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Abstract: Hydrological model parameters play an important role in the ability of model prediction. In 16 

a stationary content, parameters of hydrological models are treated as constants. However, model 17 

parameters may vary dynamically with time under climate change and human activities. The technique 18 

of ensemble Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a 19 

two-parameter monthly water balance model by assimilating the runoff observations, where one of state 20 

equations is that the model parameters should not change much within a short time period. Through a 21 

synthetic experiment, the proposed method is evaluated with various types of parameter variations 22 

including trend, abrupt change, and periodicity. The application of the method to the Wudinghe basin 23 

shows that the water storage capacity, a parameter in the model, has an apparent increasing trend during 24 

the period from 1958 to 2000. The identified temporal variation of water storage capacity is explained 25 

by land use and land cover changes due to soil and water conservation measurements. Whereas, the 26 

application to the Tongtianhe basin demonstrates that the parameter of water storage capacity has no 27 

significant variation during the simulation of 1982-2013, corresponding to the relatively stationary 28 

catchment characteristics. Additionally, the proposed method improves the performance of hydrological 29 

modeling, and provides an effective tool for quantifying temporal variation of model parameters. 30 

 31 
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1 Introduction 34 

Hydrological model parameters are critically important for accurate simulation of streamflow. In 35 

hydrological modeling, parameters are usually assumed to be stationary, i.e., the calibrated parameters 36 

are a set of constants during the calibration period, and have extrapolative ability outside the range of 37 

the observations used for parameter estimation (Merz et al., 2011). However, the calibration period may 38 

contain different climactic condition and hydrological regime, and has a significant impact on the model 39 

parameter estimation (Merz et al., 2011; Zhang et al., 2011; Westra et al., 2014; Patil and Stieglitz, 40 

2015). The model parameters may potentially change responding to time-variable precipitation and 41 

other inputs. For example, land use and land cover changes contribute to temporal change of model 42 

parameters (Andréassian et al., 2003; Brown et al., 2005; Merz et al., 2011). Consequently, assuming 43 

time invariant model parameters may be unrealistic, especially for catchments with time-varying 44 

climate conditions and/or catchment properties. 45 

 46 

The situation of time-variant hydrological model parameters has been reported in a few publications 47 

(Merz et al., 2011; Brigode et al., 2013; Westra et al., 2014; Patil and Stieglitz, 2015). For example, Ye 48 

et al. (1997) and Paik et al. (2005) mentioned the seasonal variations of hydrological model parameters. 49 

Merz et al. (2011) analyzed the temporal changes of model parameters which were calibrated 50 

respectively by using six consecutive 5 year periods between 1976 and 2006 for 273 catchments in 51 
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Austria. Recently, Westra et al. (2014) proposed a strategy to cope with nonstationary of hydrological 52 

model parameters, which were represented as a function of a set of time-varying covariates before using 53 

an optimization algorithm for calibration. Previous studies provided two main methods to identify the 54 

time-variant model parameters: (1) Divide the historical record into consecutive subsets, and then 55 

calibrate the model parameters using an optimization algorithm (e.g., Merz et al. (2011)). The model 56 

parameters are fixed values in each subset. (2) Build the functional form of the selected time-variant 57 

model parameters, and calibrate the model parameters using an optimization algorithm based on the 58 

entire historical record (e.g., Westra et al. (2014)). 59 

 60 

The data assimilation (DA) method has been used to estimate both model parameters and state variables. 61 

For example, Vrugt et al. (2013) proposed two types of Particle-DREAM method to track the evolving 62 

target distribution of model parameters. Although the DA method has been used to estimate model 63 

parameters, the objective is to identify the fixed values of parameters. Additionally, little attention has 64 

been paid to the identification of time-variant model parameters and the interpretation of their temporal 65 

variations based on the climate conditions and/or catchment characteristics. 66 

 67 

The aim of this study is to assess the capability of the DA method (i.e., the EnKF) to identify the 68 

temporal variation of parameters for a monthly water balance model, and to link the parameter 69 
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variations to changes in physical properties. 70 

 71 

The remainder of this paper is organized as follows. Section 2 presents a brief review of the 72 

two-parameter monthly water balance model and the EnKF method. Following the methodology, 73 

