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Author’s response letter for “Sensitivity of future Continental United States water deficit 

projections to General Circulation Model, evapotranspiration estimation method, and 

greenhouse gas emission scenario” by S. Chang et al. 

MS No.: HESS-2015-408; MS Type: Research article 

We appreciate the thoughtful comments from the reviewers, which have helped us to improve 

the original manuscript. We explain in detail how we responded to each of the reviewer’s 

comments, with line numbers referring to the revised manuscript unless otherwise noted. We 

changed our title to “Sensitivity of future Continental United States water deficit projections 

to General Circulation Model, evapotranspiration estimation method, and greenhouse gas 

emission scenario” in response to reviewers comments. In addition, we upload revised 

manuscript, supplemental material, and responses to reviewers as our supplement. 

Referee #1 

Index Comments 

1 Referee 

review 

Abstract, first sentence, and elsewhere. The authors need to clarify immediately 

that in this case, water availability refers to the meteorological water balance (i.e. 

P-PET). Particularly in a hydrology-related journal such as HESS, water 

availability implies surface hydrological processes as well – in which case future 

water availability would depend on many other factors as well (e.g. irrigation 

abstractions, land use, water management strategies). 

Author’s 

response 

We agree this could have been confusing. We replaced the term “water 

availability” by “water deficit” throughout the manuscript, and defined it early in 

the abstract and in body of the manuscript in order to clarify this. 

2 Referee 

review 

The Introduction section needs to better acknowledge that method-based PET 

uncertainty under climate change has been explored beyond just the 

meteorological water balance, to consider river flow as well (via hydrological 

models). Such studies include: 

Bae, D.H., Jung, I.W. & Lettenmaier, D.P. 2011 Hydrologic uncertainties in 

climate change from IPCC AR4 GCM simulations of the Chungju Basin, Korea. 

Journal of Hydrology 401 90-105. 

Kay, A.L. & Davies, H.N. 2008 Calculating potential evaporation from climate 

model data: A source of uncertainty for hydrological climate change impacts. 

Journal of Hydrology 358 221-239. 

Koedyk, L.P. & Kingston, D.G. 2016, Potential evapotranspiration method 

influence on climate change impacts on river flow: a mid-latitude case study. 

Hydrology Research DOI: 10.2166/nh.2016.152. 

Thompson, J.R., Green, A.J. & Kingston, D.G. 2014 Potential evapotranspiration 

related uncertainty in climate change impacts on river flow: An assessment for the 

Mekong River basin. Journal of Hydrology 510 259-279. 

Author’s 

response 

We introduced the references suggested in the introduction section and discussed 

differences among these studies and our study in the discussion section. For 
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example after line 19 on page 4 we added: “Kay and Davies (2008) compared the 

performance of the Penman-Monteith equation and a simple temperature-based 

evapotranspiration method using climate data from five global and eight regional 

climate models over Britain. They found that the two methods showed very 

different changes in potential evapotranspiration for the period 2071-2100 under 

the A2 emission scenario, and different flow predictions for three catchments 

when the data were used to force a rainfall-runoff model. Kay and Davies results 

suggest that hydrological prediction uncertainty due to potential 

evapotranspiration formulation was smaller than that due to GCM structure or 

RCM structure for their study region.  Bae et al. (2011) evaluated the uncertainty 

contributed by choice of GCM and hydrologic model for the Chungju Dam basin, 

Korea. They found that hydrologic model structural differences contributed 

greater uncertainty than GCM selection to winter runoff prediction. Koedyk and 

Kingston (2016) found that for the Waikaia River, New Zealand potential 

evapotranspiration method contributed more uncertainty than GCM selection 

when predicting potential evapotranspiration, but that runoff predictions were 

more sensitive to GCMs than to potential evapotranspiration methods. Thompson 

et al. (2014) evaluated the effect of using different GCMs and different potential 

evapotranspiration methods on discharge predictions for the Mekong River in 

Southeast Asia and found that GCM-related uncertainty was greater than the 

potential evapotranspiration method related uncertainty.   

     Our study adds to the literature by comprehensively evaluating the relative 

sensitivity of future P, ET0 and water deficit (defined here as P- ET0) projections 

to choice of GCM, ET0 method and RCP trajectory over the continental US.” 

3 Referee 

review 

The results and discussion are combined into a single section. Although I 

generally prefer these to be separated, the section is well written. At the very least, 

I would like to see the different aspects of the analysis divided into sub-sections, 

to help the reader follow the steps in the analysis. 

Author’s 

response 

We divided the previously combined section into separate results and discussion 

sections as suggested. 

4 Referee 

review 

P11, line 13: referring back to point 2 – yes, hydrological modelling studies that 

use only one PET method effectively ignore PET uncertainty, but there have been 

a series of studies that explicitly investigate this. 

Author’s 

response 

In addition to the revisions to the introductions noted in point 2 above, we 

changed the sentence on line 13, page 11 from “Many hydrological models use a 

single evapotranspiration method for simulation, which may substantially 

increase the uncertainty, and reduce the reliability of future projections.” to 

“Similar to the results of Kay and Davies (2008) and Bae et al. (2011) the results 

of our GSA show that the choice of ET0 method has important implications when 

making future ET0 projections and future water deficit projections (Fig. 8). 

Kingston et al. (2009)  recommended the use of different ET0 equations to 

evaluate global ET0, and Wang et al. (2015) found that although different methods 

predict similar future ET0, there are important differences in uncertainties due to 

ET0 estimation methods and input data reliability. Currently many hydrological 

models use a single evapotranspiration method for simulation, which may 

substantially increase the uncertainty and reduce the reliability of future 

projections. Our results strongly indicate that an ensemble of ET0 estimation 

methods should be used to understand potential future water availability and 

water deficit due to climate change.” 
5 Referee According to the IPCC AR4 Glossary 
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review (http://www.ipcc.ch/pdf/assessmentreport/ar5/wg1/WG1AR5_AnnexIV_FINAL.p

df), the acronym GCM stands for General Circulation Model. I suggest avoiding 

the term Global Climate Model and replacing with General Circulation Model. 

Author’s 

response 

We replaced ‘Global Climate Model’ with ‘General Circulation Model’ 

throughout the manuscript 

6 Referee 

review 

P4, line 9: Priestley-Taylor is misspelt. 

 

Author’s 

response 

We replaced ‘Preistly-Taylor’ with ‘Priestley-Taylor’. 

8 

(There’s 

no 7
th
 

commen

t in the 

review 

note.) 

Referee 

review 

P5, line 27: Priestley-Taylor is a radiation based method – it only requires the 

slope of the vapour pressure curve (derived from temperature) and net radiation. 

Author’s 

response 

We changed the classification of the Priestley-Taylor method to a radiation based 

method.  

9 Referee 

review 

P6, line 3: RET is not defined in the paper. I presume RET means reference ET, 

but the commonly used abbreviation for this is ET0 (as used in the Table 1 

caption). 

Author’s 

response 

We have changed the abbreviation for reference ET  to ET0 throughout the 

manuscript. 

10 Referee 

review 

P6. On line 3 precipitation is abbreviated to P; on line 5 it is abbreviated pr. 

Author’s 

response 

The paragraph on P.6 line 3 explains the CMIP5 archive. In the CMIP5 archive 

they use different abbreviations for precipitation and other climate variables than 

are conventionally used in hydrology and than we use in this manuscript. We have 

revised the paragraph to note these differences. 

“Variables directly used from the CMIP5 monthly model output included 

precipitation (pr, P in this study), maximum and minimum temperature (tasmax 

and tasmin), radiation (rlds, rlus, rsds, and rsus), air pressure (psl and ps), and 

wind speed (sfcWind). The abbreviations for these variables are as defined in the 

CMIP5 archive and explained in the PCMDI server (Program For Climate Model 

Diagnosis and Intercomparison, http://cmip-

pcmdi.llnl.gov/cmip5/docs/standard_output.pdf).” 

11 Referee 

review 

P7, line 11: spell out the number in this instance: nine, not 9 climate regions. 

Author’s 

response 

We replaced ‘9’ with ‘nine’. 

12 

 

Referee 

review 

P10, line 15: typo: “sKingston”. 

Author’s 

response 

We replaced ‘sKingston’ with ‘Kingston’. 

