
HESSD
12, 3945–4004, 2015

Hydrologic
complexity

S. Pande et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Hydrol. Earth Syst. Sci. Discuss., 12, 3945–4004, 2015
www.hydrol-earth-syst-sci-discuss.net/12/3945/2015/
doi:10.5194/hessd-12-3945-2015
© Author(s) 2015. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Hydrology and Earth System
Sciences (HESS). Please refer to the corresponding final paper in HESS if available.

Hydrological model parameter
dimensionality is a weak measure of
prediction uncertainty

S. Pande1, L. Arkesteijn1, H. Savenije1, and L. A. Bastidas2

1Department of Water Management, Delft University of Technology, Delft, the Netherlands
2ENERCON Services Inc., Pittsburgh Office, Murrysville, PA, USA

Received: 19 March 2015 – Accepted: 24 March 2015 – Published: 16 April 2015

Correspondence to: S. Pande (s.pande@tudelft.nl)

Published by Copernicus Publications on behalf of the European Geosciences Union.

3945

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/3945/2015/hessd-12-3945-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/3945/2015/hessd-12-3945-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 3945–4004, 2015

Hydrologic
complexity

S. Pande et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

This paper shows that instability of hydrological system representation in response to
different pieces of information and associated prediction uncertainty is a function of
model complexity. After demonstrating the connection between unstable model repre-
sentation and model complexity, complexity is analyzed in a step by step manner. This5

is done measuring differences between simulations of a model under different realiza-
tions of input forcings. Algorithms are then suggested to estimate model complexity.
Model complexities of the two model structures, SAC-SMA (Sacramento Soil Moisture
Accounting) and its simplified version SIXPAR (Six Parameter Model), are computed on
resampled input data sets from basins that span across the continental US. The model10

complexities for SIXPAR are estimated for various parameter ranges. It is shown that
complexity of SIXPAR increases with lower storage capacity and/or higher recession
coefficients. Thus it is argued that a conceptually simple model structure, such as SIX-
PAR, can be more complex than an intuitively more complex model structure, such as
SAC-SMA for certain parameter ranges. We therefore contend that magnitudes of fea-15

sible model parameters influence the complexity of the model selection problem just as
parameter dimensionality (number of parameters) does and that parameter dimension-
ality is an incomplete indicator of stability of hydrological model selection and prediction
problems.

1 Introduction20

Reconciling models with observations is often ill-conditioned, especially when single
performance measures, such as mean square errors, are used to infer models (Gupta
et al., 2008). This ill-condition is often attributed to our attempt to extract higher dimen-
sional information (about the model) from a single dimension of information given by
the measure. It is therefore often recommended to select hydrological models either25

using multiple signatures of hydrological response or multiple objectives, the idea be-
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ing to constrain the model selection exercise (Gupta et al., 2008). Different signatures
(Sawicz et al., 2014) or multiple objectives (Gupta et al., 1998) are different measures
of closeness, which when orthogonal, provide complementary pieces of information
to select a better constrained model (Sivapalan et al., 2003; Winsemius et al., 2006).
The constraints imposed on the model selection exercise in effect may condition the5

problem well.
But is the issue of ill-conditionness limited to the discourse of the number of mea-

sures used? Can we say something about the nature of conditionness first before ad-
dressing the question of how it can be ameliorated by, for example, the use of multiple
signatures or objectives? A definition of ill-conditioness and the consequences of an ill-10

conditioned hydrological model problem are therefore needed. Renard et al. (2010) are
the first to formally introduce the notion of ill-posedness in hydrological modeling and
emphasized the importance of prior specification in correcting or properly conditioning
ill-posed model selection problems. Their approach appears to have been motivated by
the issue of non-identifiability, that not all parameters of interest are often decipherable15

from limited rainfall–runoff information (Beven, 2006). We ask an equivalent question
and attempt to formalize what ill-conditionness means: what happens when an ill con-
ditioned model is selected to represent the underlying hydrological system? Since it
fails to exploit interesting information in the data, there is uncertainty in system repre-
sentation (Gupta et al., 2008; Gupta and Nearing, 2014). Should not this uncertainty in20

assessing structure deficiency depend on the class of model structures which are used
to assess deficiencies? The characteristics of uncertainty in system representation can
then identify the consequences of ill-conditioned model selection problem and hence
define ill-conditioned model selection.

We characterize uncertainty in hydrological system representation as composed of25

non-uniqueness and instability in system representation. Non-uniqueness in system
representation (of the underlying processes) is synonymous to equifinality (Savenije,
2001). Meanwhile, instability refers to inconsistency in process representation as more
information on the underlying processes is available. That is, a set of models that ap-
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pears to be more representative on smaller pieces of information is not the best rep-
resentation as more pieces of information are brought to bear (Arkesteijn and Pande,
2013). The instability of model representation is not specific to the case when multiple
measures define different pieces of information as elucidated by Gupta et al. (2008).
Instability may exist even when using a single measure of performance but when the5

information content increases as the amount of available data increases. This is equiv-
alent to suggesting that information content of smaller datasets of similar lengths is
dissimilar. Instability can then be rephrased as a changing set of good system repre-
sentations (models) of underlying processes when different data sets of similar lengths
are used since different data sets of similar lengths may have dissimilar information10

content. This may especially be the case when data size is small and noisy, assuming
that the observations are samples from a probability distribution defined by the under-
lying processes. The small data sets suffer from sampling uncertainty.

In other words, different systems representations may appear to be suitable on dif-
ferent realizations. This may also partly explain how equifinal models may distinguish15

themselves when additional pieces of information are provided. Equifinal models on
one set of data, assuming use of a single measure of performance, may no longer be
equifinal on another set of data (or on another piece of information) if the two data sets
contain different information. This paper demonstrates that instability of a given model
over different realizations of data can be understood and controlled by what we term20

as model output space. Ill-conditionness of model identification can then be corrected
by constraining the extent of model output space. We call the extent of model output
space as the measure of complexity since its regularization would lead to a stabler rep-
resentation of underlying processes (Vapnik, 1982; Arkesteijn and Pande, 2013; Pande
et al., 2009).25

If an unstable system representation (model) is used for model prediction on yet
unseen data (or on another realization of underlying processes), its instability directly
translates into uncertainty in its prediction. Instability in model representation can also
be seen as poor representative of underlying processes since that selected model will
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not be a good representation of the underlying processes on another realization. Here
by prediction we mean model simulation of a variable of interest conditioned by certain
future values of input (forcing) variables. The regularization of the model selection prob-
lem by complexity, which corrects for the instability in system representation, then ame-
liorates prediction uncertainty. Complexity controlled model selection selects a model5

that predicts future values of a variable of interest with least uncertainty amongst the
set of competing models (Pande et al., 2009, 2012).

The Bayesian treatment of prediction uncertainty and model complexity is through
its specification of a marginal likelihood function of a hydrological model structure. The
marginal likelihoods of hydrological model structures are often approximated by mea-10

sures such as AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion)
and KIC (Kashyap Information Criterion) (Ye et al., 2008; Marshall et al., 2005). These
measures therefore embody Bayesian interpretation of model prediction uncertainty.

Less complex hydrological models are often preferred for stable system represen-
taiton (Pande et al., 2009; Schoups et al., 2008). Low computational complexity of15

simulations of models is also often desired (Keating et al., 2010; Young, 2003). We
here however only explore the concept of model complexity in context of stable system
representation. Often models with low parameter dimensionality (i.e. less number of
parameters) are considered less complex and hence are associated with low predic-
tion uncertainty. Whether this is always the case remains to be explored.20

We follow an alternate to Bayesian, i.e. frequentist, approach (Montanari and Brath,
2004) to model complexity to explore whether parameter dimensionality is the only in-
dicator of model complexity, instability in system represention and hence prediction un-
certainty. One strength of a frequentist approach is the ease with which unstable model
representation can be geometrically interpreted (Pande et al., 2009, 2012; Arkesteijn25

and Pande, 2013; Gupta et al., 2008). It also makes less restrictive assumptions. After
illustrating the context in which model complexity has been defined, i.e. in context of
unstable model representation of underlying processes and prediction uncertainty, we
explore the question of whether a hydrological model with more parameters is more
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complex or less complex in context of its influence on stability of system representa-
tion and hence prediction uncertainty. Within this context, we test the hypothesis that
model complexity also depends on the magnitude of parameters that define constitutive
relationships and model architecture.