Section 3 describes the synthetic experiment and the application to two case studies. Results and 74 

discussion are presented in Section 4, followed by conclusions in Section 5. 75 

 76 

2 Methodology 77 

2.1 Monthly water balance model 78 

The two-parameter monthly water balance model, developed by Xiong and Guo (1999), has been 79 

widely applied for monthly runoff simulation and forecast (Guo et al., 2002; Guo et al., 2005; Xiong 80 

and Guo, 2012; Li et al., 2013; Zhang et al., 2013; Xiong et al., 2014). The inputs of the model include 81 

monthly areal precipitation and potential evapotranspiration. The actual monthly evapotranspiration is 82 

calculated as follows: 83 

 tanh /i i i iE C EP P EP          (1) 84 

where iE  represents the actual monthly evapotranspiration; iEP  and iP  are the monthly potential 85 

evapotranspiration and precipitation, respectively; C  is the first model parameter; and i  is the time 86 

step. 87 
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 88 

The monthly runoff is dependent on the soil water content and is calculated by the following formula: 89 

 tanh /i i iQ S S SC         (2) 90 

where iQ  is the monthly runoff; and iS  is the soil water content. As the second model parameter, 91 

SC  represents the water storage capacity of the catchment with the unit of millimeter. The available 92 

water for runoff at the i th month is computed by 1i i iS P E   . Then, the monthly runoff is calculated 93 

by: 94 

   1 1tanh /i i i i i i iQ S P E S P E SC               (3) 95 

 96 

Finally, the soil water content at the end of each time step is updated based on the water conservation 97 

law: 98 

1i i i i iS S P E Q           (4) 99 

 100 

2.2 Ensemble Kalman filter 101 

EnKF is a sequential data assimilation technique based on the Monte Carlo method and produces an 102 

ensemble of state simulations to update the state variables and model parameters, conditioned on a 103 

series of model observations (Moradkhani et al., 2005; Shi et al., 2014). It has been successfully 104 

applied into dozens of hydrological applications (Abaza et al., 2014; DeChant and Moradkhani, 2014; 105 
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Delijani et al., 2014; Samuel et al., 2014; Tamura et al., 2014; Xue and Zhang, 2014; Deng et al., 106 

2015). In EnKF, the state equation is as follows: 107 

 1 , ~ 0,i i i i iN R             (5) 108 

   1 1, , ~ 0,i i i i i ix f x N G            (6) 109 

where ix  is the state vector with a dimension of 1n   at time i ; 1i   is the parameter vector with a 110 

dimension of 1l   at time 1i  ; f  is the forward operator; i  and i  are the independent white 111 

noise for the forecast model with a dimension of 1n  , followed a Gaussian distribution with zero 112 

mean and covariance matrix iG  and iR  with a dimension of n n , respectively. Equation (5) 113 

indicates that hydrological parameters should not change much within a short time period. 114 

 115 

The observation equation is as follows: 116 

   1 1 1 1 1 1, , ~ 0,i i i i i iy h x N S                (7) 117 

where 1iy   is the observation vector with a dimension of 1m   at time 1i  ; h  is the 118 

observational operator which represents the relationship between the observations and states; 1i   is 119 

the noise term with a dimension of 1m   which follows a Gaussian distribution with zero mean and 120 

covariance matrix 1iS   with a dimension of m m . 121 

 122 

Based on the available state and observation equations, the EnKF assimilation process can be 123 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2015-407, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 26 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



 

8 

 

expressed as follows: 124 

(1) Set the ensemble size N  and the total length of the historical record n . 125 

(2) Generate the ensemble of model parameters and state variables by perturbing the updated values 126 

from the previous time step. 127 

1
k k k

ii i i i            (8) 128 

 1 1,k k k k
ii i i i i ix f x            (9) 129 

where 1
k
i i   is the kth ensemble member forecast at time 1i  ; k

i i  is the kth updated ensemble 130 

member at time i ; i  is the white noise for the kth ensemble member; 1
k
i ix   is the kth ensemble 131 

member forecast at time 1i  ; k
i ix  is the kth updated ensemble member at time i ; and k

i  is the 132 

white noise for the kth ensemble member. 133 

(3) Generate the ensemble of runoff observations by adding a perturbation: 134 

1 1 1
k k
i i iy y              (10) 135 

where 1
k
iy   is the kth observation ensemble member at time 1i  ; and 1

k
i   is the observation error 136 

for the kth ensemble member. 137 

 138 

The model parameters and state variables are updated according to the following equations: 139 

