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Abstract 14 

Projecting water deficit under various possible future climate scenarios depends on the 15 

choice of General Circulation Model (GCM), reference evapotranspiration (ET0) estimation 16 

method and Representative Concentration Pathway (RCP) trajectory. The relative contribution of 17 

each of these factors must be evaluated in order to choose an appropriate ensemble of future 18 

scenarios for water resources planning. In this study variance-based global sensitivity analysis 19 

and Monte Carlo filtering were used to evaluate the relative sensitivity of projected changes in 20 

precipitation (P), ET0 and water deficit (defined here as P – ET0) to choice of GCM, ET0 21 

estimation method and RCP trajectory over the continental United States (US) for two distinct 22 

future periods: 2030-2060 (future period 1) and 2070-2100 (future period 2). A total of 9 GCMs, 23 

10 ET0 methods and 3 RCP trajectories were used to quantify the range of future projections and 24 

estimate the relative sensitivity of future projections to each of these factors. In general, for all 25 

regions of the Continental US, changes in future precipitation are most sensitive to the choice of 26 
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GCM, while changes in future ET0 are most sensitive to the choice of ET0 estimation method.  27 

For changes in future water deficit, the choice of GCM is the most influential factor in the cool 28 

season (Dec – Mar) and the choice of ET0 estimation method is most important in the warm 29 

season (May – Oct) for all regions except the South East US where GCM and ET0 have 30 

approximately equal influence throughout most of the year. Although the choice of RCP 31 

trajectory is generally less important than the choice of GCM or ET0 method, the impact of RCP 32 

trajectory increases in future period 2 over future period 1 for all factors. Monte Carlo filtering 33 

results indicate that particular GCMs and ET0 methods drive the projection of wetter or drier 34 

future conditions much more than RCP trajectory; however the set of GCMs and ET0 methods 35 

that produce wetter or drier projections varies substantially by region. Results of this study 36 

indicate that, in addition to using an ensemble of GCMs and several RCP trajectories, a range of 37 

regionally-relevant ET0 estimation methods should be used to develop a robust range of future 38 

conditions for water resource planning under climate change.   39 

 40 

1. Introduction 41 

Climate change will result in significant impacts on hydrologic processes. The 2014 Fifth 42 

Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) reported 43 

that climate change will significantly affect future precipitation (P), temperature (T) and 44 

reference evapotranspiration (ET0) and these changes will affect the quantity and quality of water 45 

resources. The most recent report of the National Climate Assessment and Development 46 

Advisory Committee (NCADAC, 2013) indicated that the average annual temperature in the 47 

United States (US) has increased by 0.7 °C to 0.9 °C since record keeping began in 1895 and is 48 

expected to continue to rise (Georgakakos et al., 2014; Walsh et al., 2014). The NCADAC report 49 

also indicated that Coupled Model Intercomparison Project 5 (CMIP5) General Circulation 50 

Model (GCM) precipitation projections show a consistent increase in Alaska and the far north of 51 

the continental US and a consistent decrease in the far Southwest US, but that GCM projections 52 

are inconsistent in the precipitation transition zone of the US continent. The uncertainty in 53 

climate change projections makes actionable water resources planning difficult in many regions. 54 

In order to predict changes in the hydrologic cycle, and future water supply and demand, 55 
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estimates of changes in P, T and ET0 must be evaluated on a regional basis, and the uncertainty 56 

of these estimates must be quantified (Ishak et al., 2010). 57 

Previous research has evaluated existing and potential future spatiotemporal changes in P, 58 

T and ET0 for various regions around the globe (e.g. Chaouche et al., 2010; Chong-Hai and 59 

Ying, 2012; Johnson and Sharma, 2009; Kharin et al., 2013; Maurer and Hidalgo, 2008; 60 

Quintana Seguí et al., 2010; Sung et al., 2012; Thomas, 2000; Wang et al., 2013; Xu et al., 61 

2006).  It is well known that future GCM projections of temperature and precipitation vary 62 

significantly due to both the different radiative forcing assumptions of carbon dioxide scenarios 63 

(e.g. CMIP3 Special Report on Emissions Scenarios (SRES) and CMIP5 Representative 64 

Concentration Pathways (RCP trajectories)) and different GCM model physics (Hawkins and 65 

Sutton, 2009, 2010). Future ET0 projections have been shown to depend on ET0 estimation 66 

methods in addition to GCMs. For example, Wang et al. (2015) used projections from the 67 

CMIP3 HADCM3 model A2 scenario and found that the physically-based Penman-Monteith 68 

equation, which uses less reliable GCM projection data (including vapor pressure and solar 69 

radiation), and the empirical temperature-based Hargreaves equation showed similar patterns but 70 

different magnitudes for future ET0 changes over the Hanjiang River Basin in China. Kingston et 71 

al. (2009) used 5 GCMs from the CMIP3 climate projections and 6 different ET0 equations to 72 

estimate global ET0 and found that the choice of ET0 method contributes to different projections 73 

of the future state of water resources which varies by region. They found that the Hamon and 74 

Jensen-Haise ET0 estimates showed the greatest changes in both humid and arid regions while 75 

the Penman-Monteith and Priestley-Taylor estimates frequently showed smallest change. 76 

Similarly McAfee (2013) used three ET0 equations with 17 CMIP3 GCMs to evaluate the 77 

uncertainty of future global ET0 projections and found that the Hamon equation showed more 78 

significant and consistently positive trends in ET0 compared to the Priestley-Taylor and Penman 79 

methods.  80 

Models developed to estimate future water supply and demand as a result of projected 81 

climate change use many different types of ET0 estimation methods (Zhao et al., 2013). Because 82 

the choice of ET0 estimation method may be as important as the choice of GCM or RCP 83 

trajectory, better understanding of the contribution of each of these factors to the overall 84 

prediction uncertainty of future water availability or water deficit is necessary (Taylor et al., 85 
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2013).  Kay and Davies (2008) compared the performance of the Penman-Monteith equation and 86 

a simple temperature-based ET0 method using climate data from five global and eight regional 87 

climate models over Britain. They found that the two methods showed very different changes in 88 

ET0 for the period 2071-2100 under the A2 emission scenario, and different flow predictions for 89 

three catchments when the data were used to force a rainfall-runoff model. Kay and Davies 90 

results suggest that hydrological prediction uncertainty due to ET0 formulation was smaller than 91 

that due to GCM structure or RCM structure for their study region.  Bae et al. (2011) evaluated 92 

the uncertainty contributed by choice of GCM and hydrologic model for the Chungju Dam basin, 93 