The paper is organized as follows. Section 2 on methodology provides the theory, the5

models structures, datasets and the algorithms used. The theory first explores the con-
nection between unstable process representation and model complexity and then pro-
vides justification for complexity regularized model selection to ameliorate instability in
system representation. It then follows up with how hydrological model complexity may
be calculated. Algorithms for estimating complexity of an arbitrary hydrological model10

is then presented and the data sets to be used are introduced. Finally the two model
structures, SAC-SMA (Sacramento Soil Moisture Accounting model) and SIXPAR (Six
Parameter model), are introduced. Section 3 presents and discusses the results. Here
complexities of the two model structures are estimated to demonstrate the applicability
of the algorithms. Then parameter ranges of SIXPAR are varied in a controlled manner15

to demonstrate the effect of the magnitude of parameters on model complexity, in par-
ticular in comparison with complexity computed for SAC-SMA model structure. Finally
Sect. 4 concludes.

2 Methodology

2.1 Unstable system representation and model complexity20

We now illustrate that instability of a given model over different realizations of data can
be measured by what we term as model output space. Thereupon we demonstrate
that ill-conditionedness of model structure identification is corrected by constraining (in
a certain fashion, to be deliberated upon further) the extent of model structure output
space (that is a union of output spaces of models that comprise a model structure).25
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In order to do so, we first define what we mean by model output space. If N is
the sample size, the model output space is defined in a N-dimensional space. It is
a collection of all model outputs that are obtained for all possible N-dimensional input
forcings that underlying input processes may generate. Let distance in this space be
measured by a metric such as mean of absolute deviations or by any other measure of5

similarity. It is however required that the measure of similarity obeys the conditions of
being a metric (see Appendix A for further details). Figure 1 illustrates the concept of
model output space.

We define instability of a given model by the variability in the differences between
its outputs over two different realizations of data. A model then is more unstable if it10

tends to have larger differences between model simulations for any given pair of data
realizations. Such a definition is sufficient to encapsulate the notion of inconsistency
in process representation by a model. This is because it is quite likely that a highly
unstable model that appears to be a suitable representation of the underlying system
on one piece of information may not be a suitable representation on another or more15

pieces of information. Figure 1 illustrates this concept further.
Let T represent a set of observed output values for different realizations of input forc-

ing. For illustration purposes we have assumed N = 2 in Fig. 1, hence we have a 2
dimensional space in which the output space is defined. Let o1 = (o11,o12) represent
one observed output value for a given input forcing. Let p1 be the simulation of a model20

parameterized by θ1 corresponding to the same input forcing. A collection of such sim-
ulations over all possible input forcings define the output space M(θ1) of the model.
Let o2 and p2 be another pair of points in sets T and M(θ1) corresponding to another
realization of input forcing. Let A, B, C and D be the vectors connecting the 4 points
(see Fig. 1). Let ‖.‖ measure the magnitude of vectors and define the metric used. For25

example ‖A‖ = d (p2,o2), where d (p2,o2) is a metric that measures the nearness be-
tween two points in the model output space, for example mean absolute error or any
other measure that satisfies the conditions of being a metric (see Appendix A). Thus
‖A‖ and ‖C‖ measure the similarity of model representations of the output to the ob-
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served values for two different input forcings. Meanwhile ‖B‖ measures the closeness
of two model representations themselves and ‖D‖ measures the closeness of the two
observed time series.

Using the triangle inequality, see Appendix B, it can then be shown that | ‖A‖−
‖C‖ |6‖B‖+ ‖D‖. Thus the deviation in performance of a model over two different in-5

formation sources is bounded by ‖B‖ that measures how large is the model output
space. If we now consider another model parameterized by θ2 that belongs to the
same model structure as the model parameterized by θ1, we can define a model struc-
ture (here a model structure is defined as composed of of models corresponding to
parameter sets θ1 and θ2) output space that is a union of model output spaces M(θ1)10

and M(θ2) (Fig. 2). One can thus obtain model structure output spaces for arbitrary
model structures.

We now consider a case of nested model structures ∧1 and ∧2 such that all process
representations possessed by ∧2 are also possessed by ∧1 but not vice versa (Fig. 3).
This is to elucidate the role of the size of model structure output space in controlling15

the uncertainty in representing underlying processes. For an observed data point let o1

be an observation of underlying processes and let p1
1 and p

2
1 be the best model repre-

sentations provided by two model structures ∧1 and ∧2. The two simulations p
1
1 and p

2
1

correspond to models parameterised by θ1∗ and θ2∗, obtained from model structures
∧1 and ∧2 respectively, which are most similar to o1 in simulations. Since ∧2 is nested20

within ∧1, if p1
1 is not the same as p

2
1 then p

1
1 is closer to the observation o1. However,

if one observes another realization o2 of the underlying processes, the performance
of model parameterized by θ1∗ has more possibility to vary than the performance of
model parameterized by θ2∗, since the output space of ∧2 lies nested inside the output
space of ∧1. If p2

2 is the response provided by θ2∗ to the input forcing corresponding to25

o2, the response provided by θ1∗ to the same input forcings may vary widely, such as
p

1
2 or p′12 , in terms of its distance from o2. This possibility of more variable response
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to the same input forcing emerges from the larger output space of ∧1 in comparison to
∧2.

We illustrate this further through a synthetic case study. Appendix C describes the set
up in detail. 100 pairs of synthetic data sets, corrupted by input and output noises, are
generated from a simple single linear reservoir model. Two nested model structures are5

then considered. These are model structures defined by linear reservoir models (∧2)
and by two reservoir models (∧1). In the case of the latter, each of the two reservoirs are
linear reservoirs. The top reservoir feeds the lower reservoir via percolation as well as
produces runoff. Meanwhile the lower reservoir produces only runoff. It is evident that
(∧1) is more flexible than (∧2) and therefore intuitively has more propensity to produce10

unstable system representations. The differences | ‖A‖−‖C‖ | are calculated for each of
the 100 pairs and kernel density estimates of Pr(| ‖A‖−‖C‖ |>ε) are produced. Similarly
Pr(‖B‖>ε) is estimated. Both these probability of exceedences are plotted in Fig. 4.

Let E be some event and let Pr(E) define the probability of occurance of that event.
We first note that Pr(‖B‖>ε) is larger for two reservoir model structure ∧1 than for sin-15

gle reservoir model structure ∧2 for nearly all ε>0. Let E[‖B‖] be the expected value of
‖B‖ over multiple realizations of data. If the extent of a model structure output space is
measured by E[‖B‖], i.e. what is the distance between two arbitrary model simulations
in expected sense, we note that the extent of ∧1 is larger than ∧2. This is because
E[‖B‖] =

∫∞
0 Pr(‖B‖>ε)dε. Thus the distance between any two simulations is expected20

to be larger for ∧1 than for ∧2 since Fig. 4b demonstrates that Pr(‖B‖>ε) is larger for
∧1 for nearly all ε>0. The extent of model output space as measured by E[‖B‖] may
be able to distinguish between model structures in terms of stability in system repre-
sentation. We later provide further motivation for why it can be used as a measure to
control for instability in system representation and, by doing so, we provide the context25

for defining it a measure of model complexity.
Imagine uncertainty in process representation as the possibility of more variable

responses to the same input forcing. In the case of nested model structures, it is due
to larger size of structure output space. Hence it is a measure of structural complexity
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since larger complexity leads to higher possibility of more variable responses. The
definition of complexity is intuitive since structure output space of ∧1 is larger than ∧2
because it has model concepts not in ∧2. Hence it is more complex. Thus, uncertainty in
system representation can be controlled by controlling for model structure complexity,
at least when nested model structures are considered.5

Figure 4a also demonstrates that deviation in performance of system representations
from model structure ∧2 is often larger than ∧1, to the extent that Pr(| ‖A‖− ‖C‖ |>ε) is
larger for nearly all ε>0. Thus, process representations from model structure ∧2 is
expected to be more unstable than ∧1. The similarity in the ordering of complexity
and instability thus suggest that constraining the complexity of model structures can10

control instability in representation of underlying processes. Further, model structure
complexity is a measure of instability in process representation in the sense that larger
model structure complexity implies larger possibility of unstable process representation
(or higher uncertainty in process representation).

One can now flip the notion of uncertainty in process representation by considering15

the variability in system representations when a modeler has the liberty to select a new
representation as new information in the form of another realization of observations
comes to fore. Since ∧1 is more complex than ∧2, the variation, in best representa-
tions, over different realizations of observations, obtained from ∧1 is larger than when
they are obtained from ∧2. This is because ∧2 is nested within ∧1 and this leads to20

the possibility of larger variation in distances between best model representations and
observations for the latter. This is also illustrated in Fig. 5. One realization of obser-
vations o1 results in a selection of models corresponding to θ1∗ and θ2∗ from model
structures ∧1 and ∧2 respectively. However for another realization o2, the model struc-
ture ∧2 retains the same model representation while the model structure ∧1, owing25

to its more flexible structure, allows the selection of another model representation θ̃1.
Since the model structure ∧2 is nested within ∧1, model representations chosen from
∧1 would at least be as unstable as those chosen from ∧1, if not more, but never less.
The figure therefore illustrates that a more complex model structure results in a more
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unstable representation of the underlying processes. Thus it is necessary to control
the complexity of a model selection problem in a certain fashion if a “stable” process
representation is desired.