  1 11 1 1 1 1,k k x k k k
i ii i i i i i i ix =x K y h x                 (11) 140 

  1 11 1 1 1 1,k k k k k
i ii i i i i i i i= K y h x                  (12) 141 
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 142 

Note that the parameter and state vectors are updated following the approach in the previous studies 143 

(Wang et al., 2009; Nie et al., 2011; DeChant and Moradkhani, 2012; Lü et al., 2013). 1iK   is the 144 

Kalman gain matrix that represents the weight between the forecasts and observations. It can be 145 

calculated by (Moradkhani et al., 2005): 146 

  1

1 11 1
x xy yy
i ii i i iK S



             (13)147 

  1

1 11 1
y yy

i ii i i iK S 


             (14)148 

1 1 1

1

1
xy T
i i i i i i= X Y

N  


       (15)149 

1 1 1

1

1
y T

i i i i i i= Y
N


   


       (16)150 

1 1 1

1

1
yy T
i i i i i i= Y Y

N  


       (17)151 

where 1
xy
i i  is the cross covariance of the forecasted states; 1

y
i i

  is the cross covariance of the forecasted 152 

parameters; 1
yy
i i  is the error covariance of the forecasted output;  1

1 1 1 1 1, ,m N m
i i i i i i i i i iX = x x x x       and 1

m
i ix   153 

is the ensemble mean of the forecasted states;  1
1 1 1 1 1, ,m N m

i i i i i i i i i i=            and 1
m
i i   is the ensemble mean 154 

of the forecasted parameters;  1
1 1 1 1 1, ,m N m

i i i i i i i i i iY = y y y y       and 1
m
i iy   is the ensemble mean of the 155 

forecasted output; N  is the number of ensemble members; and the superscript T  represents the matrix transpose. 156 

Since the parameters are limited within an interval, the constrained EnKF is used (Wang et al., 2009) in this study. 157 

 158 

The ensemble size, uncertainties in input and output have significant impacts on the assimilation 159 
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performance of the EnKF, and they are determined based on previous studies (Wang et al., 2009; Xie 160 

and Zhang, 2010; Lü et al., 2013; Samuel et al., 2014). The ensemble size is set to 1000 for all cases. 161 

In the present study, the uncertainties including parameter errors ( , Eq. (8)), state variable error ( , 162 

Eq. (9)) and streamflow observation error ( , Eq. (10)), are assumed to follow a Gaussian distribution. 163 

In terms of the parameter errors, the standard deviation for C  is set to 0.01 for all the cases, while 164 

that of SC  are set from 0.5 to 5 to account for its uncertainties. The standard deviation of both model 165 

state and observation errors are assumed to be proportional to the magnitude of true values, and the 166 

scale factors are set to be 5% and 10% respectively for all cases (Wang et al., 2009; Lü et al., 2013). It 167 

should be noted that the variable variance multiplier can be used to perturb the observations 168 

(Leisenring and Moradkhani, 2012; Yan et al., 2015). 169 

 170 

2.3 Evaluation index 171 

Two evaluation criteria, including the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) and 172 

the volume error (VE) are used to evaluate the runoff assimilation results for the synthetic experiment 173 

and application to catchments (Deng et al., 2015; Li et al., 2015).  174 

 
 

2

, ,1
2

,1

1

n

sim i obs ii

n

obs i obsi

Q Q
NSE

Q Q






 






         (18) 175 
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, ,1 1

,1

n n

sim i obs ii i
n

obs ii

Q Q
VE

Q
 




  


         (19) 176 

where ,sim iQ  and ,obs iQ  are the simulated and observed runoff for the i th month; simQ  and obsQ  177 

are the mean of the simulated and observed runoff, respectively for the i th month; and n  is the total 178 

number of data points. The NSE has been widely used to assess the goodness-of-fit for hydrological 179 

modeling. A NSE value of 1 means a perfect match of simulated runoff to the observations. The VE is 180 

a measure of bias between the simulated and observed runoff. For example, VE with the value of 0 181 

denotes no bias, and a negative value means an underestimation of the total runoff volume. 182 