13 Referee 

review 

P11, line 11: the acronym GSA is undefined. 

Author’s 

response 

We defined GSA in the revised introduction section. 

“Global sensitivity analysis (GSA) apportions the total output uncertainty 

simultaneously onto all the uncertain input factors described by marginal 

probability density functions, and thus is preferred over local, one factor at a 

time, sensitivity analysis (Homma and Saltelli, 1996; Saltelli, 1999).” 

  

http://cmip-pcmdi.llnl.gov/cmip5/docs/standard_output.pdf
http://cmip-pcmdi.llnl.gov/cmip5/docs/standard_output.pdf
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Referee # 2 

Index Comments 

1 Referee review Before using the GCMs output to force hydrological model (even 

estimate RET), the some forms of prior bias correction are always 

conducted due that GCM often show strong bias over historic period 

(Wood et al., 2002; 2004). I can only believe the authors use the raw 

data causing I did not find any information associated with the bias 

correction description in the paper. So how about the matching 

degree between the GCM-simulated variables and historical 

observation? And whether some bias correction jobs should be done 

before employing these GCMs output. 

Author’s response We added an explanation in the methods section regarding why we 

focused on the sensitivity of changes in raw GCM predictions rather 

than changes in bias-corrected GCM predictions.  

“Because GCM predictions are known to contain systematic biases 

(Hwang and Graham, 2013; Wood et al., 2002, 2004) we evaluated 

the sensitivity of the mean monthly change in raw climate 

predictions between retrospective and future periods to the choice of 

GCM, ET0 estimation method and RCP trajectories.  This is 

analogous to using the delta change GCM bias correction method 

that involves shifting the mean of a series of observed climate data 

by the mean difference in raw GCM output between the 

corresponding observed time period and the desired future period.  

Teutschbein and Seibert (2012) pointed out that all bias correction 

methods are based on the stationarity principle that assumes that 

similar biases occur in the retrospective and future predictions and 

thus the same bias-correction algorithm may be applied to both. 

Muerth et al. (2013) found that the impact of bias correction on the 

relative change of flow indicators between retrospective and future 

periods was weak for most indicators, however Pierce et al. (2015) 

found that some bias correction methods altered model-projected 

changes in mean precipitation and temperature. LaFond et al. 

(2014) found that the delta change GCM bias correction method was 

more useful for simulating hydrologic extreme events than the 

quantile mapping bias correction method as it preserved daily 

climate variability better. In this study, we differenced raw rather 

than bias corrected GCM outputs in order to prevent spurious 

alteration of the climate change signal between retrospective and 

future GCMs that might be induced by the bias correction method” 
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2, 3 Referee review GCM simulated temperature is commonly considered to have high 

confidence than other climatic variables such as vapor pressure and 

radiation (Randall et al., 2007). The differences of estimated ET 

between temperature-based ET equations and radiation based 

equations maybe due to the uncertain input data quality rather than 

the method selection as the authors declared. In fact, temperature-

based equations have been considered not competent in RET change 

(e.g., Roderick et al., 2009) due that a steady increase in temperature 

over time will translate into a calculated steady increase in 

evapotranspiration. Generally, using combination equations maybe 

more suitable for projection future RET. However, as the above 

comment pointed out, the GCM-simulated temperature was also 

widely considered to have relatively high confidence in comparison 

with other meteorological variables. The different combinations 

between methods and data should be discussed (see some literatures, 

Kingston et al., 2009; Wang et al., 2015). 

Author’s response The main finding of our paper is that the choice of ET estimation 

method is as important as GCM selection and the effects of ET 

estimation method vary depending on region and season.  We agree 

that the effects of the ET estimation method depend both on the 

physics represented in the method and the reliability of the 

parameters needed for the method.   We revised the manuscript to 

make this point more clearly and included discussion of the 

references suggested above on P12: 

“Kingston et al. (2009)  recommended the use of different ET0 

equations to evaluate global ET0, and Wang et al. (2015) found that 

although different methods predict similar future ET0, there are 

important differences in uncertainties due to ET0 estimation methods 

and input data reliability. Currently many hydrological models use a 

single evapotranspiration method for simulation, which may 

substantially increase the uncertainty and reduce the reliability of 

future projections. Our results strongly indicate that an ensemble of 

ET0 estimation methods should be used to understand potential 

future water availability and water deficit due to climate change.” 

 

Furthermore we added a paragraph in the discussion section and a 

new plot in the supplemental material (Fig. S-3). 

“GCMs estimate some climate variables, such as temperature, with 

higher confidence than other variables (Randall et al., 2007). 

However, for some evapotranspiration estimation methods the effect 

of temperature on evaporation is smaller than other climate 

variables ( Linacre, 1994; Thom et al., 1981, Roderick et al., 2009a, 

2009b). We found that temperature and net radiation from the 

CMIP5 GCMs show increasing trends over the 2005-2100 time 

period, while wind speed and surface pressure are relatively 

constant  (Fig. S-3). Because we considered various ET0 estimation 

methods our results include the impacts of the different physics 

represented in the ET0 methods, the projected changes each of the 

climate variables contributing to the different ET0 methods, and the 

reliability of the predictions of each variable.  
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4 Referee review ET always mean actual evapotranspiration, it may be better use 

RET/ET0 to represent reference evapotranspiration. 

Author’s response We changed this for clarity and refer to reference evapotranspiration 

as ET0 throughout the manuscript. 

5,6 Referee review It is better to divide the results into several sub-sections. 

Results should be presented as such and not mingled with 

explanations (analysis section), so please separate the results section 

and discussion section. 

Author’s response We divided the previous combined section into separate results and 

discussion sections.  
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Plot added to Supplementary Materials 

 

Fig. S-3 Projections of mean maximum temperature, net radiation, wind speed at 2 m surface, and surface 

pressure of CMIP5 from 2005 to 2010 for RCP 8.5. 
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Abstract 14 

Projecting water deficit under various possible future climate scenarios depends on the 15 

choice of General Circulation Model (GCM), reference evapotranspiration (ET0) estimation 16 

method and Representative Concentration Pathway (RCP) trajectory. The relative contribution of 17 

each of these factors must be evaluated in order to choose an appropriate ensemble of future 18 

scenarios for water resources planning. In this study variance-based global sensitivity analysis 19 

and Monte Carlo filtering were used to evaluate the relative sensitivity of projected changes in 20 

precipitation (P), ET0 and water deficit (defined here as P – ET0) to choice of GCM, ET0 21 

estimation method and RCP trajectory over the continental United States (US) for two distinct 22 

future periods: 2030-2060 (future period 1) and 2070-2100 (future period 2). A total of 9 GCMs, 23 

10 ET0 methods and 3 RCP trajectories were used to quantify the range of future projections and 24 

estimate the relative sensitivity of future projections to each of these factors. In general, for all 25 

regions of the Continental US, changes in future precipitation are most sensitive to the choice of 26 
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GCM, while changes in future ET0 are most sensitive to the choice of ET0 estimation method.  27 

For changes in future water deficit, the choice of GCM is the most influential factor in the cool 28 

season (Dec – Mar) and the choice of ET0 estimation method is most important in the warm 29 

season (May – Oct) for all regions except the South East US where GCM and ET0 have 30 

approximately equal influence throughout most of the year. Although the choice of RCP 31 

trajectory is generally less important than the choice of GCM or ET0 method, the impact of RCP 32 

trajectory increases in future period 2 over future period 1 for all factors. Monte Carlo filtering 33 

results indicate that particular GCMs and ET0 methods drive the projection of wetter or drier 34 

future conditions much more than RCP trajectory; however the set of GCMs and ET0 methods 35 

that produce wetter or drier projections varies substantially by region. Results of this study 36 

indicate that, in addition to using an ensemble of GCMs and several RCP trajectories, a range of 37 

regionally-relevant ET0 estimation methods should be used to develop a robust range of future 38 

conditions for water resource planning under climate change.   39 

 40 

1. Introduction 41 

Climate change will result in significant impacts on hydrologic processes. The 2014 Fifth 42 

Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) reported 43 

that climate change will significantly affect future precipitation (P), temperature (T) and 44 

reference evapotranspiration (ET0) and these changes will affect the quantity and quality of water 45 

resources. The most recent report of the National Climate Assessment and Development 46 