Following the synthetic case study presented in Appendix C, Fig. 6 demonstrates the
variability in best system representations from the two model structures. Figure 6a plots5

the kernel density estimate of variability in process representations from ∧1 over 100
data pair realizations while Fig. 6b plots the pairwise kernel density estimate of the
same for ∧1. It is evident from Fig. 6 that ∧1 offers more flexibility to accomodate sample
variability since it has higher complexity, especially by the tradeoff between k3 and k1.
One can observed this behavior by noting that bivariate densities of θ1∗ often have10

higher values of k1 and lower values of k3 when compared with the bivariate densities
of θ̃1. The parametric variation offered by ∧2 is rather limited as witnessed by the
cumulative density functions of θ2∗ and θ̃2.

2.2 Complexity regularized model selection

2.2.1 Abstract parameterization15

Both Figs. 4 and 6 suggest that controlling for the complexity in a model selection
exercise may stabilize the representation of underlying processes. This is akin to “cor-
recting” the ill-posedness (Vapnik, 1982) of model selection problem by constraining
the complexity of the model structures used. This is equivalent to regularized model
selection problem.20

Let a vector y0 = {y0(1),y0(2), . . .,y0(N)} define the set of observations of a variable
of prediction interest such as streamflow. It represents a realization of observations o.
Similarly, let forcing be represented by x = {x1,x2, . . .,xN} where x1 may not be univari-
ate, though assumed here to be univariate for simplicity without any loss of generality.
Further let a model from a model structure ∧ be represented by a parameter set θ25

that for given forcing x simulates y(x;θ) = {y(t,x;θ)}t=1,...,N . The prediction variable
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thus represents p. Let ξN (y0,x;θ) be defined as empirical risk that measures the per-
formance of the model in terms of deviations of its predictions from the observed, for
example by mean absolute error,

ξN (y0,x;θ) =

∑N
t=1|y(t,x;θ)− y0(t)|

N
. (1)

This represents ‖p−o‖, where we have assumed mean of absolute deviations as the5

metric.
Let us now reformulate the definition of a model structure wherein its internal archi-

tecture of how various subsystem representations are connected as well as its parame-
ters can both be defined by an abstract parameter set α. That is, both a model structure,
for e.g. ∧, and a model from the structure, for e.g. θ, are parameterized by α. Consider10

the linear and the two linear reservoirs model (as discussed in the previous section).
The linear reservoir model has only 1 parameter, i.e. the recession parameter k ∈ [0,1]
(dimension: [1/T ]). Meanwhile, the two reservoir model has 3 recession parameters
k = {k1,k2,k3} ∈ [0,1]3 (dimensions: [1/T ]3). If we now define the abstract parameter
set α = {α1,α2,α3} ∈ [0,1]3 then we can describe both the model structures. Model15

structure of a single reservoir model can be described by the set ∧1 = {0}× {0}× [0,1],
in which case α1 and α2 is restricted to 0 while α3 is allowed to vary between [0,1].
The two reservoir model structure can be described by the same parameter α, which
is less constrained and belong to [0,1]× [0,1]× [0,1]. Thus such a representation not
only distinguishes between two model structures in terms of its different subsystem ar-20

chitecture (one vs. two reservoir model structure) but also distinguishes in terms of its
parameter magnitudes. For example, in this representation a two reservoir model struc-
ture defined by {α : α ∈ [0,1]×[0.5,1]×[0,1]} that only permits fast flow from the second
reservoir is different from a model structure {α : α ∈ [0,1]× [0,1]× [0,1]} that does not
restrict the nature of flow from the second reservoir. Equation (1) can be reformulated25

in terms of α as,

3956

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/3945/2015/hessd-12-3945-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/3945/2015/hessd-12-3945-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 3945–4004, 2015

Hydrologic
complexity

S. Pande et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

ξN (y0,x;α) =

∑N
t=1|y(t,x;α)− y0(t)|

N
. (2)

This represents ‖p−o‖.
By doing this we no longer distinguish between a model and a model structure and

allow models to seamlessly change their model structure by changing α. Then a model
and its corresponding model structure is represented by y(t,x;α). We suppress t,x and5

represent a model by y(α). Further, since a distinction between a model and a model
structure has been dissolved by using α, any compact set of αs can now be called
a model structure.

2.2.2 A continuum of model structures defined by complexity

Let Φ(y(α)) be the complexity (here the extent of model output space) of the model10

y(α). We now note that the model output of any hydrological model is continuous in its
parameters. Further, the extent of model output space is continuous in model outputs
(the extent of one model output space is smaller than another if two simulations of the
former are closer than the latter for any given pair of input forcing). Therefore, Φ(y(α))
is continuous in α. In other words, a set ∧ = {α : Φ(y(α))6c} is compact and defines15

a model structure. By extension, we can obtain a sequence of model structures ∧m us-
ing the inequality Φ(∧)6cm for a sequence of cm, wherem = 1,2, . . ., j ... What this says
is that if the difference between any two upper bounds on Φ(y(α)) is small, the corre-
sponding model structures are similar. Based on our construction, we note that a model
structure here is a result not just of the architecture of how various model components20

are interconnected but also how they are parameterised. Thus model structures with
different architecture and parameterization may be deemed similar.

A model structure is then nested within another model structure if the complexity of
the former is smaller than the latter. Formally, ∧1 = {α : Φ(y(α)) ≤ c1} is nested within
∧2 = {α : Φ(y(α)) ≤ c2} if c1 ≤ c2. A continuum of model structures may therefore be25
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obtained by a sequence of c. The nomenclature “continuum of model structures” has
also been invoked elsewhere (Farmer et al., 2003; Gupta et al., 2008).

This is interesting because a definitive statement on structure complexity based on
parameter ranges or parameter dimensionality, i.e. without knowing their complexity in
advance, can only be made if the corresponding structures are nested. For a given5

model structure, such a statement can only be made if parameter ranges of one are
a subset of another. But the effect of parameter dimensionality on model complexity,
jointly with parameter magnitudes is not always clear. This is because the abstract
parameters corresponding to parameter dimensionality and their interaction with other
“real” parameters is not evident. The effect of parameter magnitudes on model com-10

plexity is also not clear. Hence, complexities of model structures and their effect on
prediction uncertainties may be counterintuitive. For example, a model structure that
has higher number of parameters than another may be less complex than the other
for certain parameter ranges. This is where the number of parameters and parameter
magnitudes jointly effect model complexity, uncertainty in process representation and15

consequent prediction uncertainty.
Consider the example of the linear reservoir model structure of Appendix C. In this

case one can state that a model structure with k ∈ [0,0.5] is less complex than a model
structure with k ∈ [0,1]. However, no statement can yet be made on how the com-
plexity of the model structure k ∈ [0,0.5] fares with complexity of model structure with20

k ∈ [0.5,1]. Now if we consider the 3 parameter model structure in Appendix C along-
side the single reservoir model structure, one can still state that a single reservoir model
structure with k ∈ [0,1], i.e. with α ∈ [0,1]×{0}×{0}, is less complex than the 3 reservoir
model structure with k ∈ [0,1]3, i.e. with α ∈ [0,1]3. This is because the former structure
is a subset of the latter. However one cannot state anything about structure complexi-25

ties of the two model structures with α ∈ [0,1]×{0}×{0} and α ∈ [0,0.5]×[0,0.3]×[0,0.5]
respectively unless their complexities are computed. This is because we cannot say
that one model structure is nested within the other.
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2.2.3 Stable system representation and top-down modelling approach

Let us now revisit the definition of a stable system representation: a problem of system
representation is stable if for two realizations of observations that are δ-close, corre-
sponding selected system representations are ε-close such that as δ becomes small
so does ε. Here by ε-close one means that distance between two system represen-5

tations is not larger than ε. Intuitively, it means that the problem of model selection
is bounded such that the selected representations do not differ dramatically for two
different realizations of data. Thus a model selection process is stable if the models
(or model structures) selected on similar realizations of observations are similar. Now
note that the demands of stable model selection are two two-fold: the need for a good10

representation of the underlying processes and the need to have a bounded represen-
tation, i.e. no two representations are drastically different when confronted with similar
observations. Since the complexity measure expressed in the form of Φ(y(α))6cm en-
sures that model structures corresponding to Φ(y(α))6cm are similar if two values of
cm are similar, complexity measure acts as a natural constraint to ensure stable model15

selection. Thus two objectives need to be considered, (i) maximize finite sample per-
formance by minimizing ξN , which ensures that a good model on a given sample is
selected and (ii) obey a constraint on model complexity for some value of cm, say c∗,
which ensures that model complexity is controlled for. Such a model selection problem
can be posed as,20

minαξN (y0,x;α)

s.t.

