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Abstract

Streamflow variability and trends in Australia were investigated for 222 high quality stream
gauging stations having 30 years or more continuous unreduéteamflow records. Trend
analysis identified seasonal, ini@mnual and decadal variability, losgrm monotonic trends,

and step changes in streamflow. Trends were determined for annual total flow, baseflow,
seasonal flows, daily maximum flow, anddbrquantiles of daily flow. A distinct pattern of
spatial and temporal variation in streamflow was evident across different hydroclimatic
regions in Australia. Most of the stations in seattstern Australia spread across New South
Wales and Victoria showie a significant decreasing trend in annual streamflow, while
increasing trends wemetaired within the northern part of the continentNo strong evidence

of significanttrend was observed for stations in the central region of Austratianorthern
Queentand The findings from step change analysis demonstrated evidence of changes in
hydrologic responses consistent with observed changes in climate over the past decades. For
example, in the Murrafparling Basin 51 out of 75 stations were identified witlpsteanges

of significant reduction in annual streamflow durihg middle to late 1990s, when relatively

dry years were recorded across the area. Overall, the Hydrologic Reference Stations (HRS)
serve ascritically importantgauges for streamflow monitognand changes in loAgrm

water availability inferred from observed datasets. A wealth of freely downloadable
1
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hydrologic data is provided at the HRS web portal including annual, seasonal, nmardhly
daily streamflow dataas well agrend analysis prodig, and relevant sit@formation

Keywords: Hydrologic Reference Stations, streamflow variability, trends, step change,

climate change, unretfued catchments, Australia

1 Introduction

Assessing changes and trends in streamflow observations can provide vital information for
sustainable water resource managemeéng influence of diverse environmental factors and
anthropogenic changes on hydrological behaviour makes the investigabostraamflow
changes a challenging task. Trend detection is further complicated frorammial, inter
annual, decadal and intdecadal variability in streamflow as well as frowarious
influencing factors that can hardly been analysed sepa@@AP, 2012; Hennessy et al.,
2007).

Extensive studies have been undertaken in different parts of the world to analyserhong
hydrologic trends, and to investigatee possible effect of longerm climate variability on
hydrologic response (Stahl et al., 2010; Birsan et al., 2005; Lins and Slack, 2005; Milly et al.,
2005; Burn and Elnur, 2002). Previous works on streamflow trends draw largely on national
and continentahnalyses, especially for Europe and North America. Studies of streamflow
variability include analysing trends across Europe (Stahl et al., 2010; Stahl et al., 2012), and
at the national level. For example, Bormann et al. (2011) and Petrow and Merz (2009)
analysed trends under flooding conditions on German rivers. Extensive literatures on
hydrological trend studies have been reported for the UK: Hannaford and Buys (2012)
demonstrated variability in seasonal flow regimes; Hannaford and Marsh (2006, 2008)
andysed flow indicators at an annual resolution, and other studies focused on particular
regions (Biggs and Atkinson, 2011; MacDonald et al., 2010; Dixon,e2Q06; Jones et al.,
2006). A wide range of research on streamflow trends has been publishetVBA (Kumar

et al, 2009; Novotny and Stefan, 2007; McCabe and Wolock, 2002) and Canada (Bawden et
al., 2014; Monk et al., 2011; Burn and Hag Elnur, 2002).

Few studies have been published for Australidate partly due to limitechformation on

datarecords researcheand documentatiothat couldcover all flow regimes. Rivers in some

2
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regions have received close attention only recently. Australia is the driest inhabited continent
with an average annual precipitation of 450 mm and the lowest riverdbompared with

other continentgPoff et al., 2006) Water is relatively scarce and tisereforea valuable
resource across the country. Australian streams are characterized hyntaffy high inter

annual flow variability, and large magnitude$ variatims between thenaximum and
minimum flows(Puckridge et al., 1998; Finlayson and McMahon, 1988). The wide variety of
unique topographic features combined with variable climates and frequency in weather
extremes result in diverse flow regimes. The receatinsaverage temperature and the risk of
future climate variability(BOM, 2015;IPCC, 2014; Cleugh et al., 201have added new
dimensions to the challenges already facing communities. Climate variability and its impact
on the hydrologic cycle have neceéasgd a growing need in Australia to seek evidence of any

emerging trends in river flows.

Chiew and McMahon (1993) examined the annual streamflow series of 30 unregulated
Australian rivers to detect trends or changes in the means. They found thataderfignges

in the tested dataset were directly related to the-artaual variability rather than changes in
climate. The analysis of trends in Australian flood data by Ishak (2010) indicated that about
30% of the selected 491 stations show trends ina@mmaximum flood series data, with
downward trend in the southern part of Australia andipward trend in the northern part.
Several other studies investigated trends of selected streamflow statistics in a particular
region, e.g. southwest Australia {Rame et al.2010; Durrant and Byleveld, 2009), southeast
Australia or Victoria (Tran and Ng, 2009; Stewardson and Chiew, 2009). All these studies
addressed the trend analysis of Australian rivers with a limited spatial or temporal coverage of
flow data.A gap in the research remains mainly due to constrairiteeigmccess to a dataset of
catchmentsthat can belarge enough to represent the diversity of flow regimes across
Australia. Such a dataset would enable a comprehensive and systematic appraeages$ c

and trends in observed river flow records.