 183 

3 Data and study area 184 

3.1 Synthetic experiment 185 

A synthetic experiment is designed to evaluate the capability of the assimilation procedure to identify 186 

the temporal variation of model parameters. The model parameters are given with specific variation 187 

including trend, abrupt change and periodicity. Observations for precipitation and potential 188 

evapotranspiration are generated via a stochastic simulation, and runoff is then produced by using the 189 

monthly water balance model. The steps toward identifying temporal variation of model parameters are 190 

as follows:  191 

(1) Scenarios set: Generate the time-variant parameters with different trend variations, potential 192 

evapotranspiration and precipitation on a monthly time scale, then compute the runoff observations 193 
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using the two-parameter monthly water balance model. 194 

(2) Initialization: Specify the ensemble size and the total number of assimilation time steps. At the first 195 

time step, the model parameter and state variable ensembles are generated using a predefined Gaussian 196 

distribution based on the prior intervals in Table 1. 197 

(3) Data assimilation: After the initialization of parameters and state variables, the hydrologic model 198 

parameters and state are updated by assimilating the runoff observations obtained in Step (1). Note that 199 

the model parameters and state, as well as the runoff observations, are perturbed with an error item 200 

which is assumed a Gaussian distribution with zero mean and specified variance. 201 

 202 

The data set used in this experiment has a total length of 672 months. The first 24 months is set as 203 

model warm-up period to reduce the impact of the initial hydrological conditions. The experiment is 204 

implemented to identify the variation of model parameters from the scenarios in Table 2, respectively. 205 

 206 

The assimilated parameter results are evaluated using the following criteria, including the Pearson 207 

correlation coefficient (R), the root mean square error (RMSE) and mean absolute relative error 208 

(MARE): 209 

  
   

, ,1

2 2

, ,1

n

sim i sim obs i obsi

n

sim i sim obs i obsi

x x x x
R

x x x x





 


 




        (20) 210 
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 2

, ,1

1 n

sim i obs ii
RMSE x x

n 
           (21) 211 

, ,

1
,

1 n sim i obs i

i
obs i

x x
MARE

n x


           (22) 212 

where ,sim ix  and ,obs ix  are the assimilated and observed model parameters for the i th month; simx  213 

and obsx  are the mean of the assimilated and observed model parameters, respectively for the i th 214 

month; n  is the total number of data points. 215 

3.2 Study area 216 

3.2.1 Case 1: Wudinghe basin 217 

The method is applied in the Wudinghe basin (Fig. 1) located in the southern fringe of Maowusu 218 

Desert and the northern part of the Loess Plateau in China with a semiarid climate. It has a drainage 219 

area of approximately 30,261 km2 and a total length of 491 km and forms a part of the Yellow River 220 

basin. The Wudinghe basin has an average slope of 0.2%, and its elevation ranges from 600 to 1800 m 221 

above the sea level. The Baijiachuan gauge station, which is the most downstream station of the 222 

Wudinghe basin, drains 98% of the total catchment area. The mean annual precipitation over the basin 223 

is 401 mm, of which 72.5% occurs in the rainy season from June to September (Fig. 2). The mean 224 

annual potential evapotranspiration is 1077 mm, and the mean annual runoff is about 39 mm with a 225 

runoff coefficient of 0.1. 226 

 227 
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3.2.2 Case 2: Tongtianhe basin 228 

The Tongtianhe basin (Fig. 3) is located in southwestern Qinghai Province in China with a continental 229 

climate. It belongs to the source area of Yangtze River basin with a drainage area of about 140,000 km2 230 

and a total main stream length of 1206 km. The elevation of the Tongtianhe basin approximately ranges 231 

from 3500 to 6500 m above the sea level. Zhimenda is the basin outlet. The mean annual precipitation 232 

over the basin is 440 mm, of which 76.9% occurs in the period from June to September (Fig. 4). The 233 

mean annual potential evapotranspiration is 796 mm, and the mean annual runoff is about 99 mm with a 234 

runoff coefficient of 0.23. The Tongtianhe basin is barely affected by human activities owing to the 235 

limitation of the topographic condition and the water conservation measures conducted by the 236 

government. It should be noted that the Tongtianhe basin is used for comparative study on model 237 

parameter identification, where has no significant impacts from the climate change and human 238 

activities. 239 

 240 

3.2.3 Data 241 

The data set including monthly precipitation, potential evapotranspiration and runoff in Wudinghe basin 242 