Korea. They found that hydrologic model structural differences contributed greater uncertainty 94 

than GCM selection to winter runoff prediction. Koedyk and Kingston (2016) found that for the 95 

Waikaia River, New Zealand ET0 method contributed more uncertainty than GCM selection 96 

when predicting ET0, but that runoff predictions were more sensitive to GCMs than to ET0 97 

methods. Thompson et al. (2014) evaluated the effect of using different GCMs and different ET0 98 

methods on discharge predictions for the Mekong River in Southeast Asia and found that GCM-99 

related uncertainty was greater than the ET0 method related uncertainty.   100 

In this study we perform a comprehensive evaluation of the relative sensitivity of future 101 

P, ET0 and water deficit (defined here as P- ET0) projections to choice of GCM, ET0 method and 102 

RCP trajectory over the continental USA using CMIP5 GCM model outputs to provide new 103 

insights that will inform more robust future water resource planning efforts. Variance-based 104 

global sensitivity analysis (Saltelli et al., 2010) and Monte Carlo Filtering (Rose et al., 1991) are 105 

used to quantify the uncertainty and important input factors controlling these projections. Global 106 

sensitivity analysis (GSA) apportions the total output uncertainty simultaneously onto all the 107 

uncertain input factors described by marginal probability density functions, and thus is preferred 108 

over the local, one factor at a time, sensitivity analyses that have been previously reported 109 

(Homma and Saltelli, 1996; Saltelli, 1999). Monte Carlo Filtering can identify sets of model 110 

simulations and input factors that meet a specified criteria or threshold. Thus global sensitivity 111 

analysis and Monte Carlo Filtering offer an opportunity to gain insight into the sources of 112 

uncertainty, and drivers of particular types of wet/dry behavior, when estimating future water 113 

deficit under projected climate change.   114 

 115 
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2. Methods 116 

 All retrospective and future climate variables were obtained from the CMIP5 archive 117 

(accessible for download at http://pcmdi9.llnl.gov/). The “historical” runs of CMIP5 were used 118 

for the retrospective period (1950-2005) and the same ensemble member runs (r1i1p1 ensemble) 119 

of CMIP5 were used for two future periods: future period 1 (2030-2060), and future period 2 120 

(2070-2100). Data for three RCP trajectories, RCP2.6, RCP4.5 and RCP8.5 were included in the 121 

analyses. Taylor et al. (2012) described an overview of CMIP5 and RCP trajectories and 122 

compared the differences between CMIP5 and CMIP3 model projections.  123 

Data from the CMIP5 archive were used to calculate monthly mean P, ET0, and P- ET0 124 

(water deficit) for the retrospective and both future periods over each of the nine U.S. climate 125 

regions identified by the National Climatic Data Center (Karl and Koss, 1984 (Fig. 1)). Future 126 

changes in monthly mean P, ET0, and P- ET0 were estimated by subtracting the monthly mean 127 

value for the retrospective period from the monthly mean value for future period 1 or future 128 

period 2, as appropriate (Baker and Huang, 2014). 129 

Ten commonly used reference evapotranspiration estimation methods (Hargreaves, 130 

Blaney-Criddle, Hamon, Kharrufa, Irmak-Rn, Irmak-Rs, Dalton, Meyer, Penman-Monteith and 131 

Priestley-Taylor) were used in this study. The methods can be further classified into temperature- 132 

(Hargreaves, Blaney-Criddle, Hamon and Kharrufa), radiation (Irmak-Rn, Irmak-Rs and 133 

Priestley-Taylor), mass transfer (Dalton and Meyer), and combination (Penman-Monteith) 134 

equations. These equations are well-described in many papers (e.g.,  Allen et al., 1998; 135 

Hargreaves and Allen, 2003; Irmak et al., 2003; Tabari, 2010; Tabari et al., 2013; Xu and Singh, 136 

2001) and are summarized in Table 1 (hereafter precipitation is referred to as P, and reference 137 

evapotranspiration is referred to as ET0 for convenience). 138 

 Variables directly used from the CMIP5 monthly model output included precipitation (pr, 139 

P in this study), maximum and minimum temperature (tasmax and tasmin), radiation (rlds, rlus, 140 

rsds, and rsus), air pressure (psl and ps), and wind speed (sfcWind). The abbreviations for these 141 

variables are as defined in the CMIP5 archive and explained in the PCMDI server (Program For 142 

Climate Model Diagnosis and Intercomparison, http://cmip-143 

pcmdi.llnl.gov/cmip5/docs/standard_output.pdf). Other variables needed in the ten reference 144 

http://pcmdi9.llnl.gov/
http://cmip-pcmdi.llnl.gov/cmip5/docs/standard_output.pdf
http://cmip-pcmdi.llnl.gov/cmip5/docs/standard_output.pdf
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evapotranspiration equations were calculated using the variables from CMIP5 monthly model 145 

output (for details see Table 1). Monthly output that included all the variables needed for the 146 

Penman-Monteith reference evapotranspiration method (the most data intensive method) was 147 

available for both the retrospective period, and for the RCP2.6, RCP 4.5, and RCP8.5 trajectories 148 

for the future periods, for 9 CMIP5 models. Table 2 lists the 9 models from the CMIP5 archive 149 

that were used in this study.  150 

 The sensitivity of changes in future P, ET0 and water deficit (defined here as P- ET0) to 151 

the choice of GCM, ET0 estimation method, and RCP trajectory was evaluated using the 152 

variance-based GSA method of Saltelli et al. (2010). Given a model of the form 𝑌 =153 

𝑓(𝑋1, 𝑋2, … 𝑋𝑘), with 𝑌 a scalar, the variance-based first order effect for a generic factor 𝑋𝑖 can 154 

be written (Saltelli et al., 2010): 155 

𝑉𝑋𝑖
(𝐸𝑋~𝑖

(𝑌|𝑋𝑖))                                                                                                               (1) 156 

where 𝑋𝑖 is the 𝑖-th factor (in our case either GCM, ET0 method or RCP trajectory) and 𝑋~𝑖 is the 157 

vector of all factors except 𝑋𝑖. The expectation operator 𝐸𝑋~𝑖
(𝑌|𝑋𝑖)  indicates that the mean of 158 

𝑌 is taken over all possible values of 𝑋 except 𝑋𝑖 (i.e. 𝑋~𝑖 ) while keeping 𝑋𝑖 fixed. The variance, 159 

