-weighted averages of all 2 

depths) during the ice-covered period between 1911 and 2014. The stationary means for three 3 

selected periods of under-ice water temperatures and freeze-over water temperatures are also 4 

plotted.  5 
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Figure 11: (a) Simulated date of stratification onset and fall turnover and (b) stratification 3 

duration. Stationary means for three selected periods are denoted by solid lines. 4 
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 1 

Figure 12: Correlation coefficients between lake variables and drivers. The critical value (dashed lines) for significant correlation (p<0.05) is 2 

0.193 (n = 104).  3 
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