Φ(y(α))6c∗.

The above can alternatively be written as

Ξ(α∗N ) = minα ξN (y0,x;α)+ λ∗Φ(y(α)). (3)25
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Here λ∗ ≥ 0 still has to be estimated. This is often done on a set of observations that
is independent of the observations used to estimate models. Thus the choice of λ∗

depends on the model structures used and the underlying hydrological system since its
estimation is based on observations. It gauges how ill-posed is the problem of system
representation and how tightly should the model selection problem be controlled by5

complexity so that it can be stabilized.
Since the measure of complexity, in the context defined here, “stabilizes” system

representation, a complexity regularized model selection problem yields least uncertain
system representation over future unseen data. If the representation is used to predict
system behavior, such a representation also has least predictive uncertainty. It is in10

this sense that complexity controls predictive uncertainty if the problem of identifying
system representation is regularized by complexity, i.e. it controls predictive uncertainty
by “stabilizing” the problem of system representation. In other words, complexity is
a measure of predictive uncertainty since higher complexity of system representation
of underlying processes leads to more unstable system representation, which in turn15

implies higher predictive uncertainty.
An approach wherein additional process representations are added in a stepwise

manner, or a top down approach, increases complexity in a stepwise manner (Farmer
et al., 2003; Buttsa et al., 2004; Bai et al., 2009). Additional complexity with more
detailed or additional process representations trades off with the accuracy with which20

the processes are represented. Thus more complexity may be acceptable when it suffi-
ciently improves the representation of the underlying processes. Equation (3) describes
this tradeoff. The multiplier λ∗ ≥ 0 is the minimum amount of improvement in system
representation that is desired in order for a unit increment in model complexity.

Thus λ∗ measures the tradeoff between improvement in model performance and cor-25

responding increase in model complexity. This allows a formal framework to assess
how much additional model complexity is warranted, especially in a top down mod-
elling approach. This is because it also suggests that a more complex model is not
selected if it provides “really bad” system representation (Farmer et al., 2003; Son and
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Sivapalan, 2007). Thus model complexity may be increased in a step-wise manner till
model performance begins to decline.

2.2.4 Continuum of models and model complexity: parameter magnitude vs.
dimensionality

The continuum of model structures is an important construct since it dissolves the5

distinction between model architecture and model parameters. Model structures can
be defined based on constraints on model parameters or model outcomes or both,
ofcourse not excluding the case when structures are induced by different architectures.
Then complexity of such structures, now defined as a set of abstract parameters, can
be defined as the combined (union of) extent of output spaces of models corresponding10

to the parameters.
Since model complexity does not distinguish model architecture from model param-

eter magnitudes (by using abstract parameters), one can assess the relative effect of
model architecture over parameter magnitude on model complexity. Again, we can do
so because the concept of model complexity presented here depends on how a model15

transform input forcings to model simulations. This depends both on the architecture
and strengths of constitutive relationships.

The effects of number of parameters (as a result of model architecture) and mag-
nitude of parameters (as a result of the strength of constitutive relatioships) on model
complexity can be decomposed. This can be done by estimating model complexity of20

two model structures when their parameter ranges are “equivalent” and then fixing the
model architecture and varying parameter magnitudes. Equivalent parameter ranges
ensure that two model architectures have, for example, similar water storage capacities
and water residence times but are different in model architectures. Meanwhile variation
in parameter mangnitudes for the same model architecture provides model structures25

that differ in storage capacities and residence times. Overall model complexity can then
be thought of as the combined effect of architecture and parameter magnitudes.
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2.3 Estimation of model complexity

Section 2.1 suggests that E[‖B‖] is able to distinguish between model (structures) in
terms of stability in process representation and can serve as a measure of model
complexity (the extent of model output space) in the context of stabilizing system rep-
resentation. We however note that it is one statistic of the distribution Pr(‖B‖>ε). A dis-5

tributed measure of complexity may well be desired but we leave an investigaton of this
for future research. Here we demonstrate how E[‖B‖] can be estimated in a step by
step manner (see also Arkesteijn and Pande, 2013). By doing so we also explain the
algorithms presented in Sect. 2.4.

First we note that E[‖B‖] is the expected difference in a model’s simulations for two10

realizations of observations. We now translate what it means for an arbitrary hydrolog-
ical represented by y(α).

Definition 1: Let E[‖B‖] = E[‖y(x1;α)−y(x2;α)‖], where ‖y(x;α)−E[y(x;α)]‖ =∑
t=1,N

|y(t,x;α)−E[y(x;α)]|
N . Thus we assume that the mean of absolute deviations is the

metric used.15

The statistic provided in Definition 1 is similar to E[‖y(x;α)−E[y(x;α)]‖], which also
measures variation in simulations of a model parameterized by α. We will use the latter
to represent E[‖B‖].

Also, note that the expectation is obtained by taking the average of ‖y(x;α)−
E[y(x;α)]‖ over a large number, say M, of realizations of observations, i.e.20

E[‖y(x;α)−E[y(x;α)]‖] = limM→∞

M∑
k=1

‖y(xk ;α)−E[y(xk ;α)]‖
M

.

This is because a very large set of observations of size N ′ can be divided into very
large M subsets of observations of size N such that N ′ =MN. The above thus allows
us to estimate complexity E[‖B‖] by estimating ‖y(xk ;α)−E[y(xk ;α)]‖ on k = 1, . . .,M
sets of observations of size N. Also, M→∞ is indicative of a very large M. Often, M25

may not be required to be large if variation in ‖B‖ asymptotes after some finite value of
3962

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/3945/2015/hessd-12-3945-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/3945/2015/hessd-12-3945-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 3945–4004, 2015

Hydrologic
complexity

S. Pande et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

M, whereupon E[‖B‖] can be estimated with high confidence. The estimation of model
complexity as presented here thus rests on estimating E[‖y(x;α)−E[y(x;α)]‖].

Definition 2: Let us denote E[‖y(x;α)−E[y(x;α)]‖], that measures the complexity of
a model parameterised by α, by γ̃.

Then, by definition, the probability that E[‖y(x;α)−E[y(x;α)]‖]>γ is 1 when γ6γ̃5

and 0 otherwise for all γ>0. This is because Pr(E[‖y(x;α)−E[y(x;α)]‖]>γ) = Pr(γ̃>γ),
which is equal to 1 when γ6γ̃. It is equal to 0 otherwise. Thus,

Pr(E[‖y(x;α)−E[y(x;α)]‖]>γ) =

{
1 if γ6γ̃

0 otherwise
. (4)

We now show that E[‖y(x;α)−E[y(x;α)]‖] can be expressed as

limN ′→∞
∑
N ′
|y(t,x;α)−E[y(t,x;α)]|

N ′ , where N ′ =MN.10

E[‖y(x;α)−E[y(x;α)]‖] = limM→∞
∑

k=1,.,M

‖y(xk ;α)−E[y(xk ;α)]‖
M

= limM→∞
∑

k=1,...,M

1
M

∑
t=1,...,N

|y(t,xk ;α)−E[y(t,xk ;α)]|
N

= limN ′→∞
∑
N ′

|y(t,x;α)−E[y(t,x;α)]|
N ′

. (5)

From equation system (5) we note that

Pr(E[‖y(x;α)−E[y(x;α)]‖]>γ) = Pr

(
limN ′→∞

∑
N ′

|y(t,x;α)−E[y(t,x;α)]|
N ′

>γ

)
. (6)15

The argument of the Right Hand Side (RHS) of Eq. (6) therefore also measures
complexity, i.e. E[‖B‖], since the argument of Left Hand Side (LHS) measure it as per
definition 1. We now note as a consequence of Proposition 1.1.1 of Ross (1996) that
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Pr

(
limN ′→∞

∑
N ′

|y(t,x;α)−E[y(t,x;α)]|
N ′

>γ

)

= limN ′→∞Pr

(∑
N ′

|y(t,x;α)−E[y(t,x;α)]|
N ′

>γ

)
. (7)

Equation (7) states that the limit of the probability is the same as the probability of
the limit. Readers are referred to the Supplement of (Arkesteijn and Pande, 2013) for
additional details.5

Definition 3: Let PN,γ be defined as Pr
(∑

N
|y(t,x;α)−E[y(t,x;α)]|

N >γ
)

.

We now estimate PN,γ, since its argument contains the measure of complexity as per
definition 2 and Eqs. (6) and (7). How the measure of complexity is extracted from the
argument is now demonstrated.