𝑉𝑋𝑖
, is then taken of this quantity over all possible values of 𝑋𝑖. 160 

 The first order sensitivity coefficient is expressed as: 161 

𝑆𝑖 =
𝑉𝑋𝑖

(𝐸𝑋~𝑖
(𝑌|𝑋))

𝑉(𝑌)
                                                                                                        (2) 162 

Where 𝑉(𝑌) the total variance of Y over all 𝑋𝑖. 𝑆𝑖 is a normalized index varying between 0 and 163 

1, because 𝑉𝑋𝑖
(𝐸𝑋~𝑖

(𝑌|𝑋𝑖)) varies between 0 and 𝑉(𝑌) according to the identity (Mood et al., 164 

1974): 165 

𝑉𝑋𝑖
(𝐸𝑋~𝑖

(𝑌|𝑋𝑖)) + 𝐸𝑋𝑖
(𝑉𝑋~𝑖

(𝑌|𝑋𝑖)) = 𝑉(𝑌)                                                           (3) 166 

As indicated above  𝑉𝑋𝑖
(𝐸𝑋~𝑖

(𝑌|𝑋𝑖)) is the first order effect of 𝑋𝑖 on the model output 167 

𝑌, while 𝐸𝑋𝑖
(𝑉𝑋~𝑖

(𝑌|𝑋𝑖)) is called the residual. The total effect index, including  first order and 168 
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higher order effects (i.e. interactions between factor 𝑋𝑖 and other factors) of  the factor 𝑋𝑖 on the 169 

model output is calculated (Saltelli et al., 2010): 170 

𝑆𝑇𝑖
=

𝐸𝑋~𝑖
(𝑉𝑋𝑖

(𝑌|𝑋~𝑖))

𝑉(𝑌)
= 1 −

𝑉𝑋~𝑖
(𝐸𝑋𝑖

(𝑌|𝑋~𝑖))

𝑉(𝑌)
                                                  (4) 171 

The first order sensitivity of estimated future changes in mean monthly P, ET0, and P- 172 

ET0 to choice of GCM, ET0 estimation method and RCP trajectory were calculated over the nine 173 

US climate regions for each future period in order to evaluate the relative contributions of each 174 

of these factors on the uncertainty of future changes. A total of 270 simulations (9 GCMs × 10 175 

evapotranspiration methods × 3 RCP trajectories) was used in the analysis. Sensitivity of 176 

projected changes in P were evaluated for both choice of GCM and choice of RCP trajectory. 177 

Sensitivity of projected changes in ET0 and P- ET0 were evaluated for choice of GCM, choice of 178 

ET0 estimation method, and choice of RCP trajectory.  179 

 For projected changes in water deficit (P- ET0) Monte Carlo filtering (Saltelli et al., 2008) 180 

was used to identify whether projected wetter or drier future conditions (i.e. larger or smaller 181 

water deficit) could be attributed to specific GCMs, ET0 estimation methods, or RCP trajectories. 182 

For each future period the ensemble of 270 projections of change in water deficit were 183 

categorized as either wet future condition (mean change in (𝑃 − 𝐸𝑇0) ≥ 0) or dry future 184 

condition (mean change in (𝑃 − 𝐸𝑇0) < 0). Next for each factor (𝑋𝑖 =GCM, ET0 method, RCP 185 

trajectory) the histograms of wet (𝑓𝑤𝑒𝑡|𝑋𝑖) and dry (𝑓𝑑𝑟𝑦|𝑋𝑖 ) future conditions over the range of 186 

possible values of that factor were estimated. To identify the factors that are most responsible for 187 

driving the model into projected wet or dry future conditions for each factor, 𝑋𝑖, the distributions 188 

(𝑓𝑤𝑒𝑡|𝑋𝑖) and (𝑓𝑑𝑟𝑦|𝑋𝑖) were tested for significant difference using the Χ2 two sample test for 189 

categorical variables with α=0.05 (Rao and Scott, 1981). If for a given factor 𝑋𝑖 the two 190 

distributions are significantly different, then 𝑋𝑖 is a key factor in driving into either a wet or dry 191 

condition (Saltelli et al., 2008). 192 

 Because GCM predictions are known to contain systematic biases (Hwang and Graham, 193 

2013; Wood et al., 2002, 2004) we evaluated the sensitivity of the mean monthly change in raw 194 

climate predictions between retrospective and future periods to the choice of GCM, ET0 195 

estimation method and RCP trajectories. This is analogous to using the delta change GCM bias 196 
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correction method that involves shifting the mean of a series of observed climate data by the 197 

mean difference in raw GCM output between the corresponding observed time period and the 198 

desired future period. Teutschbein and Seibert (2012) pointed out that all bias correction methods 199 

are based on the stationarity principle that assumes that similar biases occur in the retrospective 200 

and future predictions and thus the same bias-correction algorithm may be applied to both. 201 

Muerth et al. (2013) found that the impact of bias correction on the relative change of flow 202 

indicators between retrospective and future periods was weak for most indicators, however 203 

Pierce et al. (2015) found that some bias correction methods altered model-projected changes in 204 

mean precipitation and temperature. LaFond et al. (2014) found that the delta change GCM bias 205 

correction method was more useful for simulating hydrologic extreme events than the quantile 206 

mapping bias correction method as it preserved daily climate variability better. In this study, we 207 

differenced raw rather than bias corrected GCM outputs in order to prevent spurious alteration of 208 

the climate change signal between retrospective and future GCMs that might be induced by the 209 

bias correction method.  210 

 211 

3. Results 212 

3.1. Projected P, ET0, and water deficit change in the 21st century  213 

Future P, ET0 and water deficit projections include large uncertainties stemming from 214 

different sources. Figures 2 and 3 present maps of the mean change (Fig. 2) and the standard 215 

deviation of change (Fig. 3) in annual P (top chart), ET0 (middle) and water deficit (P – ET0; 216 

bottom) over the continental US calculated over all GCMs, ET0 estimation methods, and RCP 217 

trajectories for future period 2 (2070-2100). Major portions of the West, Southwest and South 218 

show a mean decrease in annual precipitation, while the rest of the continental US shows a mean 219 

increase (Fig. 2 (a)). Future annual ET0 shows a mean increase over retrospective annual ET0 220 

over the entire US (Fig. 2 (b)), with the largest increase in the South region. Following the 221 

patterns of P and ET0, future annual water deficit (P – ET0) shows a significant mean decrease in 222 

the West, Southwest and South regions and a slight decline, or negligible change in most other 223 

regions (Fig. 2 (c)). These mean changes in annual P, ET0 and P- ET0 are relatively small 224 

compared to the standard deviation of changes in annual P, ET0, and P – ET0 (Fig. 3). Water 225 
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deficit in particular has a large standard deviation, resulting in coefficients of variation larger 226 

than one throughout the continental US. Similar results are shown in the Fig. S-1 and Fig. S-2 for 227 

future period 1 (2030-2060) in the supplemental materials. 228 

 Figure 4 shows the seasonal changes in the monthly mean and standard deviation of 229 

water deficit (P – ET0) over the nine US regions. Blue and red lines represent the changes in 230 

monthly mean water deficit for future period 1 and future period 2, respectively and the error 231 

bars represent one standard deviation around each mean value. All regions of the continental US 232 

show drier conditions (negative mean changes) in the summer season (Jun – Aug). Southern 233 

regions (Southeast, South, Southwest and West) show drier conditions throughout the year, 234 

however northern portions of the US (i.e. the Northeast, Ohio Valley, Upper Midwest, Northern 235 