Advisory Committee (NCADAC, 2013) indicated that the average annual temperature in the 47 

United States (US) has increased by 0.7 °C to 0.9 °C since record keeping began in 1895 and is 48 

expected to continue to rise (Georgakakos et al., 2014; Walsh et al., 2014). The NCADAC report 49 

also indicated that Coupled Model Intercomparison Project 5 (CMIP5) General Circulation 50 

Model (GCM) precipitation projections show a consistent increase in Alaska and the far north of 51 

the continental US and a consistent decrease in the far Southwest US, but that GCM projections 52 

are inconsistent in the precipitation transition zone of the US continent. The uncertainty in 53 

climate change projections makes actionable water resources planning difficult in many regions. 54 

In order to predict changes in the hydrologic cycle, and future water supply and demand, 55 
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estimates of changes in P, T and ET0 must be evaluated on a regional basis, and the uncertainty 56 

of these estimates must be quantified (Ishak et al., 2010). 57 

Previous research has evaluated existing and potential future spatiotemporal changes in P, 58 

T and ET0 for various regions around the globe (e.g. Chaouche et al., 2010; Chong-Hai and Ying, 59 

2012; Johnson and Sharma, 2009; Kharin et al., 2013; Maurer and Hidalgo, 2008; Quintana 60 

Seguí et al., 2010; Sung et al., 2012; Thomas, 2000; Wang et al., 2013; Xu et al., 2006).  It is 61 

well known that future GCM projections of temperature and precipitation vary significantly due 62 

to both the different radiative forcing assumptions of carbon dioxide scenarios (e.g. CMIP3 63 

Special Report on Emissions Scenarios (SRES) and CMIP5 Representative Concentration 64 

Pathways (RCP trajectories)) and different GCM model physics (Hawkins and Sutton, 2009, 65 

2010). Future ET0 projections have been shown to depend on ET0 estimation methods in addition 66 

to GCMs. For example Kingston et al. (2009) used 5 GCMs from the CMIP3 climate projections 67 

and 6 different ET0 equations to estimate global ET0 and found that the choice of ET0 method 68 

contributes to different projections of the future state of water resources which varies by region. 69 

They found that the Hamon and Jensen-Haise ET0 estimates showed the greatest changes in both 70 

humid and arid regions while the Penman-Monteith and Priestley-Taylor estimates frequently 71 

showed smallest change. Similarly McAfee (2013) used three ET0 equations with 17 CMIP3 72 

GCMs to evaluate the uncertainty of future global ET0 projections and found that the Hamon 73 

equation showed more significant and consistently positive trends in ET0 compared to the 74 

Priestley-Taylor and Penman methods.  75 

Models developed to estimate future water supply and demand as a result of projected 76 

climate change use many different types of ET0 estimation methods (Zhao et al., 2013). Because 77 

the choice of ET0 estimation method may be as important as the choice of GCM or RCP 78 

trajectory, better understanding of the contribution of each of these factors to the overall 79 

prediction uncertainty of future water availability or water deficit is necessary (Taylor et al., 80 

2013).  Kay and Davies (2008) compared the performance of the Penman-Monteith equation and a 81 

simple temperature-based ET0 method using climate data from five global and eight regional climate 82 

models over Britain. They found that the two methods showed very different changes in ET0 for the 83 

period 2071-2100 under the A2 emission scenario, and different flow predictions for three catchments 84 

when the data were used to force a rainfall-runoff model. Kay and Davies results suggest that 85 
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hydrological prediction uncertainty due to ET0 formulation was smaller than that due to GCM structure or 86 

RCM structure for their study region.  Bae et al. (2011) evaluated the uncertainty contributed by choice of 87 

GCM and hydrologic model for the Chungju Dam basin, Korea. They found that hydrologic model 88 

structural differences contributed greater uncertainty than GCM selection to winter runoff prediction. 89 

Koedyk and Kingston (2016) found that for the Waikaia River, New Zealand ET0 method contributed 90 

more uncertainty than GCM selection when predicting ET0, but that runoff predictions were more 91 

sensitive to GCMs than to ET0 methods. Thompson et al. (2014) evaluated the effect of using different 92 

GCMs and different ET0 methods on discharge predictions for the Mekong River in Southeast Asia and 93 

found that GCM-related uncertainty was greater than the ET0 method related uncertainty.   94 

Our study adds to the literature by comprehensively evaluating the relative sensitivity of future 95 

P, ET0 and water deficit (defined here as P- ET0) projections to choice of GCM, ET0 method and 96 

RCP trajectory over the continental US. Variance-based global sensitivity analysis (Saltelli et al., 97 

2010) and Monte Carlo Filtering (Rose et al., 1991) are used to quantify the uncertainty and 98 

important input factors controlling these projections. Global sensitivity analysis (GSA) 99 

apportions the total output uncertainty simultaneously onto all the uncertain input factors 100 

described by marginal probability density functions, and thus is preferred over local, one factor 101 

at a time, sensitivity analysis (Homma and Saltelli, 1996; Saltelli, 1999). Monte Carlo Filtering 102 

can identify sets of model simulations and input factors that meet a specified criteria or threshold. 103 

Thus global sensitivity analysis and Monte Carlo Filtering offer an opportunity to gain insight 104 

into the sources of uncertainty, and drivers of particular types of wet/dry behavior, when 105 

estimating future water deficit under projected climate change.   106 

 107 

2. Methods 108 

 All retrospective and future climate variables were obtained from the CMIP5 archive 109 

(accessible for download at http://pcmdi9.llnl.gov/). The “historical” runs of CMIP5 were used 110 

for the retrospective period (1950-2005) and the same ensemble member runs (r1i1p1 ensemble) 111 

of CMIP5 were used for two future periods: future period 1 (2030-2060), and future period 2 112 

(2070-2100). Data for three RCP trajectories, RCP2.6, RCP4.5 and RCP8.5 were included in the 113 
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analyses. Taylor et al. (2012) described an overview of CMIP5 and RCP trajectories and 114 

compared the differences between CMIP5 and CMIP3 model projections.  115 

Data from the CMIP5 archive were used to calculate monthly mean P, ET0, and P- ET0 116 

(water deficit) for the retrospective and both future periods over each of the nine U.S. climate 117 

regions identified by the National Climatic Data Center (Karl and Koss, 1984 (Fig. 1)). Future 118 

changes in monthly mean P, ET0, and P- ET0 were estimated by subtracting the monthly mean 119 

value for the retrospective period from the monthly mean value for future period 1 or future 120 

period 2, as appropriate (Baker and Huang, 2014). 121 

Ten commonly used reference evapotranspiration estimation methods (Hargreaves, 122 

Blaney-Criddle, Hamon, Kharrufa, Irmak-Rn, Irmak-Rs, Dalton, Meyer, Penman-Monteith and 123 

Priestley-Taylor) were used in this study. The methods can be further classified into temperature- 124 

(Hargreaves, Blaney-Criddle, Hamon and Kharrufa), radiation (Irmak-Rn, Irmak-Rs and 125 

Priestley-Taylor), mass transfer (Dalton and Meyer), and combination (Penman-Monteith) 126 

equations. These equations are well-described in many papers (e.g.,  Allen et al., 1998; 127 

Hargreaves and Allen, 2003; Irmak et al., 2003; Tabari, 2010; Tabari et al., 2013; Xu and Singh, 128 

2001) and are summarized in Table 1 (hereafter precipitation is referred to as P, and reference 129 

evapotranspiration is referred to as ET0 for convenience). 130 

 Variables directly used from the CMIP5 monthly model output included precipitation (pr, 131 

P in this study), maximum and minimum temperature (tasmax and tasmin), radiation (rlds, rlus, 132 

rsds, and rsus), air pressure (psl and ps), and wind speed (sfcWind). The abbreviations for these 133 

variables are as defined in the CMIP5 archive and explained in the PCMDI server (Program For 134 

Climate Model Diagnosis and Intercomparison, http://cmip-135 

pcmdi.llnl.gov/cmip5/docs/standard_output.pdf). Other variables needed in the ten reference 136 

evapotranspiration equations were calculated using the variables from CMIP5 monthly model 137 

output (for details see Table 1). Monthly output that included all the variables needed for the 138 