For this we first invoke Markov’s Lemma, which states that for any X>0 and t > 0 the10

following inequality holds,

Pr(X>0)6
E[X 2]

t2
. (8)

By substituting X by
∑
N
|y(t,x;α)−E[y(t,x;α)]|

N in inequality (8), we obtain the following
inequality,

PN,γ = Pr

(∑
N

|y(t,x;α)−E[y(t,x;α)]|
N

>γ

)
6
E
[(∑

N |y(t,x;α)−E[y(t,x;α)]|
)2
]

N2γ2
. (9)15

The inequality (9) can now be rearranged to obtained an expression for PN,γN
2γ2,

the motivation behind invoking Markov’s inequality. We then obtain

PN,γN
2γ26E

(∑
N

|y(t,x;α)−E[y(t,x;α)]|
)2
 . (10)

3964

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/3945/2015/hessd-12-3945-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/3945/2015/hessd-12-3945-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 3945–4004, 2015

Hydrologic
complexity

S. Pande et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Several points are in order based on inequality (10). The Right Hand Side is inde-
pendent of γ. It is a sum of N(N+1)

2 non-negative numbers, thus it can be bounded by

some function of N2. Since the inequality is not strict, a maximum of the Left Hand
Side, i.e. PN,γN

2γ2, with respect to γ can be equated to the Right Hand Side. Thus

maxγPN,γN
2γ2 is a function only ofN, while PN,γ is both a function of γ andN. Since the5

Right Hand Side is O(g(N2)) (a function f (x) =O(g(N2)) means that |f (x)| ≤ c|g(N2)|,
where c > 0), we assume it to be a quadratic functon of form f (h,N) = β2N

2+β1N+β0
with h = {β2,β1,β0}. We therefore have

maxγPN,γN
2γ2 = f (h,N). (11)

Let γ∗N represent the γ that maximizes PN,γN
2γ2, then PN,γ∗N

= f (h,N)

N2γ∗2N
=10

1
γ∗2N

(
β2 +

β1
N + β0

N2

)
. Finally, if we represent γ∗ as the γ that maximizes limN→∞PN,γN

2γ2,

then PN,γ∗N
→ β2

γ∗2
as N→∞.

We now show that γ∗ = E[‖y(x;α)−E[y(x;α)]‖] = γ̃ maximizes PN,γN
2γ2 as N→∞.

This is because of two reasons. First, as N→∞, PN,γ→ Pr(E[‖y(x;α)−E[y(x;α)]‖]>γ)
from Eqs. (7) and (6). But then Pr(E[‖y(x;α)−E[y(x;α)]‖]>γ) is either 1 (maximum15

value) or 0 (minimum value). The maximum value is achieved when γ6E[‖y(x;α)−
E[y(x;α)]‖] and the minimum value is achieved when γ > E[‖y(x;α)−E[y(x;α)]‖] re-
spectively (see Eq. 4). Meanwhile γ2 is increasing in γ. Thus γ∗ that maximizes
PN,γN

2γ2 as N→∞ is the maximum possible value of γ for which lim→∞PN,γ = 1.
This is γ∗ = E[‖y(x;α)−E[y(x;α)]‖] = γ̃, which is a measure of complexity.20

Thus as N becomes large we note the following based on the arguments above:
(i) PN,γ∗2N

becomes 1, and (ii) PN,γ∗2N
becomes β2

γ∗2N
and (iii) γ∗2N becomes the measure of

complexity E[‖y(x;α)−E[y(x;α)]‖]2. These 3 points therefore suggest that hydrological
model complexity can be estimated if we estimate β2 since E[‖y(x;α)−E[y(x;α)]‖]
becomes

√
β2 as N becomes large.25
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All we now have to do is estimate β2 to estimate complexity, which in turn can be es-

timated based on Eq. (11). We study the behavior of PN,γ = Pr(
∑
N
|y(t,x;α)−E[y(t,x;α)]|

N >γ)
for a given model on synthetically generated data in order to estimate β2. In particular
we study the maximum of PNN

2γ2 for various values of N and when it asymptotes we
obtain the measure of model complexity, β2.5

We summarize the above arguments to estimate complexity based on expressions
(11), (7), (5) and (4) in the following steps.

1. Let γ∗N be the one that maximizes PN,γN
2γ2. Then from equality (11) PN,γ∗ =

f (h,N)

N2γ∗2N
.

2. Let limN→∞γ
∗
N = γ∗. From inequality (7),

limN→∞PN,γ∗N
= Pr

(
limN→∞

∑
N

|y(t,x;α)−E[y(t,x;α)]|
N

>γ∗
)

.10

3. From expression (5),

Pr
(
E[‖y(x;α)−E[y(x;α)]‖]>γ∗

)
= Pr

(
limN→∞

∑
N

|y(t,x;α)−E[y(t,x;α)]|
N

>γ∗
)

.

4. From expression (4) we have Pr(E[‖y(x;α)−E[y(x;α)]‖]>γ) is either 0 or 1 for dif-
ferent values of γ. Since, from steps (1)–(3), γ∗ maximizes limN→∞PN,γN

2γ2, we
require Pr

(
E[‖y(x;α)−E[y(x;α)]‖]>γ∗

)
= 1 and γ∗ = γ̃ = E[‖y(x;α)−E[y(x;α)]‖].15

5. From steps (4) to (2), we obtain limN→∞PN,γ̃ = 1.

6. From steps (5), (4), (2) and (1) we obtain limN→∞
β2N

2+β1N+β0

N2γ̃2 = β2

γ̃2 = 1.

7. From steps (6) and (4), we obtain E[‖y(x;α)−E[y(x;α)]‖] = γ̃ =
√
β2.
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Thus complexity can be estimated by β2. The parameter set h, that includes β2,
are estimated by regressing a quadratic function to maxγPN,γN

2γ2 that is numerically
estimated for various values of N. Algorithms 1 and 2 peform this task. Using Eq. (4) we
further define a measure of complexity, F (h,N) = f (h,N)

N2 , that is dependent on N such
that limN→∞F (h,N) = β2. We call β2 asymptotic complexity in this context.5

2.4 Algorithms and data

The computation of model complexity requires a synthetically generated input forcing
data set because PN,γ needs to be estimated in order to estimate maxγPN,γN

2γ2 for
each N. This inturn requires the estimation of E[y(t,x;α)], which can be estimated
based on synthetically generated input forcing data.10

We here note that a vector E[y(x;α)] = {E[y(t,x;α)]}t=1,...,N is desired that preserves
the autocorrelation that a model simulation may bring. It also represents the expecta-
tion of a N-vector in the N-dimensional model output space. Here x is a N-dimensional
input forcing, i.e. x = (x1,x2, . . .,xt, . . .,xN ). For notational simplicity we have assumed
xt is a one-dimensional varaible. Also, note that the intention is to use it to esti-15

mate Pr(‖y(x;α)−E[y(x;α)]‖ ≥ γ). Thus if have M realizations of input forcings, i.e.
{x1,x2, . . .,xk , . . .,xM}, we estimate the expectation of N-dimensional model simula-
tions as

E[y(x;α)] =

{ ∑
k=1,...,M

y(1,xk ;α)

M
,
∑

k=1,...,M

y(2,xk ;α)

M
, . . .,

∑
k=1,...,M

y(t,xk ;α)

M
, . . .,

∑
k=1,...,M

y(N,xk ;α)

M

}
.20

We now present an algorithm that computes the expectation operator on the syntheti-
cally generated data set (Arkesteijn and Pande, 2013). The input forcing basin datasets
for this algorithm are obtained from the MOPEX data sets (Duan et al., 2006; Brooks
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et al., 2011). 5 basins from different hydroclimatic regions are used. By doing so we
test whether the ordering in terms of its complexity of various model structure set-ups
changes with different data sets. Insensitivity of the ordering of structure complexities
to the data sets used for input forcings is crucial for any robust statement about the
role of parameter magnitudes in determining model complexity. Table 1 provides char-5

acteristics such as area, mean annual precipitation and evaporation and hydrologic
ratios such as runoff ratio and dryness index, for the basins used in this study. Figure 7
displays them.

The algorithm is a resampler that block bootstraps time series from a given sample
of data (Kundzewicz and Robson, 2004; Politis and Romano, 1994). Arkesteijn and10

Pande (2013) discuss that the weather resampler bootstraps blocks of wet/dry spell
pairs where each block contains one wet/dry spell pair. The algorithm can be improved
by increasing the number of contiguous wet/dry samples within each block. We use
basin input forcing data set (of precipitation and potential evapotranspiration) and gen-
erate multiple realizations for the complexity, one for each sampled parameter. We15

also partially account for the sensitivity of complexity computation by permuting data at
monthly scale in such a way that intra-annual autocorrelation in forcing time series is
randomized. Sensitivity of complexity computation is also tested against multiple basins
and different wet-dry spell identification by choosing basins from different regions of the
US (Fig. 7).20

Algorithm 1:

1. Extract daily precipitation and potential evapotranspiration data for a basin.

2. Identify a block of contiguous wet (a set of contiguous days with positive precipita-
tion) and dry (a set of contiguous days with zero precipitation) spell pairs for each
month: determine the amount and length of spell pairs and attach an identifier to25

each spell.