The Australian national network of Hydrologic Reference Stations (HRS) was developed by
the Bureau of Meteorology to address this major gap and to provide comprehensive analysis
of long-term trends in wateavailability across the countiiZhang et al., 20%4Turner et al.,

2012. The HRS website is a orstop portal to access higjuality streamflow information

for 222 wellmaintained river gauges in neaatural catchments. An intention is that the
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statiors will serve agritically importantgauges that record and detect changes in hydrologic

responses to lontgrm climate variability and other factors.

This paper presents a statistical analysis to detect changes or emerging trends across a range
of flow indicators, based on the daily flow data of 222 sites from the HRS network. The
objective of this study is to provide a nationwide assessment of thedongtrends in
observed streamflow data. Evaluation of past streamflow records and documenting recent
trends will be of benefit in anticipating potential changes in water availability and flood risks.

It is hoped that the findings from trend analysis presented in this paper will inform decision
makers on longerm water availability across different hydrocdtic regionsandbe used for

water security planning within a risk assessment framework.

2 Site selection, data and methods

2.1 Hydrologic Reference Stations and data

The 222 Hydrologic Reference Stations (HRS) were selected from a preliminary list of
potential streamflow stations across Australia according to the HRS selection guideline (SKM
2010). These guidelines specified four criteria for identifying the high tguedierence
stations, namely unregulated catchments with minimal land use change, a long period of
record (greaterthan 30 years) of high quality streamflow observations, spatial
representativeness of all hydebmate regions, andhe importanceof site as assessed by
stakeholdes. Catchments with extensive basin water use or groundwater pumping were
filtered and not included in HRS catchments, based on the local knowledge of the basin,
stakeholder consultation and land use change analysesstation skection guidelinesvere

then applied in  four phases to finalise the station list

(www.bom.gov.au/water/hrs/quidelines.shtmiThe HRS network will be reviewed and

updated every two years ensurdhatthe high quality of the streamflow reference stations is

maintained.

Two features were consideredorderto define the hydroclimatic regions in HRS: climatic

zones and Australiads drainage divigtoons.
climate classification of Australia based on a modified Koeppen classification system (Stern
et al., 2000). Australia has a wide range of climate zones, from the tropical regions of the

north, through the arid expanses of the interior, to the tengpergions of the south (ABS
4
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2012). The Australian Hydrological Geospatial Fabric (Geofabric) Surface Catchments
(BOM, 2012) were used to delineate 12 topographically defined drainage divisions
approximating the drainage basins frahre Geoscience Austrai (2004)definition. The
selection of HRS statiormmedto maximise the geographical extent of the available records.

As shown in Figure 1, the final set of 222 hydrologic reference stations cover all climatic
zones, jurisdictions and most drainage dossi. Since most Australian rivers are located near

the coast, there is a high density of stations along the coast and sparsely distributed stations
across inland areas. One third of the HRS sites are in temperate climate zone, and the majority
of the restare either in Tropical or Subtropical regions; only a few are located in other climate
zones. The distribution of Hydrologic Reference Stations across muhymeoclimatic
regionsprovides data for a comprehensive investigation of kiagn streamflow variability

across Australia.

All data used in this study were daily streamflow series of 222 gauging stations from the HRS
network. Table 1 lists the twelve drainage divisions and the nuwibsetations in each
division. The drainagedivision namesare marked on Figure Qne third of the HRS stations

are located within the Murraarling basin, half of the rest are distributed along eastern
coasts. This is the best compiled letiegm qualitycontrolled data for Australia and the trends
derived fromthis dataset constitute the first such statement on-terrg water availability
across Australia.

Theearliest record included in the data sdtasn 1950 Data prior to this has been excluded
due tothe commorexistence ofarge gaps in the prEd50 period. All stations included in the
HRS had a target of 5% or less missing data to meet the completenessforitégh quality
streamflow recordsA few stations were included with more than ®8igsing data where they
excelled in other criteriguch asstakeholder importancer spatial coveragerhe periods of
data gaps were filled using a lumped rainfathoff model GR4J (Perrin et a22003) The gap
filling was found to perform weklt mostsites The meanNashSutcliffe coefficient ofthe
gapHfilled time serieswhen compared to the available original time series dats,0.72 with
standard deviation of 0.1Zhe model was calibrated and forced with catchment average
rainfall and potentialevapotranspiration from the Australian Water Availability Project
(AWAP) (Raupactet al., 2009)

The study examinedll sitesusing the full length obbservationsfter 1950 Prior to 1%0 the

gaugenetwork is generally too sparse for reliable analysid, analysis periods starting after

5
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mid-1970s are considered too short to calculate meaningful trend vallimugh the data
length of every station was not exactly the same over the continent, but for the stations within
the same region, the data lengths were in more consistent time p&aidg$or most of
stations (86%) haveery similar time periosl Theseallow for comparisons on a fairly

consistent bas.