Penman-Monteith reference evapotranspiration method (the most data intensive method) was 139 

available for both the retrospective period, and for the RCP2.6, RCP 4.5, and RCP8.5 trajectories 140 

for the future periods, for 9 CMIP5 models. Table 2 lists the 9 models from the CMIP5 archive 141 

that were used in this study.  142 
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 The sensitivity of changes in future P, ET0 and water deficit (defined here as P- ET0) to 143 

the choice of GCM, ET0 estimation method, and RCP trajectory was evaluated using the 144 

variance-based GSA method of Saltelli et al. (2010). Given a model of the form 𝑌 =145 

𝑓(𝑋1, 𝑋2, … 𝑋𝑘), with 𝑌 a scalar, the variance-based first order effect for a generic factor 𝑋𝑖 can 146 

be written (Saltelli et al., 2010): 147 

𝑉𝑋𝑖
(𝐸𝑋~𝑖

(𝑌|𝑋𝑖))                                                                                                               (1) 

where 𝑋𝑖 is the 𝑖-th factor (in our case either GCM, ET0 method or RCP trajectory) and 𝑋~𝑖 is the 148 

vector of all factors except 𝑋𝑖. The expectation operator 𝐸𝑋~𝑖
(𝑌|𝑋𝑖)  indicates that the mean of 149 

𝑌 is taken over all possible values of 𝑋 except 𝑋𝑖 (i.e. 𝑋~𝑖 ) while keeping 𝑋𝑖 fixed. The variance, 150 

𝑉𝑋𝑖
, is then taken of this quantity over all possible values of 𝑋𝑖. 151 

 The first order sensitivity coefficient is expressed as: 152 

𝑆𝑖 =
𝑉𝑋𝑖

(𝐸𝑋~𝑖
(𝑌|𝑋))

𝑉(𝑌)
                                                                                                        (2) 

Where 𝑉(𝑌) the total variance of Y over all 𝑋𝑖. 𝑆𝑖 is a normalized index varying between 0 and 1, 153 

because 𝑉𝑋𝑖
(𝐸𝑋~𝑖

(𝑌|𝑋𝑖)) varies between 0 and 𝑉(𝑌) according to the identity (Mood et al., 154 

1974): 155 

𝑉𝑋𝑖
(𝐸𝑋~𝑖

(𝑌|𝑋𝑖)) + 𝐸𝑋𝑖
(𝑉𝑋~𝑖

(𝑌|𝑋𝑖)) = 𝑉(𝑌)                                                           (3) 

As indicated above  𝑉𝑋𝑖
(𝐸𝑋~𝑖

(𝑌|𝑋𝑖)) is the first order effect of 𝑋𝑖 on the model output 𝑌, 156 

while 𝐸𝑋𝑖
(𝑉𝑋~𝑖

(𝑌|𝑋𝑖)) is called the residual. The total effect index, including  first order and 157 

higher order effects (i.e. interactions between factor 𝑋𝑖 and other factors) of  the factor 𝑋𝑖 on the 158 

model output is calculated (Saltelli et al., 2010): 159 

𝑆𝑇𝑖
=

𝐸𝑋~𝑖
(𝑉𝑋𝑖

(𝑌|𝑋~𝑖))

𝑉(𝑌)
= 1 −

𝑉𝑋~𝑖
(𝐸𝑋𝑖

(𝑌|𝑋~𝑖))

𝑉(𝑌)
                                                  (4) 

The first order sensitivity of estimated future changes in mean monthly P, ET0, and P- 160 

ET0 to choice of GCM, ET0 estimation method and RCP trajectory were calculated over the nine 161 
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US climate regions for each future period in order to evaluate the relative contributions of each 162 

of these factors on the uncertainty of future changes. A total of 270 simulations (9 GCMs × 10 163 

evapotranspiration methods × 3 RCP trajectories) was used in the analysis. Sensitivity of 164 

projected changes in P were evaluated for both choice of GCM and choice of RCP trajectory. 165 

Sensitivity of projected changes in ET0 and P- ET0 were evaluated for choice of GCM, choice of 166 

ET0 estimation method, and choice of RCP trajectory.  167 

 For projected changes in water deficit (P- ET0) Monte Carlo filtering (Saltelli et al., 2008) 168 

was used to identify whether projected wetter or drier future conditions (i.e. larger or smaller 169 

water deficit) could be attributed to specific GCMs, ET0 estimation methods, or RCP trajectories. 170 

For each future period the ensemble of 270 projections of change in water deficit were 171 

categorized as either wet future condition (mean change in (𝑃 − 𝐸𝑇0) ≥ 0) or dry future 172 

condition (mean change in (𝑃 − 𝐸𝑇0) < 0). Next for each factor (𝑋𝑖 =GCM, ET0 method, RCP 173 

trajectory) the histograms of wet (𝑓𝑤𝑒𝑡|𝑋𝑖) and dry (𝑓𝑑𝑟𝑦|𝑋𝑖 ) future conditions over the range of 174 

possible values of that factor were estimated. To identify the factors that are most responsible for 175 

driving the model into projected wet or dry future conditions for each factor, 𝑋𝑖, the distributions 176 

(𝑓𝑤𝑒𝑡|𝑋𝑖) and (𝑓𝑑𝑟𝑦|𝑋𝑖) were tested for significant difference using the Χ
2
 two sample test for 177 

categorical variables with α=0.05 (Rao and Scott, 1981). If for a given factor 𝑋𝑖 the two 178 

distributions are significantly different, then 𝑋𝑖 is a key factor in driving into either a wet or dry 179 

condition (Saltelli et al., 2008). 180 

 Because GCM predictions are known to contain systematic biases (Hwang and Graham, 181 

2013; Wood et al., 2002, 2004) we evaluated the sensitivity of the mean monthly change in raw 182 

climate predictions between retrospective and future periods to the choice of GCM, ET0 183 

estimation method and RCP trajectories. This is analogous to using the delta change GCM bias 184 

correction method that involves shifting the mean of a series of observed climate data by the 185 

mean difference in raw GCM output between the corresponding observed time period and the 186 

desired future period. Teutschbein and Seibert (2012) pointed out that all bias correction methods 187 

are based on the stationarity principle that assumes that similar biases occur in the retrospective 188 

and future predictions and thus the same bias-correction algorithm may be applied to both. 189 

Muerth et al. (2013) found that the impact of bias correction on the relative change of flow 190 

indicators between retrospective and future periods was weak for most indicators, however 191 

Jason
Highlight
Response for referee#2 comment 1:
We added an explanation (line 181-198) in the methods section regarding why we focused on the sensitivity of changes in raw GCM predictions rather than changes in bias-corrected GCM predictions.



8 
 

Pierce et al. (2015) found that some bias correction methods altered model-projected changes in 192 

mean precipitation and temperature. LaFond et al. (2014) found that the delta change GCM bias 193 

correction method was more useful for simulating hydrologic extreme events than the quantile 194 

mapping bias correction method as it preserved daily climate variability better. In this study, we 195 

differenced raw rather than bias corrected GCM outputs in order to prevent spurious alteration of 196 

the climate change signal between retrospective and future GCMs that might be induced by the 197 

bias correction method.  198 

 199 

3. Results 200 

 Future P, ET0 and water deficit projections include large uncertainties stemming from 201 

different sources. Figures 2 and 3 present maps of the mean change (Fig. 2) and the standard 202 

deviation of change (Fig. 3) in annual P (top chart), ET0 (middle) and water deficit (P – ET0; 203 

bottom) over the continental US calculated over all GCMs, ET0 estimation methods, and RCP 204 

trajectories for future period 2 (2070-2100). Major portions of the West, Southwest and South 205 

show a mean decrease in annual precipitation, while the rest of the continental US shows a mean 206 

increase (Fig. 2 (a)). Future annual ET0 shows a mean increase over retrospective annual ET0 207 

over the entire US (Fig. 2 (b)), with the largest increase in the South region. Following the 208 

patterns of P and ET0, future annual water deficit (P – ET0) shows a significant mean decrease in 209 

the West, Southwest and South regions and a slight decline, or negligible change in most other 210 

regions (Fig. 2 (c)). These mean changes in annual P, ET0 and P- ET0 are relatively small 211 

compared to the standard deviation of changes in annual P, ET0, and P – ET0 (Fig. 3). Water 212 

deficit in particular has a large standard deviation, resulting in coefficients of variation larger 213 

than one throughout the continental US. Similar results are shown in the Fig. S-1 and Fig. S-2 for 214 

future period 1 (2030-2060) in the supplemental materials. 215 

 Figure 4 shows the seasonal changes in the monthly mean and standard deviation of 216 

water deficit (P – ET0) over the nine US regions. Blue and red lines represent the changes in 217 

monthly mean water deficit for future period 1 and future period 2, respectively and the error 218 

bars represent one standard deviation around each mean value. All regions of the continental US 219 

show drier conditions (negative mean changes) in the summer season (Jun – Aug). Southern 220 
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regions (Southeast, South, Southwest and West) show drier conditions throughout the year, 221 

however northern portions of the US (i.e. the Northeast, Ohio Valley, Upper Midwest, Northern 222 