Rockies and Plains and Northwest) show wetter conditions (positive mean changes) in the winter 236 

season.   237 

3.2. Global sensitivity analysis of projected changes 238 

 Figure 5 shows the first order sensitivity of change in P to GCM and RCP trajectory over 239 

the nine US climate regions for future periods 1 and 2. For projected changes in P, the choice of 240 

GCM is generally more important than choice of RCP trajectory for all regions and both future 241 

periods.  First order sensitivities of mean change in ET0 to GCM, ET0 method and RCP 242 

trajectory are shown in Fig. 6. This figure clearly shows that the choice of ET0 method is the 243 

most influential factor for projecting change in ET0 for both future periods, except for the month 244 

of March in the Northeast, Upper Midwest and Northern Rockies and Plains. High sensitivity of 245 

mean change in ET0 to GCM selection occurs in spring for several regions (Northeast, Upper 246 

Midwest and Northern Rockies and Plains), indicating a divergence of model predictions during 247 

this time. The influence of the RCP trajectory on ET0 increases in future period 2 over future 248 

period 1, with a concomitant decrease in the influence of both ET0 method and GCM. In future 249 

period 1 the GCM sensitivity coefficients are greater than the RCP trajectory sensitivity 250 

coefficients over most regions; however, in future period 2 the RCP sensitivity coefficients 251 

become more important. Figure 7 shows that projected change in water deficit depend strongly 252 

on both the choice of GCM and ET0 estimation method. In all regions except the Southeast 253 

projected change in water deficit is most sensitive to ET0 estimation method in the warm season 254 

(May through October) and most sensitive to GCM in the cool season (December through 255 
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March). For the Southeast region the sensitivity coefficients for GCM and ET0 method are quite 256 

similar throughout the year. The sensitivity coefficients for RCP trajectory are very low in future 257 

1, but increase in future 2, becoming approximately equal to the GCM sensitivity coefficients in 258 

the summer season in future 2.  259 

3.3. Change in annual mean water deficit projections using different ET0 methods 260 

 Figure 8 shows the change in annual mean water deficit over all 9 GCMs for the RCP 4.5 261 

trajectory in future period 1 (2030-2060) predicted by the ten different ET0 methods used in this 262 

study (a: Hargreaves, b: Blaney-Criddle, c: Hamon, d: Kharrufa, e: Irmak-Rn, f: Irmak-Rs, g: 263 

Dalton, h: Meyer, i: Penman-Monteith, j: Priestley-Taylor). This figure clearly shows that the 264 

changes in water deficit for future period 1 are diverse and depend strongly on the choice of ET0 265 

method. Except for the Hargreaves method (Fig. 8a) the temperature based methods (e.g. 266 

Blaney-Criddle (Fig. 8b), Hamon (Fig. 8c) and Kharrufa (Fig. 8d)) predict drier conditions over 267 

the continental US than the other methods. The mass transfer based methods (e.g Dalton (Fig. 268 

8g) and Meyer (Fig. 8h)) predict generally wetter conditions over most of the continental US 269 

compared to other methods. The combination method (Penman Monteith (Fig. 8i)), and the 270 

radiation based methods (Irmak-Rn (Fig 8e), Irmak-Rs (Fig. 8f) and Priestley Taylor (Fig. 8j)) 271 

generally fall between the mass transfer based and temperature based methods, with the 272 

combination methods producing slightly drier conditions. Although most methods predict similar 273 

spatial patterns of water deficit over the continental US (generally drier conditions in the West, 274 

Southwest and South and generally wetter elsewhere), the Hamon method predicts a different 275 

pattern of water deficit over the Southwest, South and Northern Rockies and Plains regions. 276 

3.4. Monte Carlo filtering  277 

Monte Carlo filtering (Saltelli et al., 2008) was conducted to further investigate whether 278 

projected wetter or drier future conditions (i.e. larger or smaller annual mean water deficit) could 279 

be attributed to specific GCMs, ET0 estimation methods, or RCP trajectories. Figures 9 shows 280 

the histograms for wet conditions and dry conditions in future 2 over the Southeast US by GCM, 281 

ET0 method and RCP trajectory for the example month of July. Figure 10 shows similar 282 

histograms for the Northern Rockies and Plains, a region with differing behavior from the 283 

Southeast US. Table 3 shows the P-value results for the 𝛸2- test for all months in both futures for 284 
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the Southeast and Northern Rockies and Plains regions. P-values greater than 0.05 (shaded in 285 

grey) indicate the two histograms are not significantly different from each other. Tables 4 – 6 286 

show the fraction of time that a particular GCM (Table 4), ET0 method (Table 5), or RCP 287 

trajectory (Table 6) projected drier future conditions in each of the nine US climate regions for 288 

each month, with fractions higher than 0.5 shaded in grey. 289 

 290 

4. Discussion 291 

Drier conditions in southern regions (Southeast, South, Southwest and West) and wetter 292 

conditions in northern regions (Northeast, Ohio Valley, Upper Midwest, Northern Rockies and 293 

Plains and Northwest) are consistent (Fig. 4) with those reported by McAfee (2013) who used 3 294 

ET0 methods (Hamon, Priestley-Taylor and Penman-Monteith) to estimate global changes in ET0 295 

over the entire globe. As found by Baker and Huang (2014) for both CMIP3 and CMIP5 296 

projections, mean ET0 is projected to be higher in future period 2 than in future period 1, and 297 

mean precipitation projections are approximately equivalent in future period 1 and future period 298 