The gapfilled daily flow data were aggregated into annual series basea water year
calculation The start month othe water year was defined as the month with the lowest
monthly flow across the availabtiata periodThe start month of water year for each region
was recorded in Table The data used in this stughereup to end of 2014, so the last water
yearcycle ended ir2014.In order to ensure the statistical validitytbe trend analysis, all
statons had minimum 30 years of record, witheantime-series length o#8 yearsand
median timeseries length of 46.6 yearhe longest record length wéd years 25% of the
stations have 50 or more years of recoadd 86% stations longer than 40 yearta.da
Catchment sizes ranged from 4.5 to 232,846 With a mediansize of 328.6 km?. The
majority (80%) of the stations had an upstream drainage area les8@3am? and only

three stations had a drainage area larger than 50,000 km

The primary water data has been collected across Australia by many organisations, utilities
and regulators in different states and territories, often to meet the requirements of their own
documented procedures and sometimes with reference to Austrailraroational standards

or guidelines. The Bureau's role as the national water information provider, has been working
collaboratively with the water industry to develop and promote water information standards
and guidelines to collate, interpret and accesfonally consistent data. All data included in

the HRS database are compiled, quatitecked by the Bureau, and therefore are consistent
nationally and over the time. Bureau has developed a set of standard data quality code and
references guides on hatrelates to different agencies quality codiee data and the long

term series gathered this study arethe best compileé&nd quality assuredata for HRS
catchments.The analysis andrends derived fronthe HRS datasets constitute the first

statemenbn longterm water availability across Australia.

2.2 Streamflow variables for trend analysis

Longterm climate variability can be reflected through trends in streamflow variables. To
understand the importance of the components of the hydrologic regimes and their potential

6



187
188
189
190
191

192
193
194
195
196

197
198
199
200
201

202

203
204
205
206
207
208
209
210
211
212
213
214

215
216
217

link to longterm climate variability, ten streamflow variables were chdeestatistical and
trend analysis. Two variables related to fluctuation of annual flows were annual total flow
(Qr) and annual baseflow ¢Q). Baseflow was separated from daily total streamflow using a
digital filter based on theory developed byne and Hollick (1979knd applied byNathan

and McMahon (1990)

Daily streamflow data were analysed to form a group of indisadf daily flow trends. They
were daily maximum flow (@), the 98" percentile (norexceedance probability) daily flow
(Qqo), the 50" percentile daily flow (@), and the 19 percentile daily flow of each year (§.

The median daily flow @ was used in the study instead of daily mean flow because the flow

distribution is skewed and outliers are present.

Four seasonal total flow indicators were analysed to examine the seasonal trend patterns.
These variables included summer flow;RQ(Decemler to February), autumn flow \(du

(March to May), winter flow @a (June to August), and spring flowsg (September to
November).The trend analysis was applied to the ten hydrologic indicators of streamflow
data at each HRS station.

2.3 Trend and data statistical analysis

Changes in streamflow data can occur gradually or abruptly. Statistical significance testing is
commonly used to assess the changes in hydrological datasets (Helsel and Hirsch, 2002;
Monk et al., 2011; Hannaford and Buys, 2012). The M&andall (MK) trend test (Mann,

1945; Kendall, 1975) was adopted instbtudy to identify statistically significant monotonic
increasing or decreasing trends (Petrone et al., 2010; Zhang et al., 2010; Miller and Piechota,
2008). In order to ensure the asgption of independence was met for the MK test, the non
parametric Median Crossing and Rank Difference tests (Kundzewicz and Robson, 2000) were
applied to entiredatasetsBoth randomness tests consider the l@rgn persistencas well

When either of tle randomness tests indicated that the time series was not from a random
process, the site was excluded from the MK trend assessment. As this study attempted to
examine patterns imw historical streamflow records, no further adjustments were made to

account for the nosrandom structure of data.

The nonparametric MK trend test was used to detect the direction and significance of the
monotonic trend, and the trend libg thenon-parametric Seslope(Sen, 1968; Theil, 1950)
was used to approximately repemt the magnitude of the trend. The trend magnitude was

7
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standardisedsing the ratio oSen Slopeoefficientto average annual flown orderto make

the change comparable across statfonseporting purposes

All data were subject to step chargealysis to detect any abrupt changes during the record
period. The distribution free CUSUM test (Chiew and Siriwardena, 2005) was applied to
identify the year of change in streamflow series. The significant difference between the
median of the streamfloaeries before and after the year of change was tested bySRamk
method (Zhang et al., 2010; Miller and Piechota, 2008; Chiew and Siriwardena, [1005).
informationand equations ahe statistical tests used in this study can be found in Appendix
A.