Rockies and Plains and Northwest) show wetter conditions (positive mean changes) in the winter 223 

season.   224 

 Figure 5 shows the first order sensitivity of change in P to GCM and RCP trajectory over 225 

the nine US climate regions for future periods 1 and 2. For projected changes in P, the choice of 226 

GCM is generally more important than choice of RCP trajectory for all regions and both future 227 

periods.  First order sensitivities of mean change in ET0 to GCM, ET0 method and RCP 228 

trajectory are shown in Fig. 6. This figure clearly shows that the choice of ET0 method is the 229 

most influential factor for projecting change in ET0 for both future periods, except for the month 230 

of March in the Northeast, Upper Midwest and Northern Rockies and Plains. High sensitivity of 231 

mean change in ET0 to GCM selection occurs in spring for several regions (Northeast, Upper 232 

Midwest and Northern Rockies and Plains), indicating a divergence of model predictions during 233 

this time. The influence of the RCP trajectory on ET0 increases in future period 2 over future 234 

period 1, with a concomitant decrease in the influence of both ET0 method and GCM. In future 235 

period 1 the GCM sensitivity coefficients are greater than the RCP trajectory sensitivity 236 

coefficients over most regions; however, in future period 2 the RCP sensitivity coefficients 237 

become more important. Figure 7 shows that projected change in water deficit depend strongly 238 

on both the choice of GCM and ET0 estimation method. In all regions except the Southeast 239 

projected change in water deficit is most sensitive to ET0 estimation method in the warm season 240 

(May through October) and most sensitive to GCM in the cool season (December through 241 

March). For the Southeast region the sensitivity coefficients for GCM and ET0 method are quite 242 

similar throughout the year. The sensitivity coefficients for RCP trajectory are very low in future 243 

1, but increase in future 2, becoming approximately equal to the GCM sensitivity coefficients in 244 

the summer season in future 2.  245 

 Figure 8 shows the change in annual mean water deficit over all 9 GCMs for the RCP 4.5 246 

trajectory in future period 1 (2030-2060) predicted by the ten different ET0 methods used in this 247 

study (a: Hargreaves, b: Blaney-Criddle, c: Hamon, d: Kharrufa, e: Irmak-Rn, f: Irmak-Rs, g: 248 

Dalton, h: Meyer, i: Penman-Monteith, j: Priestley-Taylor). This figure clearly shows that the 249 

changes in water deficit for future period 1 are diverse and depend strongly on the choice of ET0 250 
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method. Except for the Hargreaves method (Fig. 8a) the temperature based methods (e.g. 251 

Blaney-Criddle (Fig. 8b), Hamon (Fig. 8c) and Kharrufa (Fig. 8d)) predict drier conditions over 252 

the continental US than the other methods. The mass transfer based methods (e.g Dalton (Fig. 8g) 253 

and Meyer (Fig. 8h)) predict generally wetter conditions over most of the continental US 254 

compared to other methods. The combination method (Penman Monteith (Fig. 8i)), and the 255 

radiation based methods (Irmak-Rn (Fig 8e), Irmak-Rs (Fig. 8f) and Priestley Taylor (Fig. 8j)) 256 

generally fall between the mass transfer based and temperature based methods, with the 257 

combination methods producing slightly drier conditions. Although most methods predict similar 258 

spatial patterns of water deficit over the continental US (generally drier conditions in the West, 259 

Southwest and South and generally wetter elsewhere), the Hamon method predicts a different 260 

pattern of water deficit over the Southwest, South and Northern Rockies and Plains regions.  261 

Monte Carlo filtering (Saltelli et al., 2008) was conducted to further investigate whether 262 

projected wetter or drier future conditions (i.e. larger or smaller annual mean water deficit) could 263 

be attributed to specific GCMs, ET0 estimation methods, or RCP trajectories. Figures 9 shows 264 

the histograms for wet conditions and dry conditions in future 2 over the Southeast US by GCM, 265 

ET0 method and RCP trajectory for the example month of July. Figure 10 shows similar 266 

histograms for the Northern Rockies and Plains, a region with differing behavior from the 267 

Southeast US. Table 3 shows the P-value results for the 𝛸2- test for all months in both futures for 268 

the Southeast and Northern Rockies and Plains regions. P-values greater than 0.05 (shaded in 269 

grey) indicate the two histograms are not significantly different from each other. Tables 4 – 6 270 

show the fraction of time that a particular GCM (Table 4), ET0 method (Table 5), or RCP 271 

trajectory (Table 6) projected drier future conditions in each of the nine US climate regions for 272 

each month, with fractions higher than 0.5 shaded in grey. 273 

 274 

4. Discussion 275 

Drier conditions in southern regions (Southeast, South, Southwest and West) and wetter 276 

conditions in northern regions (Northeast, Ohio Valley, Upper Midwest, Northern Rockies and 277 

Plains and Northwest) are consistent (Fig. 4) with those reported by McAfee (2013) who used 3 278 

ET0 methods (Hamon, Priestley-Taylor and Penman-Monteith) to estimate global changes in ET0 279 
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over the entire globe. As found by Baker and Huang (2014) for both CMIP3 and CMIP5 280 

projections, mean ET0 is projected to be higher in future period 2 than in future period 1, and 281 

mean precipitation projections are approximately equivalent in future period 1 and future period 282 

2. Thus the projected mean changes in water deficit for future period 2 (red lines in Fig. 4) are 283 

larger in magnitude than the projected changes for future period 1 (blue lines). In all regions, and 284 

for both future periods, the one standard deviation error bars bracket zero mean change 285 

indicating large uncertainty in the projections throughout the year. 286 

The choice of GCM is generally more important than the choice of RCP trajectory for 287 

projected changes in P (Fig. 5). This is consistent with results found by Gaetani and Mohino 288 

(2013) and Knutti and Sedláček (2012) who showed significant differences in precipitation 289 

predictions among CMIP5 models. It should be noted that these results do not indicate that the 290 

choice of RCP trajectory does not affect the change in precipitation, only that the choice of RCP 291 

trajectory is less influential than the choice of GCM. There are no consistent seasonal patterns of 292 

the first-order sensitivity coefficients for either GCM or RCP trajectory in either future period. 293 

However, during the spring months, the sensitivity of change in P to choice of RCP trajectory 294 

increases substantially in future 2 compared to future 1 in the Northeast, Ohio Valley, Upper 295 

Midwest, South, Southwest and West regions. 296 

Higher sensitivity of mean change in ET0 to the choice of ET0 estimation method than the 297 

choice of GCM (Fig. 6) are consistent with those found by Kingston et al. (2009) who showed 298 

that projected increase in ET0 varied by more than 100% between ET0 methods, and Schwalm et 299 

al. (2013) who found the choice of ET0 estimation method is sensitive and even more influential 300 

than the choice of GCM  in predicting ET0. However, neither of these studies looked at the 301 

influence of RCP trajectory on ET0 projections, which increases in future period 2 over future 302 

period 1, causing a decrease in the sensitivity coefficient of both GCM and ET0 method in future 303 

2. Burke and Brown (2008) evaluated uncertainties in the projection of future drought using 304 

several drought indices. They found that there are large uncertainties in regional changes in 305 

drought and changes in drought are dependent on both index definition and GCM ensemble 306 

members. Similarly, our results for the projected change in water deficit vary by region, depend 307 

strongly  on the choice of GCM and ET0 estimation method, but are relatively less sensitive to 308 