(from 1956 to 2000) and Tongtianhe basin (from 1980 to 2013) are used in this study. The potential 243 

evapotranspiration is estimated using the Penman-Monteith equation (Allen et al., 1998) based on the 244 

meteorological data from the China Meteorological Data Sharing Service System (http://cdc.nmic.cn). 245 
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To reduce the impact of the model initial conditions, a 2-year data set, i.e., from 1956 to 1957 for 246 

Wudinghe basin and from 1980 to 1981 for Tongtianhe basin, is reserved as the warm-up period. The 247 

runoff estimations from the SCE-UA method (Duan et al., 1993) are compared with that of the EnKF. 248 

 249 

4 Results and discussion  250 

4.1 Synthetic experiment 251 

To assess the performance of the EnKF, the assimilated results are examined for the four scenarios in 252 

the synthetic experiment. The comparisons of the assimilated and true model parameters under 253 

different scenarios are presented from Fig. 5 to Fig. 8, and Table 3 shows the evaluation statistics for 254 

both the parameters and runoff assimilations. All these four figures show that the assimilated 255 

parameters of C  and SC  have similar trends as the true ones. These figures demonstrate that the 256 

SC  assimilation performs better than the C  assimilation. The runoff assimilation results (see Table 257 

3, penultimate and last columns) show that the estimation of runoff using the EnKF perfectly matches 258 

the observations with NSEs of 0.99 and VEs of approximately zero. It should be noted that there is a 259 

time lag in assimilated C  for the periodic case. In EnKF, the observation at the current time is used 260 

to adjust the state variables and parameters, and the updates of parameters depend on the Kalman gain 261 

for parameters. 262 

 263 
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The above results demonstrate that the EnKF is able to identify the temporal variation of the model 264 

parameters by updating the state variable and parameters based on the runoff observations. The 265 

estimated parameters for the cases of trend or abrupt change match the true values better than the case 266 

with periodic variation. 267 

 268 

4.2 Case studies 269 

Fig. 9 illustrates the double mass curve of monthly runoff and precipitation for Wudinghe and 270 

Tongtianhe basins, respectively. The top panel shows the linear relationship between cumulative runoff 271 

and precipitation before and after the turning point of January 1972 in the Wudinghe basin, which is 272 

same as the result presented by Li et al. (2014). The results show two straight lines with different slopes 273 

for the relationships between precipitation and runoff, indicating that changes occurred. While the 274 

bottom panel demonstrates a single linear relationship fits all the data for the Tongtianhe basin, 275 

suggesting a stable precipitation-runoff relationship during the 1982-2013 period. 276 

 277 

The temporal variation of estimated SC  and the associated 95% uncertainty interval are shown in Fig. 278 

10. The top panel shows an apparent increasing trend with two stages in Wudinghe basin. The first stage 279 

is from January 1958 to December 1971, when the water storage capacity has a significant increasing 280 

trend with a slope of 0.059. The water storage capacity in the second stage, from January 1972 to 281 
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December 2000, has an obvious increasing trend with a slope of 0.022. The temporal variation of water 282 

storage capacity is related to the change of catchment properties, such as the land use and land cover 283 

change. Since the 1960s, the soil and water conservation measures, including tree and grass planting, 284 

reservoir construction and land terracing, have been undertaken to cope with the soil erosion in 285 