In addition to the trend analysis for the ten flow indicators, other statistical data analyses were
included in the HRS web portato gain a broad understanding of hydrologic regimes.
Aggregated monthly and seasonal flow data were investigated for charfges jpatterns in
different basins or regions. Daily event frequency analyses were used to examine the
variations in daily streamflow magnitude, and daily flow duration curves were presented to

examine changes in daily flow among decades.

3 Development of the HRS web portal

A web portal has been developed to house the network of Hydrologic Reference Stations and
provide access to streamflow data, results of analysis, and associated site information. Figure
2 summarises the development process of the HR8orle and website. Through a data
quality assurance process following the guidelines and stakeholder consultations, the final list
of 222 streamflow gauging stations weastablished A suite of software tools, "the HRS
toolkit" was developed to undertakatd aggregation, analysis, trend testing, visualisation and
manipulation. The toolkit is capable of automatically converting the flow variables to
monthly, seasonal and annual totals, and quantifying the step and/or linear changes in the
selected streamfio variables. The toolkit also generated and processed graphical products,
data, statistical summary tables and statistical metadata included in the web portal.

A snapshot of the HRS web portal is shown in Figure 3. The main page was designed with
three pas. A series of links on the top provide the project information. Below this is the
station selector, which facilitates searching for the site of interest by location. The third part is
the product selector containing the core information sections afe¢bsite. Several tabs are

8
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offered for users to explore the web portal dependent on their needs and the level of
information they require. The daily streamflow data, graphical products, statistics and trend
analysis results are available for users to vie download. Information provided on the
HRS web portal will assist in detecting lotgym streamflow variability and changes at the
222 sites, and therefore supports water planning and decmrsikimg. More information can

be found at the website http:i#mw.bom.gov.au/water/hrs.

This web portal provides public access to high quality data and information. It has more than
15,000 graphic products for display. It is carefully designed for the public to have synthesised
and easily understandable informationveater availability trends across Australia. In order

to ensure currency of this web site, streamflow data are updated and reviewed every two

years.

4 Results

The study to detect lorgrm streamflow trends was performed on the 222 gauging stations
included in the HRS network. This section presents an overvieywlbaof the ManrKendall

test results for the selected ten hydrologic variables. Maps showing trend detection results and
step change analysis for the annual total flow are presented as weltabte listing the
stations with significant trends in annual total flow at 1% significance léyvel 6@t p. In
addition, result statisticof trends and step change®re summaised for different regions.

Finally, variations in trend among daily flow indicators and seasonal fleeveexamined.

4.1 Overview

A stacked baplot is shown in Figure 4 that stratifies the stations by the trend across each
streamflow variable. Overall, a consistent pattern is seen abe49 streamflow variablés
the majority of stations have either no trend or arasmom timeseries; of the stations with

a trend detected, the majority are decreasing.

Patterns of trends were noted in the different flow regimes. Moving through dhe fl
variables from low @Q0), median Qso), to high Qog), and onto raximum (Quax), an
increasing number of stations were found with no trends, combined with decreasing number
for nonrandom seriesThe overall number of stations with statistically sigrafit trends was

around the same across the median, high, and maximum variables but much |¢kelofer

9



279 flow variable. In the trends of seasonal flows, arouade third of stations showed a
280 decreasing trend in spring and a quarter of stations in sumndewiaer. A significant
281 proportion of stations do show a decreasing trend athestour seasonSummerflow at a
282 large number of stationshowedno trend and 3 stations with an increasing trektdmost
283 stations the @tumn flow time-series were nenandbm or had no trend, and only about one
284 tenth stations presenteddecreasing tren@ue to noarandomness of streamflow variables, a
285 number of stations are not amenable to trend analysis.

286 4.2 Spatial distribution of trends in annual total streamflow

287 Many hydrological time series exhibit trendifgehaviouror nonstationarity(Wang, 2006)

288 In fact, trend or step change is one type of +stetionarity(Bayazit 2015;Rao etal., 2012;

289 Kundzewicz and Robser2000) The purpose of the trend test in this present study is to

290 determine if the values of a series have a general increase or decrease in the observation time
291 period.Detecting thdérendsin a hydrologic time series may help us to understand the possible
292 links among hydrological processesanthropogenicinfluences and global environment

293 changes. Mangf the streamflontime seriesn this dataseéxhibit trend or stepchanges in

294 the mean or median.Abrupt changes and trends in the hydrologic time series caald b

295 indicators of hydrologic nostationarity or longerm gradual changes in the rainfalhoff

296 transformation processes.