RCP trajectory (Fig. 7). These findings are similar to results reported by Orlowsky and 309 
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Seneviratne (2013) who found that the greenhouse gas emission scenario uncertainty is not as 310 

important as differences among GCMs or internal climate variability when predicting 311 

Standardized Precipitation Index (SPI) and soil moisture (SMA). However, they also found that 312 

uncertainty due to greenhouse gas emission scenario increased in later future periods. Taylor et 313 

al. (2013) showed the patterns of changes in future drought were similar between the A1B 314 

scenario in CMIP3 and the RCP2.6 trajectory in CMIP5, reinforcing our finding that the choice 315 

of RCP trajectory is less important than the choice of GCM and ET0 estimation method when 316 

estimating future water deficit. 317 

Similar to the results of Kay and Davies (2008) and Bae et al. (2011) the results of our 318 

GSA show that the choice of ET0 method has important implications when making future ET0 319 

projections and future water deficit projections (Fig. 8). Kingston et al. (2009)  recommended the 320 

use of different ET0 equations to evaluate global ET0, and Wang et al. (2015) found that although 321 

different methods predict similar future ET0, there are important differences in uncertainties due 322 

to ET0 estimation methods and input data reliability. Currently many hydrological models use a 323 

single evapotranspiration method for simulation, which may substantially increase the 324 

uncertainty and reduce the reliability of future projections. Our results strongly indicate that an 325 

ensemble of ET0 estimation methods should be used to understand potential future water 326 

availability and water deficit due to climate change.   327 

Monte Carlo filtering results (Fig. 9 and 10, Table 3) indicate that GCM and ET0 methods 328 

both produce statistically significant different wet condition and dry condition histograms in both 329 

the Southeast and Northern Rockies and Plains regions for almost all months in both future 330 

periods. This indicates that particular GCMs and ET0 methods tend to systematically produce 331 

wet or dry conditions. Some GCMs (i.e. MIROC_ESM and BCC-CSM (Table 4)) and ET0 332 

methods (i.e. Priestley-Taylor, Blaney-Criddle, and Kharrufa (Table 5)) predict dry conditions a 333 

majority of the time for all regions in both future periods. However the remaining GCMs and 334 

ET0 methods project both wetter or drier futures depending on the region and future period. 335 

Results in Tables 4 through 6 show that for the South, West and Southwest regions drier 336 

conditions are predicted a majority of the time in both future periods by all GCMs and RCP 337 

trajectories, and all ET0 methods except Hargreaves. For RCP trajectory, P-values indicate the 338 

histograms are statistically significantly different in fewer cases than for either GCM or ET0 339 
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method for both future 1 and 2 (Table 3). These results are consistent with the first order 340 

sensitivity coefficients results that showed the RCP trajectory is not as important a factor as 341 

GCM or ET0 method in driving differences in future projections, but that the sensitivity to choice 342 

of RCP trajectory increases in future period 2. 343 

GCMs estimate some climate variables, such as temperature, with higher confidence than 344 

other variables (Randall et al., 2007). However, for some evapotranspiration estimation methods 345 

the effect of temperature on evaporation is smaller than other climate variables (Linacre, 1994; 346 

Roderick et al., 2009a, 2009b; Thom et al., 1981). We found that temperature and net radiation 347 

from the CMIP5 GCMs show increasing trends over the 2005-2100 time period, while wind 348 

speed and surface pressure are relatively constant (Fig. S-3). Because we considered various ET0 349 

estimation methods our results include the impacts of the different physics represented in the ET0 350 

methods, the projected changes each of the climate variables contributing to the different ET0 351 

methods, and the reliability of the predictions of each variable.  352 

 353 

5. Conclusions 354 

 Future changes in precipitation and evapotranspiration will lead to changes in the 355 

hydrologic balance. This study clearly shows that the uncertainty caused by different GCMs, ET0 356 

methods, and RCP trajectories make actionable water resources planning based on climate 357 

change projections difficult. Understanding and quantifying how these projected changes vary 358 

with choice of GCM, ET0 method and RCP trajectory is important for designing robust 359 

ensembles of scenarios to include in future water resources planning. This study assessed the 360 

future mean change in monthly precipitation, evapotranspiration and water deficit (P- ET0) 361 

projected by CMIP5 simulations over the continental US and analyzed the sensitivity of the 362 

projected changes to the choice of GCM, ET0 estimation method, and RCP trajectory. Nine 363 

GCMs, ten ET0 estimation methods, and three RCP trajectories were included in the analyses. 364 

Variance-based global sensitivity analysis (Saltelli et al., 2010) was conducted in order to 365 

determine the relative contributions of the choice of GCMs, ET0 estimation methods, and RCP 366 

trajectory to uncertainty in future prediction. Monte Carlo filtering was used to investigate 367 
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whether particular GCMs, ET0 methods, and/or RCP scenarios consistently led to wet or dry 368 

future projections.    369 

The CMIP5 results, when averaged over nine GCMs, ten ET0 methods, and three RCP 370 

trajectories, indicate that the West, Southwest, and South US are projected to experience a  371 

decrease in annual precipitation, while all other regions of the continental US are projected 372 

experience an increase in annual mean precipitation for both future periods 1 and 2. An increase 373 

in annual mean ET0 is predicted over the entire continental US for both future periods, with the 374 

largest increases in West, South and Southeast.  Future water deficit is projected to significantly 375 

decrease in the West, Southwest, and South regions of the continental US. A slight decline or 376 

negligible change is projected in most other regions. The standard deviations of projected 377 

changes in P, ET0 and water deficit are large compared to the mean changes, making actionable 378 

water resources planning based on these climate change projections difficult.  379 

The global sensitivity analyses showed that projected changes in precipitation are more 380 

sensitive to the choice of GCM than the choice of RCP trajectory over the entire continental US 381 

for both future periods. However, the choice of RCP trajectory becomes more important in future 382 

period 2. The most sensitive factor for the future ET0 projections is the choice of ET0 estimation 383 

method for all regions in both future periods. The first order sensitivity of projected change in 384 

future ET0 to choice of RCP trajectory increases in future period 2 compared to future 1, with a 385 

concomitant decrease in the first order sensitivity to the choice of GCM. For projected change in 386 

future water deficit the choice of ET0 method constitutes the dominant source of uncertainty in 387 

warmer months (May through September) and the choice of GCM is the dominant source of 388 

uncertainty in the cooler months (November through March) over all regions except the 389 

Southeast where the sensitivity of GCM and ET0 method are roughly equal throughout the year. 390 

Sensitivity of change in future water deficit to RCP trajectory is very small for future period 1, 391 

but increased in future period 2.  392 

Monte Carlo filtering results indicated that both GCMs and ET0 methods produced 393 

statistically different histograms for wetter or drier future conditions (i.e. larger or smaller mean 394 

future water deficit) for almost all months in both future periods. Two GCMs (MIROC_ESM 395 

and BCC-CSM) and three ET0 methods (Priestley-Taylor, Blaney-Criddle, and Kharrufa) 396 

predicted dry conditions a majority of the time for all regions in both future periods; however, 397 
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the remaining GCMs and ET0 methods projected both wetter and drier futures depending on the 398 

region. 399 

Results of this study indicate that when predicting the effects of future climate on water 400 

resources the choice of evapotranspiration method should be carefully evaluated. Rather than the 401 

typical practice of using a single ET0 method to drive a hydrologic model with future climate 402 

projections, an ensemble of ET0 methods should be used in addition to an ensemble of GCMs 403 

and a variety of RCP trajectories. The GSA methodology adopted here assumed that all the 404 

GCMs, ET0 methods and RCP trajectories used in this study were equally appropriate for use in 405 

all US regions (i.e the sensitivity coefficients were evaluated by equally weighting each GCMs, 406 

ET0 method and RCP trajectory) which is likely not to be the case. When making future 407 

projections  potential climate change on water resources Reliability Ensemble Averaging (REA)  408 

(Giorgi and Mearns, 2002) or Bayesian-based indicator-weighting (Asefa and Adams, 2013; 409 