2. Thus the projected mean changes in water deficit for future period 2 (red lines in Fig. 4) are 299 

larger in magnitude than the projected changes for future period 1 (blue lines). In all regions, and 300 

for both future periods, the one standard deviation error bars bracket zero mean change 301 

indicating large uncertainty in the projections throughout the year. 302 

The choice of GCM is generally more important than the choice of RCP trajectory for 303 

projected changes in P (Fig. 5). This is consistent with results found by Gaetani and Mohino 304 

(2013) and Knutti and Sedláček (2012) who showed significant differences in precipitation 305 

predictions among CMIP5 models. It should be noted that these results do not indicate that the 306 

choice of RCP trajectory does not affect the change in precipitation, only that the choice of RCP 307 

trajectory is less influential than the choice of GCM. There are no consistent seasonal patterns of 308 

the first-order sensitivity coefficients for either GCM or RCP trajectory in either future period. 309 

However, during the spring months, the sensitivity of change in P to choice of RCP trajectory 310 

increases substantially in future 2 compared to future 1 in the Northeast, Ohio Valley, Upper 311 

Midwest, South, Southwest and West regions. 312 
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Higher sensitivity of mean change in ET0 to the choice of ET0 estimation method than the 313 

choice of GCM (Fig. 6) are consistent with those found by Kingston et al. (2009) who showed 314 

that projected increase in ET0 varied by more than 100% between ET0 methods, and Schwalm et 315 

al. (2013) who found the choice of ET0 estimation method is sensitive and even more influential 316 

than the choice of GCM  in predicting ET0. However, neither of these studies looked at the 317 

influence of RCP trajectory on ET0 projections, which increases in future period 2 over future 318 

period 1, causing a decrease in the sensitivity coefficient of both GCM and ET0 method in future 319 

2. Burke and Brown (2008) evaluated uncertainties in the projection of future drought using 320 

several drought indices. They found that there are large uncertainties in regional changes in 321 

drought and changes in drought are dependent on both index definition and GCM ensemble 322 

members. Similarly, our results for the projected change in water deficit vary by region, depend 323 

strongly on the choice of GCM and ET0 estimation method, but are relatively less sensitive to 324 

RCP trajectory (Fig. 7). These findings are similar to results reported by Orlowsky and 325 

Seneviratne (2013) who found that the greenhouse gas emission scenario uncertainty is not as 326 

important as differences among GCMs or internal climate variability when predicting 327 

Standardized Precipitation Index (SPI) and soil moisture (SMA). However, they also found that 328 

uncertainty due to greenhouse gas emission scenario increased in later future periods. Taylor et 329 

al. (2013) showed the patterns of changes in future drought were similar between the A1B 330 

scenario in CMIP3 and the RCP2.6 trajectory in CMIP5, reinforcing our finding that the choice 331 

of RCP trajectory is less important than the choice of GCM and ET0 estimation method when 332 

estimating future water deficit. 333 

Similar to the results of Kay and Davies (2008) and Bae et al. (2011) the results of our 334 

GSA show that the choice of ET0 method has important implications when making future ET0 335 

projections and future water deficit projections (Fig. 8). Kingston et al. (2009)  recommended the 336 

use of different ET0 equations to evaluate global ET0, and Wang et al. (2015) found that although 337 

different methods predict similar future ET0, there are important differences in uncertainties due 338 

to ET0 estimation methods and input data reliability. Currently many hydrological models use a 339 

single evapotranspiration method for simulation, which may substantially increase the 340 

uncertainty and reduce the reliability of future projections. Our results strongly indicate that an 341 

ensemble of ET0 estimation methods should be used to understand potential future water 342 

availability and water deficit due to climate change.   343 
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Monte Carlo filtering results (Fig. 9 and 10, Table 3) indicate that GCM and ET0 methods 344 

both produce statistically significant different wet condition and dry condition histograms in both 345 

the Southeast and Northern Rockies and Plains regions for almost all months in both future 346 

periods. This indicates that particular GCMs and ET0 methods tend to systematically produce 347 

wet or dry conditions. Some GCMs (i.e. MIROC_ESM and BCC-CSM (Table 4)) and ET0 348 

methods (i.e. Priestley-Taylor, Blaney-Criddle, and Kharrufa (Table 5)) predict dry conditions a 349 

majority of the time for all regions in both future periods. However, the remaining GCMs and 350 

ET0 methods project both wetter or drier futures depending on the region and future period. 351 

Results in Tables 4 through 6 show that for the South, West and Southwest regions drier 352 

conditions are predicted a majority of the time in both future periods by all GCMs and RCP 353 

trajectories, and all ET0 methods except Hargreaves. For RCP trajectory, P-values indicate the 354 

histograms are statistically significantly different in fewer cases than for either GCM or ET0 355 

method for both future 1 and 2 (Table 3). These results are consistent with the first order 356 

sensitivity coefficients results that showed the RCP trajectory is not as important a factor as 357 

GCM or ET0 method in driving differences in future projections, but that the sensitivity to choice 358 

of RCP trajectory increases in future period 2. 359 

GCMs estimate some climate variables, such as temperature, with higher confidence than 360 

other variables (Randall et al., 2007). However, for some evapotranspiration estimation methods 361 

the effect of temperature on evaporation is smaller than other climate variables (Linacre, 1994; 362 

Roderick et al., 2009a, 2009b; Thom et al., 1981). We found that temperature and net radiation 363 

from the CMIP5 GCMs show increasing trends over the 2005-2100 time period, while wind 364 

speed and surface pressure are relatively constant (Fig. S-3). Because we considered various ET0 365 

estimation methods our results include the impacts of the different physics represented in the ET0 366 

methods, the projected changes each of the climate variables contributing to the different ET0 367 

methods, and the reliability of the predictions of each variable.  368 

 369 

5. Summary and Conclusions 370 

 Future changes in precipitation and evapotranspiration will lead to changes in the 371 

hydrologic balance. This study clearly shows that the uncertainty caused by different GCMs, ET0 372 
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methods, and RCP trajectories make actionable water resources planning based on climate 373 

change projections difficult. Understanding and quantifying how these projected changes vary 374 

with choice of GCM, ET0 method and RCP trajectory is important for designing robust 375 

ensembles of scenarios to include in future water resources planning. This study assessed the 376 

future mean change in monthly precipitation, evapotranspiration and water deficit (P- ET0) 377 

projected by CMIP5 simulations over the continental US and analyzed the sensitivity of the 378 

projected changes to the choice of GCM, ET0 estimation method, and RCP trajectory. Nine 379 

GCMs, ten ET0 estimation methods, and three RCP trajectories were included in the analyses. 380 