297 4.2.1 Linear trend

298 Maps were generated showing the trend results for each variable across Auagalia.
299 mentioned before, theank-based notparametric MantKendall test was used to assess the
300 significance of monotonic trend in the selected flow variables. The magnitude of trend was
301 calculated from Sen Slope. The Re®lim test was used to identify the presence of a step
302 change inmedian of two periods, with the distribution free CUSUM method (Chiew &
303 Siriwardena, 2005) providing the year of change. Values are reported for sites with Mann
304 Kendall or RankSum test at higher than 0.1 significant levels for statistically significant
305 monotonic trend or step changéhe trend analysis map of annual total streamflow) (Q
306 displays the direction and significance of a trend (Figure 5) at different levels of
307 significanceny 1& pn 18 wandn 1&. Although trends in @vary across different

308 hydro-climatic regions of the continent, a clear spatial pattern is evident from theathap:

309 stations showing decreasing trerf@5% of stationsare in the southern part of Australia and

10
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all stations showingncreasing trend$4% d stations)in the northern part, while therg no
significant trend visible in the central region of Australia. The general downward trends
observed in southern Australia may have been affected by the dry period in the last decade in
the soutkeastern amh southwestern regions. Stations in the MurRgrling Basin
demonstrated the strongest decreasing trends with 30 stations exhibiting high levels of

significanceatr] 18 w

A set of 22 gauging stations were identified with trends in annual total stosamtf 0.01
significance levels, see Table 2. All sites showed consistent direction of change using MK test
andSen SlopeNone of those 22 gauges showed increasing trend. Trends in annual baseflow
were found to be similar to the results of annual totddema significant trend was detected.
Baseflow index was listeith Table 2calculated by the ratio of baseflow to total flow, and the
trend results of baseflow was indicated at the top right coffiee. number of stations
showing significant declining treis in baseflow conditions was less thamwas for annual

total flow. However, some timseries of annual baseflow were a@mdom and therefore not

available for further trend testing.

4.2.2 Step change

Step change analysis was applied to all sitesrevtiee time series data was random to give
comparable results of gradual and abrupt changes in annual total Tloev®2ankSum test

was used to identify the presence of a step changieeimedian of two periods, with the
distribution free CUSUM method @viding the year of change. Values were reported for sites

with RankSum test at 0.1 significance levels or higher. Figure 6 shows the results of step
change analysis, where colours indicate the year of change appearing in various decades, and

upward arrows represent increased median values after the year of change and vice versa.

The step change map revealdefinite spatial pattern in the location of stations that exhibited
a significant step change. As expected, the direction and significance afhsieges is
consistent with the ManKendall results for most stations. The identified years of step
changes jgpear to show spatial groupings at different divisidrable 2 gives the RarBum

test results and lists the year of change for the 22 stafidres.majority of stations in
southeast Australia were characterised with step changes 99, when theso-called
"millennium drought (BOM and CSIRO, 2014SEACI, 201) started to dominate the
weather in this regiont hasbeen reflected in Table 2: 13 of 22 stations presented the years of

the step change in 1996, which was clearly the most dominatinglgdammenhofer el. al
11
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(2009) where the most severe drought was discusisedffected region referred to as south
eastern Australia is defined as the land region enclosed withiin 36e S and 1467 148E.
Stations outside that defined region exhibite¢p sthanges with mixed years of changes,
including a good number of 1970s changethahortheast Mw SouthWales, 1980s changes
at the south east coast of Queens|amd 2000s changes in South Austrakave stations in
southwest West Australia had akéeature of 1975 step change, which might be partly due
to the observed rainfall decline sintiee mid-1970s. It was also noted that most stations
locatedin the Northern Territoryand some in the northeast coast of Queensiadved a

significantincreasng step change.

Figure 7 summarizes the results of the trend test on ftoer variable of annual total
streamflow. It describethe percentagand numbepf stations with amupwardor downward
trendor step changa each regionThe Australia states orthe x axis vereorganised from

left to right in the ordeof the increasinghumber ofstationsin each stateAcross all the eight
regions investigated in this study, the stations located in southern part of the country
displayed a decreasing trend and step change persistently. These regionsdmlstialian
Capital Territory (ACT), South Australia (SA), Tasmania (TAS), southwest of Western
Australia (WA) New South Wales (NSW), andictoria (VIC). The number of stations with
significant downward step changes was similar to, or slightly higher than the ones with
detected trends. Upward changes were only observélieatorth part of continent. most
stations inNorthern Territory (NT), onstation withweak trend at north WA anmhe atnorth
Queensland (QLD)Mixed patterns of upward and downward step changes were detected in
Queensland, which has the most diverse climatic conditions.

4.3 Spatial distribution of trends in daily flows and seasonal flows

Trend analysis maps showm Figure8 decompose trends of daily flow fon, Qgo, Qso and

Quo- In general, the identified trends were spatially consistent with the trend pattefn in Q
with upward trends ithe northwest and downward trends ihe southeast, souttwest and
Tasmaia. The @y and Qg series are notable for the number stations with-nraodom time

series and therefore an invalid MK test result, this can be seen most dramatically ir8&jgure
and is due to the higher correlation of the tigegies. This daily flow trend analysis indicated
similar results to previous studies (Tran and Ng, 2009; Durrant and Byleveld, 2009) for the

respective sites and flow statistics.
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The analysis of maximumadly flow Quax could be considered amalysis ofextreme flow as

this series contains the maximum value for each year. The general pattern of trepdg in Q
was in accordance with the preliminary trend analysis results in Ishak (2010), which
suggested thaabout 30% of selected stations showed trendyig,Qvith downward trend in