Tebaldi et al., 2005) could be used to weight the results of an ensemble of  GCMs and ET 410 

methods based on how close the retrospective GCM- ET0 method predictions agree with past 411 

observations (bias criterion) and how well the future GCM- ET0 -RCP projections agree with 412 

other future GCM- ET0 -RCP predictions (convergence criterion). 413 

This study assumed that ET0 methods that have been developed and parameterized based 414 

on vegetation response to current CO2 levels and climatic conditions will be valid under future 415 

CO2 levels and climatic conditions. Future research should explore the validity of this 416 

assumption by incorporating potential changes in plant transpiration (e.g. stomatal conductance) 417 

to changing CO2 levels into the ET0 estimation methodologies. 418 
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Table 1. Description of reference evapotranspiration estimation methods used in this study (ET0: 621 
Reference evapotranspiration). 622 

Methods Equations
1
 Reference 

(a) Hargreaves 𝐸𝑇0 = 0.0135𝐾𝑇𝑆0(𝑇 + 17.8)√𝛿𝑇 Hargreaves and 

Allen (2003) 

(b) Blaney-Criddle 𝐸𝑇0 = 𝑝(0.46𝑇 + 8.13) Xu and Singh 

(2002) 

(c) Hamon 𝐸𝑇0 = 0.55𝛿𝑇
2𝑃𝑡 Xu and Singh 

(2002) 

(d) Kharrufa 𝐸𝑇0 = 0.34𝑝𝑇1.3 Xu and Singh 

(2002) 

(e) Irmak-Rn 𝐸𝑇0 = 0.486 + 0.289𝑅𝑛 + 0.023𝑇 Irmak et al. (2003) 

(f) Irmak-Rs 𝐸𝑇0 = −0.611 + 0.149𝑅𝑠 + 0.079𝑇 Irmak et al. (2003) 

(g) Dalton 𝐸𝑇0 = (0.3648 + 0.07223𝑢)(𝑒𝑠 − 𝑒𝑎) Tabari et al. 

(2013) 

(h) Meyer 𝐸𝑇0 = (0.375 + 0.05026𝑢)(𝑒𝑠 − 𝑒𝑎) Tabari et al. 

(2013) 

(i) Penman-

Monteith 𝐸𝑇0 =
0.408∆(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 273

𝑢2(𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1 + 0.34𝑢2)
 

Allen et al. (1998) 

(j) Priestley-Taylor 
𝐸𝑇0 = 𝛼

∆

∆ + 𝛾

(𝑅𝑛 − 𝐺)

𝜆
 

Allen et al. (1998) 

1
Variables (estimated from CMIP5 outputs): G: Soil heat flux (assumed 0); γ: Psychrometric constant; T: Average 623 

temperature; u2: Wind speed at 2m surface; es: Saturated vapor pressure; ea: Actual vapor pressure; ∆: Slope vapor 624 

pressure; KT: Hargreaves-Samani coefficient; S0: Extraterrestrial radiation (estimated by Julian date); δT: Difference 625 

between maximum and minimum temperature, p: Percentage of total daytime hours (Estimated by Julian date); Rn: 626 

Net radiation; Rs: Solar radiation; Pt: Saturated water vapor density; u: Wind speed  627 
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Table 2. Description of the CMIP5 models used in this study. 628 

Model  Institute (country) Resolutions Calendar Reference 

(1) BNU-ESM College of Global Change and Earth 

System Science, Beijing Normal 

University (China) 

2.8° lat × 

2.8° lon 

No leap Ji et al. (2014) 

(2) CSIRO-MK3-6-

0 

University of New South Wales 

(Australia) 

1.87° lat × 

1.87° lon 

No leap Rotstayn et al. 

(2012) 

(3) GFDL-CM3 NOAA/Geophysical Fluid Dynamics 

Laboratory (USA) 

2.0° lat × 

2.5° lon 

No leap Guo et al. (2014) 

(4) GFDL-ESM2G NOAA/Geophysical Fluid Dynamics 

Laboratory (USA) 

2.0° lat × 

2.5° lon 

No leap Taylor et al. (2012) 

(5) MIROC-ESM Atmosphere and Ocean Research 

Institute, National Institute for 

Environmental Studies, and Japan 

Agency for Marine-Earth Science and 

Technology (Japan) 

2.8° lat × 

2.8° lon 

Leap year Watanabe et al. 

(2011) 

(6) MPI-ESM-LR Max Planck Institute for Meteorology 

(Germany) 

1.87° lat × 

1.87° lon 

Leap year Block and 

Mauritsen (2013) 

(7) MRI-CGCM3 Meteorological Research Institute 

(Japan) 

1.12° lat × 

1.12° lon 

Leap year Yukimoto et al. 

(2012) 

(8) NorESM1-M Norwegian Climate Centre (Norway) 1.9° lat × 

2.5° lon 

No leap Bentsen et al. (2013) 

(9) BCC-CSM1.1 Beijing Climate Center (China) 2.8° lat × 

2.8° lon 

No leap Xiao-Ge et al. 

(2013) 

  629 
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Table 3. P-values of Chi-square two sample test for difference among wet condition versus dry 630 

condition pdfs Southeast U.S (SE US) and Northern Rockies and Plains (NRP; West North 631 

Central) U.S. (Shaded cells indicate pdfs are not statistically significantly different at p=0.05) 632 

Month 

Future 1 Future 2 

GCM ET0 RCP GCM ET0 RCP 

SE 

US 

1 0.0000 0.0689 0.3701 0.0000 0.1823 0.1853 

2 0.0000 0.0889 0.4434 0.0000 0.0269 0.0000 

3 0.0000 0.0365 0.0306 0.0000 0.0000 0.1339 

4 0.0000 0.0000 0.6602 0.0000 0.0000 0.0001 

5 0.0000 0.0000 0.3223 0.0000 0.0000 0.0041 

6 0.0000 0.0000 0.0809 0.0000 0.0000 0.0006 

7 0.0000 0.0000 0.2855 0.0000 0.0000 0.0749 

8 0.0000 0.0000 0.2805 0.0000 0.0000 0.0074 

9 0.0000 0.0000 0.8646 0.0000 0.0000 0.0044 

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

11 0.0000 0.0001 0.0000 0.0000 0.0001 0.2003 

12 0.0000 0.0117 0.3083 0.0000 0.0000 0.0000 

NRP 

1 0.0000 0.0000 0.1931 0.0000 0.0000 0.0000 

2 0.0000 0.0000 0.0010 0.0000 0.0000 0.7617 

3 0.0000 0.0000 0.0538 0.0000 0.0000 0.0769 

4 0.0000 0.0000 0.7882 0.0002 0.0000 0.8925 

5 0.0000 0.0000 0.4047 0.0000 0.0000 0.1103 

6 0.0000 0.0000 0.3839 0.0000 0.0000 0.0000 

7 0.0000 0.0000 0.5321 0.0001 0.0008 0.0000 

8 0.0000 0.0001 0.1544 0.0000 0.0686 0.0000 

9 0.0000 0.0000 0.4242 0.0000 0.0000 0.2002 

10 0.0000 0.0000 0.6688 0.0000 0.0213 0.0001 

11 0.0000 0.0000 0.1334 0.0000 0.0000 0.1948 

12 0.0000 0.0000 0.7617 0.0000 0.0000 0.6561 
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Table 4. The fraction of future dry conditions over all months by GCM (Future period 1 and 2). 635 