Variance-based global sensitivity analysis (Saltelli et al., 2010) was conducted in order to 381 

determine the relative contributions of the choice of GCMs, ET0 estimation methods, and RCP 382 

trajectory to uncertainty in future prediction. Monte Carlo filtering was used to investigate 383 

whether particular GCMs, ET0 methods, and/or RCP scenarios consistently led to wet or dry 384 

future projections.    385 

The global sensitivity analyses showed that projected changes in precipitation are more 386 

sensitive to the choice of GCM than the choice of RCP trajectory over the entire continental US 387 

for both future periods. However, the choice of RCP trajectory becomes more important in future 388 

period 2. The most sensitive factor for the future ET0 projections is the choice of ET0 estimation 389 

method for all regions in both future periods. The first order sensitivity of projected change in 390 

future ET0 to choice of RCP trajectory increases in future period 2 compared to future 1, with a 391 

concomitant decrease in the first order sensitivity to the choice of GCM. For projected change in 392 

future water deficit the choice of ET0 method constitutes the dominant source of uncertainty in 393 

warmer months (May through September) and the choice of GCM is the dominant source of 394 

uncertainty in the cooler months (November through March) over all regions except the 395 

Southeast where the sensitivity of GCM and ET0 method are roughly equal throughout the year. 396 

Sensitivity of change in future water deficit to RCP trajectory is very small for future period 1, 397 

but increased in future period 2.  398 

Monte Carlo filtering results indicated that both GCMs and ET0 methods produced 399 

statistically different histograms for wetter or drier future conditions (i.e. larger or smaller mean 400 

future water deficit) for almost all months in both future periods. Two GCMs (MIROC_ESM 401 

and BCC-CSM) and three ET0 methods (Priestley-Taylor, Blaney-Criddle, and Kharrufa) 402 



15 
 

predicted dry conditions a majority of the time for all regions in both future periods; however, 403 

the remaining GCMs and ET0 methods projected both wetter and drier futures depending on the 404 

region. 405 

Results of this study indicate that when predicting the effects of future climate on water 406 

resources the choice of evapotranspiration method should be carefully evaluated. Rather than the 407 

typical practice of using a single ET0 method to drive a hydrologic model with future climate 408 

projections, an ensemble of ET0 methods should be used in addition to an ensemble of GCMs 409 

and a variety of RCP trajectories. The GSA methodology adopted here assumed that all the 410 

GCMs, ET0 methods and RCP trajectories used in this study were equally appropriate for use in 411 

all US regions (i.e. the sensitivity coefficients were evaluated by equally weighting each GCMs, 412 

ET0 method and RCP trajectory) which is likely not to be the case. When making future 413 

projections  potential climate change on water resources Reliability Ensemble Averaging (REA)  414 

(Giorgi and Mearns, 2002) or Bayesian-based indicator-weighting (Asefa and Adams, 2013; 415 

Tebaldi et al., 2005; Xing et al., 2014) could be used to weight the results of an ensemble of  416 

GCMs and ET methods based on how close the retrospective GCM- ET0 method predictions 417 

agree with past observations (bias criterion) and how well the future GCM- ET0 -RCP 418 

projections agree with other future GCM- ET0 -RCP predictions (convergence criterion). 419 

This study assumed that ET0 methods that have been developed and parameterized based 420 

on vegetation response to current CO2 levels and climatic conditions will be valid under future 421 

CO2 levels and climatic conditions. Future research should explore the validity of this 422 

assumption by incorporating potential changes in plant transpiration (e.g. stomatal conductance) 423 

to changing CO2 levels into the ET0 estimation methodologies. 424 
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Table 1. Description of reference evapotranspiration estimation methods used in this study (ET0: 630 
Reference evapotranspiration). 631 

Methods Equations1 Reference 

(a) Hargreaves 𝐸𝑇0 = 0.0135𝐾𝑇𝑆0(𝑇 + 17.8)√𝛿𝑇 Hargreaves and 

Allen (2003) 

(b) Blaney-Criddle 𝐸𝑇0 = 𝑝(0.46𝑇 + 8.13) Xu and Singh 

(2002) 

(c) Hamon 𝐸𝑇0 = 0.55𝛿𝑇
2𝑃𝑡 Xu and Singh 

(2002) 

(d) Kharrufa 𝐸𝑇0 = 0.34𝑝𝑇1.3 Xu and Singh 

(2002) 

(e) Irmak-Rn 𝐸𝑇0 = 0.486 + 0.289𝑅𝑛 + 0.023𝑇 Irmak et al. (2003) 

(f) Irmak-Rs 𝐸𝑇0 = −0.611 + 0.149𝑅𝑠 + 0.079𝑇 Irmak et al. (2003) 

(g) Dalton 𝐸𝑇0 = (0.3648 + 0.07223𝑢)(𝑒𝑠 − 𝑒𝑎) Tabari et al. 

(2013) 

(h) Meyer 𝐸𝑇0 = (0.375 + 0.05026𝑢)(𝑒𝑠 − 𝑒𝑎) Tabari et al. 

(2013) 

(i) Penman-

Monteith 𝐸𝑇0 =
0.408∆(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 273

𝑢2(𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1 + 0.34𝑢2)
 

Allen et al. (1998) 

(j) Priestley-Taylor 
𝐸𝑇0 = 𝛼

∆

∆ + 𝛾

(𝑅𝑛 − 𝐺)

𝜆
 

Allen et al. (1998) 

1Variables (estimated from CMIP5 outputs): G: Soil heat flux (assumed 0); γ: Psychrometric constant; T: Average 632 

temperature; u2: Wind speed at 2m surface; es: Saturated vapor pressure; ea: Actual vapor pressure; ∆: Slope vapor 633 

pressure; KT: Hargreaves-Samani coefficient; S0: Extraterrestrial radiation (estimated by Julian date); δT: Difference 634 

between maximum and minimum temperature, p: Percentage of total daytime hours (Estimated by Julian date); Rn: 635 

Net radiation; Rs: Solar radiation; Pt: Saturated water vapor density; u: Wind speed  636 
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Table 2. Description of the CMIP5 models used in this study. 637 

Model  Institute (country) Resolutions Calendar Reference 

(1) BNU-ESM College of Global Change and Earth 

System Science, Beijing Normal 

University (China) 

2.8° lat × 

2.8° lon 

No leap Ji et al. (2014) 

(2) CSIRO-MK3-6-

0 

University of New South Wales 

(Australia) 

1.87° lat × 

1.87° lon 

No leap Rotstayn et al. 