the southern part of Australia and upward trends in the northern part (B&gjure

The spatial distribution of trends seasonal flowsvasinvestigated talisaggregate totaldiv
seriesinto seasongFigure 9). The broad pattern from the analysi&s a collection of
downward trends generally in the south and upward trends in the north across the seasonal
variables summer (@9, autumn (@am), winter (Qja), and spring (&n). All seasons
presentedignificant downwardrendspredominantlyin the souttern parts of Australia,with

autumn having fewer than others

5. Discussion

We have demonstratedcamprehensive statistical and trend analysis in-tengn streamflow

data for 222 unregulated river gauges from the HRS national network. Ten streamflow
variables were examined to detect underlying changes or trend in streamflow and to identify
spatial vaiations across Australidgvidence from previous research and this current study
raises an important question; what could be the key driver of the detected changes in
Australian streamflow dataPhough it 8 beyond scope of this study to examine undeglyin
mechanisms linking flow, climate and other factors, some remarks may help to provide

valuable information for understanding and interpreting Australian hydrology.
5.1 Evidence for trends in hydrological records Australia

Numerous studies have analyseds&alian streamflow data to deteeny existing trends in
hydrologicrecords.Chiew and McMahon (1993) examined trends in annual streamflow of 30
sites across Australia amd clear evidence of changes wesugigested with the data avaiab

at that time.Haddad et al. (2008) reported a decreasing trend in many Victorian stations of
annual maximum floods particularly after 1990. Tran and Ng (2009) also showed a
consistently decreasing trend among 9 streamflow statistics of 14 stations in a Victorian
region,but indicated the result was not able to relate the effect of global climate change with
the decreases in streamflow. Durrant and Byleveld (2009) analysed3xsflow record at

29 sites across southest Western Australia; they indicated the majoritysibes show a
consistent regional reduction in streamflow. Silberstein et al. (2012) further computed
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simulations of runoff from 13 major river basins in sewutbstern Australia. They found that

the reduction in runoff for the study region is likely tonttoue under projected future
climates. Pui et al. (2011) detected changes in annual maximum flood data of 128 stations in
NSW according to multiple climate drivers. Ishak et al. (2010, 2013) presented trend analysis
in annual maxima flood series data frd®il stations in Australia, and suggested much of the

observed trend may be associated with the climate modes on annual or decadal timescales.

Commonality and differences were found from this study when cadpaith previous
streamflow trend studies aceo8ustralia. This could be expected given the different selection

of flow statistics, gauge location, data length, employed techniques and methodology. For
example, to examine the trends in sewidst Western Australia (SWWA), Durrant and
Byleveld (2009) hs investigated 29 sites in the area using-p9%6 data, whilst this paper
consideredhe full record of data since 1950 atiue full water year was used. Owing to the
different data record periods used in trend analysis, seven stations in DurrantleveldB
(2009) showed a possible increase, while in this study a homogenous spatial pattern of
downward trends was revealed across the SWWA. Three stations in common were examined
by both studies. The streamflow data of Yarragil Brook at Yarragil Form&ibs044)in

Murray River basinvas a norrandom series, which was strongly biased by the 1975 step
change. When only looking at the runoff of p@S5 period at this site, it revealed a very
weak decreasing trend, which was similar to the result of Buarad Byleveld (2009). Carey
Brook at Staircase Road (60800i) Donnelly River basirhad similar time series data
starting fromthe mid-1970sin both studies. A slight decreasing linear trend and a 1997 step
change at 0.05 significance level was ideedifin this study. No statistically significant trend

was detected in Durrant and Byleveld (2009), which could be attributed to the limited record
until 2008 and not considering the recent years of 2010, 2011 and 2012 that were relatively
dry. The results ere in agreement in both studies showingtmong decreasinggend for the

Kent River at Styx Junction (604053). At this site the 1975 change was not predominant.

The results of this study have demonstrated the main characterisation of hydrological change
of river flows across Australisincethe 1950's Overall, most othe downward trends in Q
appeared within or very close to the temperate climate zone, while upward trends were in the
tropical region.And a large numbef step changesccurredin 1996 acrosssoutheast
Australia
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436 5.2 Further remarks on detected trends

437 Many factors could contribute to @hges in runoff characteristics, ignoricignate change as

438 well as lowfrequency climate variability and human intervention in river basomspromise

439 the assumption of stationaritjami et al., 2016 Bayazit 2015 Smetterm et al., 2013;

440 Ummenhofer et al., 2009Higher temperature and changes in precipitation or other climate
441 variables impact on the rainfalinoff process directly, and indirectlyausing changes in

442 flora, relief and soil erosion. Changes in catchment characteristics, either naturally or under

443 human influence such as farm dams, can also have an important influence on water flow.