3. Construct a one month sample for each month: conditioned on a selected month,
randomly sample (with replacement) blocks of spell pairs, along with potential
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evaporation values for the same days, across different years for the same month,
appending these blocks till the total length of the sequence exceeds 30 days.

4. Go to step 3 for other months until all 12 months of a year have been sampled.

5. Permute the months (if correlation between months is to be removed), while main-
taining the order of sequences within each month, to create one year sample.5

6. Repeat steps 4 and 5 to create a realization of input forcings at daily time steps
with N datapoints.

7. Go to step 6 until M realizations of N datapoints are created.

The algorithm resamples forcing data from an observed dataset of a basin such that
auto (and cross) correlation of the variables are preserved at certain scale. For each10

month, for example January, wet-dry spell pairs are identified and a resample for the
month is generated by bootstrapping such pairs with replacement (i.e. the pairs are
put back in the month and can be resampled again). A resample for a month is cre-
ated once the total length of days resampled in such a manner is at least 30. Then if
the auto-correlation is to be preserved at certain scale, for example at 3 month scale15

(called “Medium 4”), then the ordering of 3 month blocks of monthly (re-)samples is per-
muted. The “4” in “Medium 4” therefore represents the number of blocks in a year that
need to be permuted. That is, the ordering of the set of 3-tuples {JFM,AMJ,JAS,OND}
is permuted, where each letter stands for the beginning letter of a resampled month
(“JFM” for January-February-March, “AMJ” for April-May-June, and so on). Thus a re-20

sample of forcing data for a year that preserves correlation at 3 month scale can be
{AMJ, JFM, OND, JAS}. Repeating the process for multiple years thus re-samples (or
stochastically generates) forcing data for multiple years and correlation is preserved
at certain scale. The preservation of the entire seasonal cycle (“Complete”), of the
monthly correlation at 6 month scale (“Medium2”), of the monthly auto-correlation at25

3 month scale (“Medium 4”) and of no month to month autocorrelation (“None”) is cur-
rently allowed.
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Using the weather resampler, M = 2000 sequences of N = 5000 datapoints for daily
precipitation and potential evaporation are obtained. For each realization, input forc-
ings of smaller sample sizes N = 200 : 50 :N are obtained by sampling its first N data
points. Since SIXPAR model structure does not explicitly incorporate evaporation (see
Supplement), the precipitation data used for SIXPAR is assumed to be equal to a max-5

imum of the precipitation minus potential evaporation and zero.
Once multiple realizations of input forcing data have been generated (resampled), Al-

gorithm 2 computes the complexity of models for a sampled parameter set (Arkesteijn
and Pande, 2013) as outlined in the previous section. It uses the M realizations
of input forcings to first estimate expected value of model simulations of size N,10

i.e. E[y(x;α)] and then estimate probabilities of exceedences for γ = 0 : γ, where
PN,γ = Pr(

∑
N
|y(t,x;α)−E[y(t,x;α)]|

N >γ). These are the steps involved in step 1 of Algorithm
2.

Algorithm 2:

1. For each parameter set of a model structure set up, estimate PN,γ, for a given15

value of N and γ using M samples of data set of size N, obtained from Algorithm
1.

2. Estimate the maximum f̃ (N) of PN,γN
2γ2 with respect to γ for each N. Let the

maximizing γ be γNmax.

3. Repeat steps 1 and 2 for N = 200 : 50 :N.20

4. Determine the set of coefficients h = {β2,β1,β0} of f (h,N) = β2N
2+β1N+β0 that

fits data points {f̃ (N), N = 200 : 50 :N}. The set of coefficients h defines the model
complexity.

5. Repeat step 1–4 to estimate complexity for different parameter sets of a model
structure.25
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In total 500 parameter sets are sampled from each range presented in Tables 2 and
3.

2.5 Model structures and parameter ranges

2.5.1 SAC-SMA and SIXPAR model structures

The two model structures that are used are SAC-SMA (Sacramention Soil Moisture5

Accounting model) and SIXPAR (Six Parameter model). SAC-SMA is a complex hydro-
logical model structure with a two layer reservoir architecture and a nonlinear percola-
tion conceptualization. The two upper zone reservoirs represent a free water zone and
a tension water zone, wherein the former controls the percolation to the lower zones
while the tension water zone mainly controls the evaporation and feeds the free water10

zone. The percolation is a nonlinear complex function of demand from the lower reser-
voirs and available supply of water from the upper zone reservoirs. Both the upper and
lower zones also control the outflows. The SIXPAR model structure, which is a concep-
tual simplification of the SAC-SMA model with one upper and lower zone, evaporation
and the concept of tension water zones but retains the complex conceptualization of15

percolation. These models are run at daily time steps using input forcing from selected
basins (in Table 1). Additional details on the models can be found elsewhere (Bur-
nash, 1995; Duan et al., 1992; Arkesteijn and Pande, 2013).The code used and further
explanation for SIXPAR is provided in the Supplement.

2.5.2 Parameter ranges as model structures20

Table 2 provides the “reference” parameter ranges for SAC-SMA. Table 3 provides var-
ious parameter ranges of SIXPAR, including so called “reference” ranges and “equiva-
lent” ranges. The model structures and various parameter ranges that govern param-
eter magnitudes of models that are sampled from these ranges allow us to study the
(decomposed) effect of structure architecture and parameter magnitudes on computed25
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complexity. We note that these two effects are mixed when arbitrary (here called “ref-
erence”) parameter ranges of SAC-SMA and SIXPAR are considered. However the
effect of structure architecture (and the role of the number of parameters) on com-
plexity emerges when we control the ranges of the parameters. This is when we have
“equivalent” parameter ranges for the two model structures.5

The parameter range of SIXPAR model structure is made “equivalent” to the “ref-
erence” parameter range of SAC-SMA model structure by ensuring that (i) the upper
bounds on the reservoir capacities of the two layers of SIXPAR is equal to the sum
of upper bounds on the reservoir capacities of the corresponding layers of SAC-SMA
model structure and (ii) the corresponding lower and upper bounds of the recession10

parameter ranges of SIXPAR model structure are the geometric means of the corre-
sponding lower and upper bounds of the SAC-SMA recession parameters. In terms
of abstract parameters, this would then mean that the set of αs (abstract parameters)
corresponding to the SIXPAR model structure are a subset of αs corresponding to the
SAC-SMA model structure. Hence SIXPAR model structure would be nested within15

SAC-SMA structure in “abstract” sense.
In order to study the effect of parameter magnitudes on model complexity, we restrict

our attention to the “reference” ranges of SIXPAR and contrain the paramater ranges
in three ways. The three parameter ranges are called (i) “High recession”, (ii) “Low re-
cession”, and (iii) “High storage/Low recession”. These correspond to the “reference”20

parameter ranges for SIXPAR except that (i) corresponds to the case where the lower
bounds of the recession ranges for the two layers are higher than the means of the cor-
responding “reference” ranges, (ii) corresponds to the case where the upper bounds of
the recession ranges are lower than the means of the corresponding “reference” ranges
and (iii) corresponds to the case where the means of storage capacities are larger than25

the means of the corresponding “reference” ranges and where the recession ranges
are the same as in (ii). The three parameters ranges define three different model struc-
tures. The “High recession” and “Low recession” model structures are nested within
the “reference” model structure of SIXPAR, while the “Low recession” SIXPAR model
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structure is nested within “High storage/Low recession” model structure. Finally, both
the “Low recession” and “High storage/Low recession” model structures are nested
wthin the “equivalent” SIXPAR model structure.

The complexities of SIXPAR model structures for “reference”, “equivalent”, and (i)–
(iii) ranges are computed on the selected hydrological data sets of MOPEX basins (see5

Table 1) and compared with the SAC-SMA model structure complexities computed on
the same basins for its “reference” parameter range. The complexities of the model
structures corresponding to the specified ranges are computed using Algorithm 2. It
uses resampled basin scale potential evaporation and precipitation data using Algo-
rithm 1.10

3 Results

The Algorithm 2 provides complexity computations for each of the two structures for
the parameter sets sampled from ranges defined in Tables 2 and 3. The algorithm uses
input forcing realizations resampled by Algorithm 1 from input forcings of the selected
MOPEX basins. The parameters are sampled using Latin Hypercube Sampling. As15

a result, Algorithm 2 provides a collection of {β1,β2,β3} corresponding to parameter
sets that are sampled from a specified range for each model structure. Note that the
algorithm computes one set of {β1,β2,β3} corresponding to one sampled parameter
set. A corresponding distribution of F (h,N) = f (h,N)

N2 = β2+
β1
N + β0

N2 as a function of N can
therefore be obtained. Figure 8 demonstrates the variation of 50th percentile values of20

F (h,N) (over the 500 parameters sampled from “equivalent” parameter ranges) with N
for the SIXPAR model structure using data from basin “NC”.