(2012) 

(3) GFDL-CM3 NOAA/Geophysical Fluid Dynamics 

Laboratory (USA) 

2.0° lat × 

2.5° lon 

No leap Guo et al. (2014) 

(4) GFDL-ESM2G NOAA/Geophysical Fluid Dynamics 

Laboratory (USA) 

2.0° lat × 

2.5° lon 

No leap Taylor et al. (2012) 

(5) MIROC-ESM Atmosphere and Ocean Research 

Institute, National Institute for 

Environmental Studies, and Japan 

Agency for Marine-Earth Science 

and Technology (Japan) 

2.8° lat × 

2.8° lon 

Leap year Watanabe et al. 

(2011) 

(6) MPI-ESM-LR Max Planck Institute for 

Meteorology (Germany) 

1.87° lat × 

1.87° lon 

Leap year Block and 

Mauritsen (2013) 

(7) MRI-CGCM3 Meteorological Research Institute 

(Japan) 

1.12° lat × 

1.12° lon 

Leap year Yukimoto et al. 

(2012) 

(8) NorESM1-M Norwegian Climate Centre 

(Norway) 

1.9° lat × 

2.5° lon 

No leap Bentsen et al. 

(2013) 

(9) BCC-CSM1.1 Beijing Climate Center (China) 2.8° lat × 

2.8° lon 

No leap Xiao-Ge et al. 

(2013) 

  638 



23 
 

Table 3. P-values of Chi-square two sample test for difference among wet condition versus dry 639 

condition pdfs Southeast U.S (SE US) and Northern Rockies and Plains (NRP; West North 640 

Central) U.S. (Shaded cells indicate pdfs are not statistically significantly different at p=0.05) 641 

Month 

Future 1 Future 2 

GCM ET0 RCP GCM ET0 RCP 

SE 

US 

1 0.0000 0.0689 0.3701 0.0000 0.1823 0.1853 

2 0.0000 0.0889 0.4434 0.0000 0.0269 0.0000 

3 0.0000 0.0365 0.0306 0.0000 0.0000 0.1339 

4 0.0000 0.0000 0.6602 0.0000 0.0000 0.0001 

5 0.0000 0.0000 0.3223 0.0000 0.0000 0.0041 

6 0.0000 0.0000 0.0809 0.0000 0.0000 0.0006 

7 0.0000 0.0000 0.2855 0.0000 0.0000 0.0749 

8 0.0000 0.0000 0.2805 0.0000 0.0000 0.0074 

9 0.0000 0.0000 0.8646 0.0000 0.0000 0.0044 

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

11 0.0000 0.0001 0.0000 0.0000 0.0001 0.2003 

12 0.0000 0.0117 0.3083 0.0000 0.0000 0.0000 

NRP 

1 0.0000 0.0000 0.1931 0.0000 0.0000 0.0000 

2 0.0000 0.0000 0.0010 0.0000 0.0000 0.7617 

3 0.0000 0.0000 0.0538 0.0000 0.0000 0.0769 

4 0.0000 0.0000 0.7882 0.0002 0.0000 0.8925 

5 0.0000 0.0000 0.4047 0.0000 0.0000 0.1103 

6 0.0000 0.0000 0.3839 0.0000 0.0000 0.0000 

7 0.0000 0.0000 0.5321 0.0001 0.0008 0.0000 

8 0.0000 0.0001 0.1544 0.0000 0.0686 0.0000 

9 0.0000 0.0000 0.4242 0.0000 0.0000 0.2002 

10 0.0000 0.0000 0.6688 0.0000 0.0213 0.0001 

11 0.0000 0.0000 0.1334 0.0000 0.0000 0.1948 

12 0.0000 0.0000 0.7617 0.0000 0.0000 0.6561 
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Table 4. The fraction of future dry conditions over all months by GCM (Future period 1 and 2). 644 

  GCM SE South West NR NE NW UM SW Ohio 

Future 

period 1 

- Dry 

condition 

BNU_ESM 0.575 0.589 0.511 0.367 0.436 0.322 0.467 0.453 0.492 

CSIRO_mk3_6_0 0.489 0.689 0.639 0.547 0.297 0.519 0.381 0.653 0.481 

GFDL_CM3 0.414 0.608 0.686 0.419 0.403 0.525 0.383 0.647 0.425 

GFDL_ESM2G 0.731 0.900 0.758 0.453 0.486 0.486 0.397 0.828 0.617 

MIROC_ESM 0.631 0.594 0.822 0.625 0.636 0.708 0.686 0.658 0.611 

MPI_ESM_LR 0.375 0.747 0.694 0.542 0.597 0.611 0.558 0.756 0.575 

MRI_CGCM3 0.494 0.592 0.639 0.400 0.544 0.553 0.350 0.547 0.506 

NorESM1_M 0.492 0.764 0.778 0.475 0.400 0.611 0.475 0.753 0.508 

BCC_CSM 0.728 0.739 0.828 0.642 0.603 0.614 0.564 0.822 0.656 

Future 

period 2 

- Dry 

condition 

BNU_ESM 0.608 0.775 0.597 0.400 0.522 0.461 0.478 0.522 0.572 

CSIRO_mk3_6_0 0.367 0.667 0.583 0.528 0.225 0.528 0.433 0.633 0.461 

GFDL_CM3 0.467 0.767 0.789 0.461 0.514 0.542 0.508 0.794 0.469 

GFDL_ESM2G 0.722 0.831 0.694 0.478 0.519 0.525 0.397 0.672 0.581 

MIROC_ESM 0.672 0.686 0.897 0.742 0.731 0.728 0.700 0.739 0.664 

MPI_ESM_LR 0.442 0.800 0.778 0.519 0.542 0.639 0.450 0.800 0.450 

MRI_CGCM3 0.508 0.703 0.581 0.422 0.481 0.528 0.439 0.517 0.556 

NorESM1_M 0.594 0.808 0.722 0.500 0.461 0.550 0.481 0.731 0.594 

BCC_CSM 0.628 0.697 0.875 0.708 0.567 0.708 0.556 0.825 0.603 
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Table 5. The fraction of future dry condition over all months by ET0 estimation method and 647 