444  Moreover, High climate variability and recent climatends has been observed in Australia,
445 as the continent is effected by many different weather systems and is driven by many
446  significant climate features (CSIRO and BOM, 2015; BOM,5)0Accordingly, hydrologic

447 data of Australian rivers generally have styaratural variability, subject to data availability

448 and quality. Allthesefactors make it challenging to detect changes or trends in streamflow
449 data. Even if a trend is identified, it is difficult to attribute changes to any specific cause, as
450 global warning and other changes, globally, regional and locally, are contributing to the

451 hydrologic process.

452 Thelongterm ranfall trends(1970-2015)in annual total rainfall Australia has been analysed
453 and published http://www.bom.gov.au/climate/change/#tabs=Tracker&tracker=treaps.

454  The identified trend patterns in annual total streamflow are spatially consistent with trends in
455 annual total rainfall, where most of eastern and swatstern Australia has experiedce

456 substantial rainfall declines since7D9 while northwestern Australia has become wetter over
457  this period. This similarity implies that hydrological variability is closely related with changes
458 in rainfall patterns.

459 The spatial pattern of trends matchete rainfall records maps that indicated rainfall
460 deficiency in the south in the last decade comparing the historical records (Cleugh et al.
461 2011). Similar rainfall changes were also observed as shown in the recent CSIRO sustainable
462 yield study projects@SIRO, 205). Drought conditionsthe most persistent rainfall deficit
463 since the start of the ?O:entury,persisted in the soudast and souttvest of the continent
464 from around 1996 to 201Qvhich might be attributed to the detected change in streamflow
465 This could be the reason that most of the gauging stations in southern Australia and southeast
466 of Queensland showed a significant decreasing trend in annual streamflow. It was also found
467 that positive trensl observed at many locations in northern Ausiralould be relatedo
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increased rainfalin this part of Australiaduring the last decadéSEACI, 2011) Other
changes such as withyear rainfall variation and increase in temperature may have played a
role in affectingthe hydrologic cycle.

Whilst it is a possible explanatioit, is not explicit that climate changes the only cause of
significant trends in streamflawherearemany other factors thamay affectstreamflow, for
example, natural catchment changes, climate variability, alé¢dactsand other influences.

Site specific comparison of rainfall, PEnd temperature may help to improvine
understanding of the underlying causes of trends in hydrological variables. Further
investigation would be required to discover the potential causedenftel@ trends, which was

beyond the scope of this study.

Under the Water Act (2007), the Australian Bureau of Meteorology has responsibility for
compiling and disseminating comprehensive water information nuatid®. Hydrologic
Reference Stations (HRS) @ initial step to build up the national river data netwditke
network of HRS, which the present study was based on, is the first operational website in
Australia as a national river flow data repository. It provides an excellent foundation for water
planning and researcéhparticularly in trend detection and the possibility to link to large scale
atmospheric and climate variables. The informationh@HRS website can be used as a test
bed for model development, hydrological r&tationarity assessmentand many other

research interests.

6. Conclusions

This study investigated the streamflow variability and inferred trends in water availability for

222 gauging stations in Australia with long term and high quality streamflow records. The
results presena systematic analysis of recent hydrological changes in greater spatial and
temporal details than previously published for Australian rivers. Implications of the findings

should aid decision making for water resources management, especially when cansideri

results in the context of climate variability.
The main findings of the study are:

0 The spatial and temporal trends in observed streamflow varied across different
hydro-climatic regions in AustraliaFigure 3. As a short summary of the trend test
results in annual streamflow {Qover the continent,most of theincreasing trensl

were observeth northern part of Northern Territorywhile there wasnly one weak
16
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531

trendvisible in the northern region 8/estern Australia anQueensland. However, in
south-eastern Queensland there was a significant decreasing trend. Most of the
gauging stations in New South Wales, Victpgautheast South Australisouthwest
Western Australiaand northwest Tasmania showed a significant decreasing trend in
annual s'eamflow. Incentral Australianorth Queensland and South Tasmamast

of the stations showed no significant trend in annual streamflow.

™

0 The temporal trends also varied between different components of streamflow
annual total, daily maximum (@x), high, median and low flows §Q Qso, Qu0),
baseflow (Qf) and seasonal totals {2 Qson, Qoir Quam). Out of 222 stations, only

7 showed an increasing trend, 90 decreasing and 98 no trend in total annual
streamflow. The annual daily maximum streamflovovsbd decreasing trends at 67
stations while the low flow and baseflow components showed decreasing trends at 18
and 73 stations respectively. Trends also varied between different seasonal totals and
also across different hydiimatic regions. Most of Naénern Territory and central
Australia showed increasing trend in summes;gXlow while no stations were found

with increasing trend for winter flow (@) anywhere in Australia.

™

0 The analysis of step changes revealed definite regional patt€hesmagrity
of stations in the souénn parts of Australia were characterised with downward step
changes,while stations with significant upward step changes were seethe

Northern Territory and son& the northeast coast of Queensland.

v

0 The web portal Http://www.bom.gov.au/water/hrslisplays all the graphical

products, tables, and statistical test results of all 222 stations. It contains a

comprehensive unique set of graphical products for linear teamtistep change.