The different curves correspond to different month permutations (step 5 of Algorithm
1) of the resampled input forcing data set. We note that the estimation of the curve
is insensitive to the type of permutation in step 5 of Algorithm 1. We further note that25

F (h,N) declines with increasingN and reaches an asymptote for largeN. Since F (h,N)
is a function of complexity, represented by “h”, and N, the value of F (h,N) at large
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N (when F (h,N) asymptotes and becomes insensitive to N) reveals the measure of
complexity (β2). The asymptotic value of F (h,N) is used to compare the complexity
of different model structure set-ups. We here note that F (h,N) already asymptotes
around 2500 data points. Since Algorithm 1 resamples daily datasets, this means that
N = 2500 is as large as N→∞ with regards to computing asymptotic complexity. It5

also means that when N = 2500 datapoints are enough to obtain a representation of
the underlying processes that is not influenced by sampling uncertainty. In other words,
this sample size is large enough to accurately reveal how unstable is the representation
of underlying processes by SIXPAR model structure that is “equivalent” to SAC-SMA.

Figure 9 demonstrates that the asymptotic complexity for parameter ranges of SAC-10

SMA sampled from its “reference” ranges (Table 2) appears to be less complex than the
asymptotic complexity of SIXPAR when sampled from its “reference” ranges (Table 3).
This may appear counterintuitive since SIXPAR model structure is a conceptual sim-
plification of SAC-SMA. However, similar conclusions have been drawn elsewhere for
regression problems, where it has been shown that model complexity is both a function15

of magnitude and dimensionality of model parameters. For example, Bartlett (1998)
and Vapnik and Chapelle (2000) find that the complexity of ANNs (Artificial Neural Net-
works) and SVMs (Support Vector Machines) are not only dependent on the dimen-
sionality of the regressors but also crucially depend on the magnitude of the parame-
ters. Ridge regression also regularizes the linear regression problem by penalizing the20

magnitude of the parameters (Marquardt and Snee, 1975).
Based on our construct of a continuum of model structures, which does not distin-

guish between model structures and parameter magnitudes, it may be possible that
effect of parameter magnitudes on model complexity may compensate for the effect
of structure architecture. We know that higher parameter dimensionality as a result of25

more complicated structure architecture leads to higher complexity. Thus magnitudes
of parameters sampled from “reference” parameter range for SIXPAR compared to
“reference” parameter range for SAC-SMA must have some compensating effect to re-
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duce model complexity to such an extent, inspite of higher parameter dimensionality.
We now look for those possible effect of parameter magnitudes on model complexity.

Figure 10 further studies the effect of sampling SIXPAR parameters from various
ranges in Table 3 on its complexity. It suggests that complexity is less sensitive to
recession parameters at lower magnitudes than it is at higher magnitudes since the5

median complexity for “low recession” range is closer to median complexity for “refer-
ence” recession range than the median complexity for “high recession” range. Further,
the model complexity increases when the magnitudes of the recession parameters are
increased. Finally, an increase in reservoir storage capacities leads to a reduction in
model complexity. This can be seen from the median complexities of box plots corre-10

sponding to “Low recession” and “HS/LR” (i.e. high storage with low recession). Finally
“Equivalent” SIXPAR model structure has the lowest complexity. We note that param-
eters sampled for “Equivalent” SIXPAR tends to have high storage and low recession
when compared to the parameters sampled for the “Reference” SIXPAR. It is this effect
of sampling high storage capacities and low recession parameters that brings down15

the complexity of SIXPAR in its “Equivalent” version.
The figure therefore suggests that high values of recession coefficients, i.e. small

residence times, and low storage capacities lead to high complexity. This is intuitive,
models with smaller residence time and lower storage capacities are more sensitive
to perturbation in input forcing and hence have higher possibility of leading us to an20

unstable systen representation.
Over all, this demonstrates that the magnitude of parameters appear to have an ef-

fect on model complexity. Figure 11 shows a comparative variation of computed com-
plexity with sample size N for SAC-SMA and SIXPAR. Figure 11a shows the compari-
son between the two models when parameters are sampled from “reference” parame-25

ter ranges and Fig. 11b compares the two model structures when the parameters are
sampled from “equivalent” parameter ranges. The y axis, PN = PN,γ∗N

, where γ∗N is the

one that maximizes PN,γN
2γ2 in Eq. (11). Then from equality (11), PN,γ∗ =

f (h,N)
N2γ∗2

is an

increasing function of model complexity as defined by the 3-tuple {β2,β1,β0}.
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Both the figures demonstrate that the differences in complexities of the two model
structures are more evident for small sample sizes. In effect, this figure demonstrates
the decomposed effect of parameter dimensionality and parameter magnitudes on
model complexity. Figure 11a suggests that SIXPAR model structure is more com-
plex, due to sampled parameters having higher recession values and lower reservoir5

storage capacities for all sample sizes N. Meanwhile Fig. 11b shows SAC-SMA is more
complex for all sample sizes N when the sampled parameter sets of SIXPAR are from
ranges that are “equivalent” to SAC-SMA parameter ranges. The change in complexity
and ordering from Fig. 11b to Fig. 11a is due to the effect of parameter magnitudes. The
comparison suggests that parameter magnitudes also play a role in model complexity10

and that parameter dimensionality is an incomplete measure of complexity and hence
prediction uncertainty. Figure 12 presents the case again for the asymptotic complexi-
ties β2 of “reference” SAC-SMA, “reference” SIXPAR and “equivalent” SIXPAR.

The complexities are computed using input forcings from historical dataset of “NC”
basin using Algorithm 1. Is the conclusion that parameter magnitudes may have an15

effect on model complexity sensitive to the basin that is selected for resampling of
input forcings? Figure 13 plots the asymptotic complexities for the same ranges of
SIXPAR model structure on input forcing resampled from CA, IA, GA and ME MOPEX
basins that are from different hydro-climatic regions of continental US (Table 1). We
observe a similar pattern in asymptotic complexities with parameter ranges and hence20

with parameter magnitudes.

4 Discussion

The evidence from Figs. 12 and 13 suggest that (i) model complexity is increasing
in parameter dimensionality when parameter magnitudes of two model structures are
“equivalent” and (ii) model complexity depends on the magnitudes of model parame-25

ters irrespective (to a certain extent) of model parameter dimensionality. Since model
complexity is linked to instability in process representation and hence predictive uncer-
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tainty, it then follows that predictive uncertainty of a model structure need not be lower
if it has lower number of parameters. A SIXPAR model in one application with lower
number of parameters but with “high recession” parameter values may have higher
predictive uncertainty than an application of SAC-SMA model that is parameterized
from “reference” parameter ranges (given in Table 2).5

An important implication for complexity controlled model selection is then that pa-
rameter range specification should be application dependent. The modelling of a fast
catchment with shallow unsaturated or saturated zones requires high recession and
low reservoir capacity ranges. Our results (though for SIXPAR but may be extended
to other models as well) demonstrate that complexity and hence predictive uncertainty10

is more sensitive to these parameters ranges since model complexity is high for such
recession and reservoir capacity values. Model selection should consider parameter
magnitudes in addition to parametric dimensionality when modelling such catchments.
On the other hand, model parameter dimensionality may be a sufficient criterion to
select a model with low prediction uncertainty in modelling slower basins.15

Figure 13 demonstrated that for a given specification of parameter range, the mag-
nitudes of asymptotic complexities are different for different basins. This indicates the
influence of basin specific wetness conditions since higher magnitude of input forcings
leads to a larger model output space and hence larger magnitudes of estimated com-
plexities. The hydrologic ratios of these basins presented in Table 1 may be indicative20

of this. The CA basin is extremely dry with low runoff ratio while IA basin is moderately

dry with a moderate ratio of annual evaporation to annual potential evaporation
(
E
EP

)
.

The asymptotic complexities of CA are lower than those of IA for corresponding SIX-
PAR variants (Fig. 13). Yet their asymptotic complexities are a lot lower than those of
the remaining 3 basins. Incidently these 3 basins have dryness indices EP

P < 1. They25

also have higher
(
E
EP

)
ratios. Thus the last 3 basins are comparatively wetter. Had

we normalized the input forcings (by substracting the mean and dividing by SD), the
correlation structure in input forcings on model structure complexities would have been
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revealed. A detailed analysis of such effect on computing model complexity and of its
own interpretation of complexity is left for future research.