Wudinghe basin. During the 1970s, large-scale engineering measures were effectively implemented, 286 

which improved the water holding capacity of the basin directly, and also provided a reasonable 287 

physical explanation for the increasing trend and its degree of SC  in the first stage. In the second stage, 288 

the water storage capacity increases slower than the first stage since the engineering measures have 289 

almost finished. Another important factor is the reduction of storage capacity for reservoirs caused by 290 

sediment accumulation. In the 1980s, lots of measures were adopted for comprehensive management 291 

within small catchments for further soil erosion control, which resulted in increasing grassland, forest 292 

land and terracing land. These land use changes played a significant role in increasing water storage 293 

capacity. On the other hand, the result of Tongtianhe basin shows that the estimated SC  has no 294 

pronounced trend since the R  value has an insignificance level. Moreover, the range of variation in 295 

estimated SC  values is much smaller compared to those of the Wudinghe basin. The grey regions 296 

represent the 95% uncertainty intervals obtained from the parameter ensemble. The results demonstrate 297 

that the EnKF performs well for parameter estimation with narrow uncertainty bounds. Fig. 11 shows 298 

the temporal variation of estimated C  values and the 95% uncertainty ranges for both Wudinghe basin 299 
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and Tongtianhe basin. The results demonstrate that the estimated C  has a stable value, with slopes that 300 

are almost zero for both the cases. The narrow uncertainty bounds indicate that the EnKF can provide 301 

superior performance of parameter estimation. 302 

 303 

Fig. 12 illustrates the comparison of the observed and estimated runoff from the EnKF and SCE-UA for 304 

both Wudinghe and Tongtianhe basins. The evaluation results are shown in Table 4. The NSEs from the 305 

EnKF and SCE-UA in the Wudinghe basin are 0.93 and 0.16, and the VEs are 0.07 and 0, respectively. 306 

While the corresponding index values from the EnKF and SCE-UA are 0.99 and 0.79, 0.04 and 0 in the 307 

Tongtianhe basin. Therefore, the EnKF has superior performance compared to the SCE-UA for both 308 

case studies. The results show that the data assimilation improves the runoff estimation. 309 

 310 

In summary, these analyses show that the EnKF can identify the temporal variation of model parameters 311 

well by updating both state variables and parameters based on the runoff observations. Moreover, the 312 

trends of parameter SC  can be explained by the change of catchment characteristics. On the contrary, 313 

the estimated SC  is approximately stable when the catchment is barely affected by human activities. 314 

Consequently, the EnKF provides effective performance for time-variant parameter identification.  315 

 316 

5 Conclusions 317 
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This study proposes an ensemble Kalman filter (EnKF) to identify the temporal variation of model 318 

parameters in a monthly water balance. A synthetic experiment, which contains four scenarios of model 319 

parameter variation, is designed to demonstrate the ability of the EnKF for identifying the temporal 320 

variation of the model parameters using the runoff observations. The main conclusions are drawn as 321 

follows.  322 

 323 

Based on EnKF, the variation of model parameters can be effectively identified by assimilating runoff 324 

observations. The EnKF can provide accurate results for parameter identification even though slight 325 

time lags exist when parameters have periodic variations. 326 

 327 

Then, the EnKF method is applied to the Wudinghe basin in China, aiming to detect the temporal 328 

variability of model parameters and to provide an explanation for the parameter variation from the 329 

perspective of catchment property change. Meanwhile, a comparative study is implemented to 330 

investigate the variation of model parameters in Tongtianhe basin where human activities barely exist. 331 

The parameter of water storage capacity ( SC ) for the monthly water balance model shows a significant 332 

increasing trend for the period of 1958 to 2000 in the Wudinghe basin. The soil and water conservation 333 

measures, including tree and grass planting, reservoir building and land terracing, have been 334 

implemented during 1958 to 2000, resulting in the increase of the water holding capacity of the basin, 335 
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which explains the increasing trends of SC . Moreover, the magnitudes of the engineering measures in 336 

different time periods play an important role in the degree of increasing trend for SC. In the Tongtianhe 337 

basin, the parameter SC  has no significant trend for the period of 1982 to 2013, which is consistent 338 

with the relatively stationary catchment characteristics. 339 

 340 

The method proposed in this paper provides an effective tool for the time-variant model parameters 341 

identification. Future work will be focused on the influence of the correlations between/among model 342 

parameters and performance comparison of multiple data assimilation methods. 343 
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 462 

Tables 463 

Table 1. Description and prior ranges of the two parameters for the monthly water balance model. 464 