The streamflow trends evident from the statistical data analysis showed some parallels with
climate variability patterns that the country experienced through recent decadegeiong
trends in water availability across different hydrodtio regions of Australia reported in this
study are derived purely from observations unlike other studies, they are not derived from
models which can invariably be influenced by biases. The high quality streamflow data of
HRS and the results from this dyss on streamflow variability provide critical information

for water security planning and for prioritising water infrastructure investments across

Australia.
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532 Appendix A: Statistical tests

533 Al. Median Crossing Test

534 This method tests for randomness oihae series data. It is a nggarametric test. The n time
535 seriesvalues (X Xz, X3... X)) ar e r epl acXgdananyd dO/Q >0KLf@a, K f X
536 the time series data come from a random pr oc

537 timesO is followed by 1 or 1 is followed by 0, is approximately normally distributed with:

538 Mean: m= (n_zl)

539 Standard deviations = %

540 The zstatistic is therefore defined as:

_|(m-m]
541 2= 5

542 A2.Rank Difference Test

543 Thismethod also tests for randomness of a time series data. It ispareonetric test. The n

544 time series values X Xy, X3¢ X are replaced by their relative ranks starting from the

545 lowest to the highest (RR;, Re¢ R The statistic 6U6 is the s
546 differences between successive ranks:

n
547 U=alR-R,l

i=2
548 For large n, U is normally distributed with:
549 Mean: mzw
550 Standard deviations = (n- 2)(n;(:)L)(4n- 7
551 The zstatistic* is therfore defined as:

|(U-m|
552 L=—"7"—.
S 05

553 A3. Mann-Kendall Test

554  This method tests whether there is a trend in the time series. It isgaraometric ranfbased
555 test. The n time series values;(X,, X3¢ X are replaced by their relative ranks starting
556 from the lowest to the highest(AR;, R:¢ B
557 The test statistic S is defined as:
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S=4[4s0R - R)]

izl j=i+l

where sgn(y)= 1 fory>0
sgn(y)= 0 fory=0
sgn(y) =-1 fory<0
sgn() is the signum function.
If there is a trend in the timeseries (e the null hypothesis His true), then S is
approximately normally distributed with:

Mean: m=0
n(n- 1)(2n+5)
18

Standard deviations =

The zstatistic* is therefore:
| S|

0.5
S
A positive value of S indicatdbkat there is an increasing trend and vice versa.

7=

A4. Distribution Free CUSUM Test

This method tests whether the means in two parts of a record are different for an unknown
time of change. It is a ngparametric test. Given a time series datg g, Xzé X,), the test

statistic \ is defined as:

K
Vi =a son(X; - X, egian]

i=1

where sgn(y)= 1 fory>0
sgn(y)= 0 fory=0
sgn(y) =-1 fory<0
XmedianiS the median value of the Hata set.

The time aty whochumsmaixg Vconsi dered as t he t
follows the KolmogorovSmirnov twesample statistic (KS = (2/n) max]y. A negative value
of V indicates that the latter part of the record has a higher mean than the earlier part and vice

versa.

A5. Rank-Sum Test

This method tests whether the medians in two different periods are different. It is a
nonparametric test. The time series data is h&eompute the test statistic. In the case of

ties the average of ranks are used. The statistic S is the sum of ranks of the observations in the
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smaller group. The theoretical mean and standard deviation of S ugder Hhe entire
sample is given as:

= n(N +1)
2

Mean:

N 05
Standard deviationg = S"MN +D e

& 12 Y
where n and m are the number of observations in the smaller and larger groups
respectively. The standardised form of the test statistic, Z* is computed as:
Z=(S1057i¢e) [/ GifS > ¢
Z=0 I f S = ¢
Z=|S+05¢| [/ Gif S <

Z is appoximately normally distributed.
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779 Table 1. Metadata of the drainage divisions and selected logitdReference Stations

Division Drainage Mean annual Mean Number of  Water Smallest Largest
map division names rainfall (mm) elevation HRS year start catchment  catchment
: 2

code (19762005)* (m) stations month area (kn?)  area (kn?)

I Northeast 764 173 42 October 6.6 7486.7
Coast

Il Southeast 599 323 44 March 4.5 4660.0
Coast

1] Tasmanian 1519 199 12 February 18.3 775.3

Y Murray-Darling 479 260 75 March 26.3 35238.9

\% South Australia 344 269 5 February 5.3 187.4
Gulf

VI Southwest 329 365 13 March 14.1 1786.0
Coast

VI Indian Ocean 369 162 0 (No data) (Nodata) (No data)

VIII Timor Sea 520 339 13 Septembe 65.4 47651.5

r

IX Gulf of 674 293 13 October 170.0 43476.2
Carpentaria

X Lake Eyre 429 312 5 October 434.9 232846.3

XI North Western 456 359 0 (No data) (Nodata) (No data)
Plateau

Xl South Western 321 297 0 (No data) (Nodata) (No data)

Plateau

780

* Calculation was based on rainfall data from BOM climate welhsite//www.bom.gov.au/
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Figure 3: Snapshot of the HRS web portal
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