region (Future period 1 and 2). 648 

  ET0 SE South West NR NE NW UM SW Ohio 

Future 

period 1 

-Dry 

condition 

Hargreaves 0.302 0.426 0.559 0.333 0.309 0.466 0.321 0.485 0.324 

Blaney_Criddle 0.738 0.880 0.898 0.840 0.738 0.762 0.784 0.904 0.769 

Hamon 0.633 0.818 0.667 0.531 0.494 0.497 0.457 0.713 0.549 

Kharrufa 0.883 0.957 0.889 0.636 0.667 0.698 0.636 0.886 0.738 

Irmak_Rn 0.522 0.673 0.694 0.491 0.512 0.556 0.494 0.679 0.580 

Irmak_Rs 0.525 0.722 0.731 0.463 0.485 0.546 0.460 0.679 0.556 

Dalton 0.364 0.503 0.583 0.340 0.343 0.426 0.296 0.509 0.380 

Meyer 0.367 0.531 0.596 0.346 0.324 0.435 0.290 0.512 0.367 

PM 0.534 0.685 0.694 0.472 0.469 0.525 0.481 0.676 0.540 

PT 0.608 0.719 0.750 0.515 0.552 0.590 0.515 0.753 0.608 

Future 

period 2 

-Dry 

condition 

Hargreaves 0.352 0.506 0.605 0.420 0.355 0.491 0.380 0.537 0.361 

Blaney_Criddle 0.765 0.907 0.880 0.877 0.769 0.818 0.830 0.901 0.806 

Hamon 0.633 0.861 0.679 0.552 0.491 0.528 0.460 0.719 0.574 

Kharrufa 0.883 0.954 0.898 0.704 0.713 0.728 0.682 0.883 0.784 

Irmak_Rn 0.515 0.738 0.710 0.494 0.491 0.574 0.503 0.685 0.543 

Irmak_Rs 0.534 0.796 0.753 0.485 0.497 0.562 0.478 0.719 0.562 

Dalton 0.349 0.596 0.620 0.389 0.358 0.475 0.315 0.540 0.373 

Meyer 0.352 0.596 0.630 0.383 0.349 0.488 0.309 0.546 0.361 

PM 0.543 0.744 0.701 0.475 0.485 0.531 0.463 0.679 0.528 

PT 0.639 0.784 0.765 0.509 0.562 0.593 0.515 0.716 0.608 
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Table 6. The fraction of future dry condition over all months by RCP trajectory and region 650 

(Future period 1 and 2). 651 

  RCP SE South West NR NE NW UM SW Ohio 

Future 

period 1 

-Dry 

condition 

2.6 0.551 0.657 0.665 0.507 0.502 0.543 0.495 0.644 0.553 

4.5 0.553 0.698 0.739 0.515 0.475 0.554 0.482 0.731 0.556 

8.5 0.539 0.719 0.715 0.468 0.491 0.554 0.443 0.665 0.515 

Future 

period 2 

-Dry 

condition 

2.6 0.516 0.649 0.657 0.486 0.524 0.515 0.465 0.617 0.545 

4.5 0.490 0.731 0.712 0.510 0.476 0.584 0.494 0.658 0.528 

8.5 0.664 0.864 0.803 0.590 0.520 0.637 0.521 0.803 0.577 
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 653 

Figure 1. US climate regions identified by National Climate Data Center (Adapted from Karl and 654 

Koss, 1984, https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php) 655 

https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
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 656 

Figure 2. The change in the annual mean (a) P, (b) ET0, and (c) P – ET0 over U.S. All units are 657 

mm/day and the change is defined as the mean of 2070-2100 minus that of 1950-2005. These 658 

changes are averaged over all GCMs, ET0 estimation methods, and RCP trajectories.  659 
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 660 

Figure 3. The standard deviation of the change in the annual mean (a) P, (b) ET0, and (c) P – ET0 661 

over U.S. All units are mm/day and the change is defined as the average of 2070-2100 minus that 662 

of 1950-2005. The standard deviations are estimated over all GCMs, ET0 estimation methods, 663 

and RCP trajectories.  664 
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 665 

Figure 4. The change of monthly mean water deficit (P – ET0) over 9 different regions. Blue 666 

lines represent future 1 period (2030-2060), and red lines represent future 2 period (2070-2100). 667 

Error bars represent one standard deviation of each values. The change is defined as the mean of 668 

future periods minus that of retrospective period (1950-2005). 669 

  670 
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 671 

Figure 5. First order sensitivity analysis results of change in precipitation. Solid lines represent 672 

the future period 1 (2030-2060) and dotted lines represent the future period 2 (2070-2100). Blue 673 

lines represent the first order effect of GCMs and green lines represent the first order effect of 674 

RCPs. 675 

  676 
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  677 

Figure 6. First order sensitivity analysis results of change in reference evapotranspiration. Solid 678 

lines represent the future period 1 (2030-2060) and dotted lines represent the future period 2 679 

(2070-2100). Blue lines represent the first order effect of GCMs, red lines represent the first 680 

order effect of ET0 estimation methods and green lines represent the first order effect of RCPs. 681 

  682 
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 683 

Figure 7. First order sensitivity analysis results of change in P - ET0. Solid lines represent the 684 

future period 1 (2030-2060) and dotted lines represent the future period 2 (2070-2100). Blue 685 

lines  represent the first order effect of GCMs, red lines represent the first order effect of ET0 686 

estimation methods and green lines represent the first order effect of RCPs. 687 
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 689 

Figure 8. The change in the annual mean P – ET0 of RCP 4.5 scenario by 10 different 690 

evapotranspiration methods. All units are mm/day and the change is defined as the mean of 691 

2030-2060 minus that of 1950-2005. (All results are interpolated to 1 degree * 1 degree grids and 692 

averaged over 9 different GCMs) 693 

 694 
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 695 

Figure 9. Histograms for projected future 2 wet conditions and dry conditions in the Southeast 696 

US by GCM, ET0 method and RCP trajectory for the month of July. 697 

  698 
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 699 

Figure 10. Histograms for projected future 2 wet conditions and dry conditions in the Northern 700 

Rockies and Plains US by GCM, ET0 method and RCP trajectory for the month of July. 701 
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Appendix A: Supplemental figures 703 

 704 

Fig. S-1 The change in the annual mean (a) P, (b) ET0, and (c) P – ET0 over U.S. All units are 705 

mm/day and the trend is defined as the average of 2030-2060 minus that of 1950-2005.  706 

  707 
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 708 

Fig. S-2 The standard deviation of the change in the annual mean (a) P, (b) ET0, and (c) P – ET0 709 

over U.S. All units are mm/day and the trend is defined as the average of 2030-2060 minus that 710 

of 1950-2005. 711 

  712 
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 713 

Fig. S-3 Mean maximum temperature, net radiation, wind speed at 2 m surface, and surface 714 

pressure of CMIP5 for future period (RCP 8.5). 715 

 716 