Parameters and state variable Description Interval and unit 

Parameter C Evapotranspiration parameter 0.2-2.0 (-) 

SC Catchment water storage capacity 100-2000 (mm) 

State variable S Soil water content mm 

465 
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 466 

Table 2. Scenarios of time-variant model parameters in the synthetic experiment. 467 

Scenario Description 

Scenario 1 C has a periodic variation, and SC has an increasing trend  

Scenario 2 C has a periodic variation, and SC has an abrupt change 

Scenario 3 C has a periodic variation with an increasing trend, and SC has an increasing trend  

Scenario 4 C has a periodic variation with an increasing trend, and SC has an abrupt change 

468 
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 469 

Table 3. Performance statistics for parameter and runoff estimations in the synthetic experiment. 470 

Scenario Parameter RMSE R MARE
NSE  

(Runoff) 

VE (Runoff)

Scenario 1 C 0.15 0.554 0.21 0.99 0.0007

SC 182.87 0.987 0.03

Scenario 2 C 0.16 0.633 0.19 0.99 0.0001

SC 156.19 0.957 0.04

Scenario 3 C 0.12 0.636 0.12 0.99 -0.0012

SC 180.27 0.992 0.03

Scenario 4 C 0.12 0.695 0.12 0.99 -0.0009

SC 156.42 0.969 0.03

471 
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 472 

Table 4. Comparison of monthly runoff simulation performance between the optimization algorithm (SCE-UA) and 473 

the data assimilation method (EnKF) in Wudinghe basin within the period 1958-2000 and Tongtianhe basin within 474 

the period 1982-2013, respectively. 475 

Area Method NSE VE

Wudinghe basin SCE-UA 0.16 0

EnKF 0.93 0.07

Tongtianhe basin SCE-UA 0.79 0

EnKF 0.99 0.04
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Figures 476 

 477 

Figure. 1. Location of Wudinghe basin.478 
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 479 

 480 
Figure. 2. Mean monthly precipitation and runoff from 1956 to 2000 in Wudinghe basin.481 
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 482 

 483 

Figure. 3. Location of Tongtianhe basin.484 
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 485 

 486 
Figure. 4. Mean monthly precipitation and runoff from 1980 to 2013 in Tongtianhe basin.487 
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 488 

 489 

Figure. 5. Model parameters (evapotranspiration parameter C, water storage capacity SC) of assimilated and true in 490 

the synthetic experiment, considering C and SC are periodicity and increasing trend, respectively.491 
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 492 

 493 

Figure. 6. Model parameters (evapotranspiration parameter C, water storage capacity SC) of assimilated and true in 494 

the synthetic experiment, considering C and SC are periodicity and abrupt change, respectively.495 
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 496 

 497 

Figure. 7. Model parameters (evapotranspiration parameter C, water storage capacity SC) of assimilated and true in 498 

the synthetic experiment, considering C is periodicity with an increasing trend and SC is increasing trend, 499 

respectively.500 
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 501 

 502 

Figure. 8. Model parameters (evapotranspiration parameter C, water storage capacity SC) of assimilated and true in 503 

the synthetic experiment, considering C is periodicity with an increasing trend and SC is abrupt change, respectively.504 
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 505 

 506 
Figure. 9. Double mass curve of monthly runoff and precipitation for Wudinghe basin within the period 1958-2000 507 

(top figure) and Tongtianhe basin within the period 1982-2013 (bottom), respectively.508 
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 509 

 510 

Figure. 10. Estimated parameter values of SC  (water storage capacity) and associated 95% uncertainty intervals for 511 

Wudinghe basin within the period 1958-2000 (top figure) and Tongtianhe basin within the period 1982-2013 512 

(bottom).513 
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 514 

 515 

Figure. 11. Estimated parameter values of C  (evapotranspiration parameter) and associated 95% uncertainty 516 

intervals for Wudinghe basin within the period 1958-2000 (top figure) and Tongtianhe basin within the period 517 

1982-2013 (bottom).518 
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 519 

 520 
Figure. 12. Comparison of observed runoff and runoff estimations from the EnKF and SCE-UA for Wudinghe basin 521 

within the period 1958-2000 (top figure) and Tongtianhe basin within the period 1982-2013 (bottom). 522 
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