  GCM SE South West NR NE NW UM SW Ohio 

Future 

period 1 

- Dry 

condition 

BNU_ESM 0.575 0.589 0.511 0.367 0.436 0.322 0.467 0.453 0.492 

CSIRO_mk3_6_0 0.489 0.689 0.639 0.547 0.297 0.519 0.381 0.653 0.481 

GFDL_CM3 0.414 0.608 0.686 0.419 0.403 0.525 0.383 0.647 0.425 

GFDL_ESM2G 0.731 0.900 0.758 0.453 0.486 0.486 0.397 0.828 0.617 

MIROC_ESM 0.631 0.594 0.822 0.625 0.636 0.708 0.686 0.658 0.611 

MPI_ESM_LR 0.375 0.747 0.694 0.542 0.597 0.611 0.558 0.756 0.575 

MRI_CGCM3 0.494 0.592 0.639 0.400 0.544 0.553 0.350 0.547 0.506 

NorESM1_M 0.492 0.764 0.778 0.475 0.400 0.611 0.475 0.753 0.508 

BCC_CSM 0.728 0.739 0.828 0.642 0.603 0.614 0.564 0.822 0.656 

Future 

period 2 

- Dry 

condition 

BNU_ESM 0.608 0.775 0.597 0.400 0.522 0.461 0.478 0.522 0.572 

CSIRO_mk3_6_0 0.367 0.667 0.583 0.528 0.225 0.528 0.433 0.633 0.461 

GFDL_CM3 0.467 0.767 0.789 0.461 0.514 0.542 0.508 0.794 0.469 

GFDL_ESM2G 0.722 0.831 0.694 0.478 0.519 0.525 0.397 0.672 0.581 

MIROC_ESM 0.672 0.686 0.897 0.742 0.731 0.728 0.700 0.739 0.664 

MPI_ESM_LR 0.442 0.800 0.778 0.519 0.542 0.639 0.450 0.800 0.450 

MRI_CGCM3 0.508 0.703 0.581 0.422 0.481 0.528 0.439 0.517 0.556 

NorESM1_M 0.594 0.808 0.722 0.500 0.461 0.550 0.481 0.731 0.594 

BCC_CSM 0.628 0.697 0.875 0.708 0.567 0.708 0.556 0.825 0.603 

 636 

  637 



25 
 

Table 5. The fraction of future dry condition over all months by ET0 estimation method and 638 

region (Future period 1 and 2). 639 

  ET0 SE South West NR NE NW UM SW Ohio 

Future 

period 1 

-Dry 

condition 

Hargreaves 0.302 0.426 0.559 0.333 0.309 0.466 0.321 0.485 0.324 

Blaney_Criddle 0.738 0.880 0.898 0.840 0.738 0.762 0.784 0.904 0.769 

Hamon 0.633 0.818 0.667 0.531 0.494 0.497 0.457 0.713 0.549 

Kharrufa 0.883 0.957 0.889 0.636 0.667 0.698 0.636 0.886 0.738 

Irmak_Rn 0.522 0.673 0.694 0.491 0.512 0.556 0.494 0.679 0.580 

Irmak_Rs 0.525 0.722 0.731 0.463 0.485 0.546 0.460 0.679 0.556 

Dalton 0.364 0.503 0.583 0.340 0.343 0.426 0.296 0.509 0.380 

Meyer 0.367 0.531 0.596 0.346 0.324 0.435 0.290 0.512 0.367 

PM 0.534 0.685 0.694 0.472 0.469 0.525 0.481 0.676 0.540 

PT 0.608 0.719 0.750 0.515 0.552 0.590 0.515 0.753 0.608 

Future 

period 2 

-Dry 

condition 

Hargreaves 0.352 0.506 0.605 0.420 0.355 0.491 0.380 0.537 0.361 

Blaney_Criddle 0.765 0.907 0.880 0.877 0.769 0.818 0.830 0.901 0.806 

Hamon 0.633 0.861 0.679 0.552 0.491 0.528 0.460 0.719 0.574 

Kharrufa 0.883 0.954 0.898 0.704 0.713 0.728 0.682 0.883 0.784 

Irmak_Rn 0.515 0.738 0.710 0.494 0.491 0.574 0.503 0.685 0.543 

Irmak_Rs 0.534 0.796 0.753 0.485 0.497 0.562 0.478 0.719 0.562 

Dalton 0.349 0.596 0.620 0.389 0.358 0.475 0.315 0.540 0.373 

Meyer 0.352 0.596 0.630 0.383 0.349 0.488 0.309 0.546 0.361 

PM 0.543 0.744 0.701 0.475 0.485 0.531 0.463 0.679 0.528 

PT 0.639 0.784 0.765 0.509 0.562 0.593 0.515 0.716 0.608 
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Table 6. The fraction of future dry condition over all months by RCP trajectory and region 641 

(Future period 1 and 2). 642 

  RCP SE South West NR NE NW UM SW Ohio 

Future 

period 1 

-Dry 

condition 

2.6 0.551 0.657 0.665 0.507 0.502 0.543 0.495 0.644 0.553 

4.5 0.553 0.698 0.739 0.515 0.475 0.554 0.482 0.731 0.556 

8.5 0.539 0.719 0.715 0.468 0.491 0.554 0.443 0.665 0.515 

Future 

period 2 

-Dry 

condition 

2.6 0.516 0.649 0.657 0.486 0.524 0.515 0.465 0.617 0.545 

4.5 0.490 0.731 0.712 0.510 0.476 0.584 0.494 0.658 0.528 

8.5 0.664 0.864 0.803 0.590 0.520 0.637 0.521 0.803 0.577 
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 644 

Figure 1. US climate regions identified by National Climate Data Center (Adapted from Karl and 645 

Koss, 1984, https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php) 646 

https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
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 647 

Figure 2. The change in the annual mean (a) P, (b) ET0, and (c) P – ET0 over U.S. All units are 648 

mm/day and the change is defined as the mean of 2070-2100 minus that of 1950-2005. These 649 

changes are averaged over all GCMs, ET0 estimation methods, and RCP trajectories.  650 
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 651 

Figure 3. The standard deviation of the change in the annual mean (a) P, (b) ET0, and (c) P – ET0 652 

over U.S. All units are mm/day and the change is defined as the average of 2070-2100 minus that 653 

of 1950-2005. The standard deviations are estimated over all GCMs, ET0 estimation methods, 654 

and RCP trajectories.  655 
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 656 

Figure 4. The change of monthly mean water deficit (P – ET0) over 9 different regions. Blue 657 

lines represent future 1 period (2030-2060), and red lines represent future 2 period (2070-2100). 658 

Error bars represent one standard deviation of each values. The change is defined as the mean of 659 

future periods minus that of retrospective period (1950-2005). 660 
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 662 

Figure 5. First order sensitivity analysis results of change in precipitation. Solid lines represent 663 

the future period 1 (2030-2060) and dotted lines represent the future period 2 (2070-2100). Blue 664 

lines represent the first order effect of GCMs and green lines represent the first order effect of 665 

RCPs. 666 
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  668 

Figure 6. First order sensitivity analysis results of change in reference evapotranspiration. Solid 669 

lines represent the future period 1 (2030-2060) and dotted lines represent the future period 2 670 

(2070-2100). Blue lines represent the first order effect of GCMs, red lines represent the first 671 

order effect of ET0 estimation methods and green lines represent the first order effect of RCPs. 672 
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 674 

Figure 7. First order sensitivity analysis results of change in P - ET0. Solid lines represent the 675 

future period 1 (2030-2060) and dotted lines represent the future period 2 (2070-2100). Blue 676 

lines  represent the first order effect of GCMs, red lines represent the first order effect of ET0 677 

estimation methods and green lines represent the first order effect of RCPs. 678 
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 680 

Figure 8. The change in the annual mean P – ET0 of RCP 4.5 scenario by 10 different 681 

evapotranspiration methods. All units are mm/day and the change is defined as the mean of 682 

2030-2060 minus that of 1950-2005. (All results are interpolated to 1 degree * 1 degree grids and 683 

averaged over 9 different GCMs) 684 

 685 
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 686 

Figure 9. Histograms for projected future 2 wet conditions and dry conditions in the Southeast 687 

US by GCM, ET0 method and RCP trajectory for the month of July. 688 
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 690 

Figure 10. Histograms for projected future 2 wet conditions and dry conditions in the Northern 691 

Rockies and Plains US by GCM, ET0 method and RCP trajectory for the month of July. 692 
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Appendix A: Supplemental figures 694 

 695 

Fig. S-1 The change in the annual mean (a) P, (b) ET0, and (c) P – ET0 over U.S. All units are 696 

mm/day and the trend is defined as the average of 2030-2060 minus that of 1950-2005.  697 

  698 
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 699 

Fig. S-2 The standard deviation of the change in the annual mean (a) P, (b) ET0, and (c) P – ET0 700 

over U.S. All units are mm/day and the trend is defined as the average of 2030-2060 minus that 701 

of 1950-2005. 702 
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 704 

Fig. S-3 Mean maximum temperature, net radiation, wind speed at 2 m surface, and surface 705 

pressure of CMIP5 for future period (RCP 8.5). 706 

 707 
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