Farmer et al. (2003) noted that more complex model structures are needed for dry
catchments. This is because the runoff response of these catchments is more sensitive
to small perturbations in input forcing than wetter catchments. Dry catchments expe-5

rience more disruption of connectivity than wet catchments. The notion of complexity
as proposed in this paper is also defined as a measure of sensitivity of modelled re-
sponses to perturbations in input forcings. The paper formally builds the notion of com-
plexity and measures it. The context of model complexity is how stable or unstable the
model is to input pertubations. This then leads to instability of system representation10

and prediction uncertainty. We find that sensitivity of model outcomes to input pertur-
bations does not just depend on how complicated the architecture of model structure
is (for example the structure variants of Farmer et al. (2003), Bai et al. (2009) and oth-
ers) but also on the magnitude of the parameters that define a model structure. Higher
recession coefficients and smaller storage capacities result in response variability at15

finer/shorter time scales (assuming the input forcing remains the same).
This is not to say that more complex model structures are always unsuitable. A top-

down modelling approach proposes to increase model structure complexity in a nested
fashion, starting with model structures of lower complexity and increasing the complex-
ity till system representation degrades. However the formalism presented here takes20

one step further. It allows the possibility of not always rejecting a more complex model,
even if it has higher complexity, if the ratio of reduced performance with increased
complexity is less than a certain threshold (λ∗ in Eq. 3). This allows the possibility that
a more complex model with poorer performance on one realization of observations may
perform better on another realization. This “acceptability” threshold is derived from the25

information embedded within the observations of the underlying processes.
We note that the notion of complexity and stable process representation is not limited

to the use of one performance metric. Any performance measure, such as based on
flow duration curve or Nash–Shutcliffe efficiency, can be used as long as it is a valid
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metric. Thus the results obtained are general and testable on a wide variety of em-
pirical evidence on appropriate model complexity and process representation that has
been documented so far. Further, the method to estimate complexity is independent
of the type of hydrological model used. Hence it is applicable for conceptual models,
physically based models, empirical models as well as data driven models. For example5

Arkesteijn and Pande (2013) estimated the complexities of flexible conceptual rainfall–
runoff models and demonstrated the applicability of the theory for a class of linear
regression models.

Finally, we here highlight one limitation of the approach. The notion of complexity
control on prediction uncertainty is based on a triangle inequality, wherein prediction10

uncertainty is bounded by the measure of complexity. It thus rests on the idea that
controlling the measure of complexity only avoids the possibility that variation in model
performance over two different realizations of data is not large. In context of top-down
modeling approach, if we gradually ease the control on complexity, i.e. make models
more complex, variation in model performance gradually increases as well. However, if15

this increase in model complexity is guided by better system representation, the possi-
ble increase in variation of model performance may be compensated by better average
model performance to a certain extent.

5 Conclusions

Model complexity is an important criterion in model selection. This paper showed that20

this is because instability in hydrological system representation and prediction uncer-
tainty are functions of model complexity. After demonstrating the connection between
unstable model representation and model complexity, it was shown in a step by step
manner how this complexity can be estimated. This was based on measuring differ-
ences between simulations of a model under different realizations of model forcing.25

Algorithms were then suggested to estimate model complexity. Algorithm 1 was cre-
ated to resample multiple realizations of input forcing data sets, and Algorithm 2 was
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created to estimate complexity based on inequality (11) using resampled input dataset
generated by Algorithm 1. Complexities of two model structures, SAC-SMA and SIX-
PAR, were then computed using these algorithms.

The model complexities of the two model structures, SIXPAR and SAC-SMA were
computed on resampled input data sets from basins that spanned across the conti-5

nental US. The model complexities for SIXPAR were estimated for various parameter
ranges. The range specifications included an “equivalent” range wherein the ranges
were such that total soil moisture storage and recession parameters of SIXPAR were
equivalent to the “reference” ranges of SAC-SMA, and other parameter ranges that
constrained the recession parameters to be either at the higher or lower end of the10

reference range as well as the storage parameters towards the higher end of the refer-
ence range.

SIXPAR was found to be more complex than SAC-SMA model structure when “refer-
ence” ranges were used. However when both the model structures were applied using
respective “equivalent” parameter ranges, SAC-SMA was found to be more complex, as15

expected. We further observed, on multiple basins data sets, that computed complexity
of SIXPAR increased with lower storage capacity and/or higher recession coefficients.
Thus a conceptually simple model structure, such as SIXPAR, can be more complex
than an intuitively more complex model structure, such as SAC-SMA. We therefore
concluded, with important implications for robust model selection, that magnitudes of20

feasible model parameters influence the complexity of the model selection problem just
as parameter dimensionality does. Hence we recommend caution in thinking that pa-
rameter dimensionality is the only indicator of stablity of hydrological model selection
and prediction problem.
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Appendix A: Metric space

For any two vectors u and v in a N-dimensional space X, a real valued function that
measures the distance between the two vectors, d : X ×X→R+ is a metric if the fol-
lowing 3 conditions are satisfied (Chiang, 1984, p.73):

1. d (u,v ) = 0 for u = v5

2. d (u,v ) = d (v ,u) for u 6= v

3. d (u,v )6d (u,w )+d (w ,v ) for w 6= u,v .

Appendix B: Triangle inequality

The triangle inequality states that the sum of the magnitudes of any two sides of a tri-
angle is greater than the third (see condition 3 of Appendix A). Consider Fig. 1 and let10

the vectors be such that ‖A‖>‖C‖. First consider the triangle formed by vectors B,C
and E (not shown in Fig. 1). Then ‖B‖+ ‖C‖>‖E‖. Similarly ‖E‖+ ‖D‖>‖−A‖. Thus,
‖B‖+ ‖C‖+ ‖D‖>‖A‖ or ‖A‖− ‖C‖6‖B‖+ ‖D‖.

Appendix C: Synthetic data sets

Two sets of synthetic data sets {r1(t),r2(t)}t=1,...,N of size N = 50 each are generated15

100 times. Synthetic effective rainfall is generated by r̃j (t) = (ω1 ≤ 0.85) ·0+ (ω1>0.85) ·
ω2,t = 1, . . .,N and j = 1,2. Here ω1 and ω2 are random numbers generated from
a uniform distribution and lie between 0 and 1. The synthetic rainfall is then corrupted
by multiplicative noise, rj (t) = r̃j (t) ·e

Log(0.1)·υ1 , where υ1 ∼N (0,1).
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Each pair of synthetic rainfall is run through a linear reservoir model, given by the
following mass balance equation, to produce synthetic streamflow q̃j (t) ,t = 1, . . .,N.

dS
dt

= r(t)− q̃j (t),

q̃j (t) = k̃S(t),

S(1) = 0,5

t = 1, . . .,N; j = 1,2

k̃ = 0.2 is chosen for generating the synthetic streamflow. q̃j (t) is further corrupted by
heteroskedastic noise with a SD of 0.10, to finally generate a pair of synthetic runoff
{o1(t),o2(t)}t=1,...,N . That is, oj (t) = (1+0.10 ·υ2) · q̃j (t),t = 1, . . .,N, j = 1,2. Here, υ2 ∼
N (0,1).10

Each pairs of data sets {r j ,oj}j=1,2, where r j = {rj (t)}t=1,...,N and oj = {oj (t)}t=1,...,N ,
are then used to calculate ‖A‖ and ‖C‖ for 2 model structures ∧1 and ∧2.

Model structure ∧2 is a two reservoir model structure that is defined in the following.
It represents a two layer hydrological model structure with the second layer fed by
percolation from the first layer. The outflow from both the layers is assumed to be linear15

in its respective soil moisture storages. Percolation from the first layer to the second
layer is also assumed to be linear in top layer soil moisture.

dS1

dt
= r(t)−k1S1(t)−k2S1(t),

dS2

dt
= k2S1(t)−k3S2(t),

p2,k
j (t) = k1S1(t)+k3S2(t),20

S1(1) = 0,S2(1) = 0,

t = 1, . . .,N,

k = {k1,k2,k3} ∈ [0,1]3
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Model structure ∧1 is a single reservoir model structure defined by the following
equation:

dS
dt

= r(t)−p1,k(t),

p1,k(t) = kS(t),

S(1) = 0,5

t = 1, . . .,N; j = 1,2,

k ∈ [0,1].

Model structure ∧1 is nested within model structure ∧2 because when the parame-
ters of ∧2 are restricted such that k ∈ [0,1]×{0}× {0}, it becomes model structure ∧1.
By definition ∧2 is more complex than ∧1, since the former would have larger output10

space than the latter. Model structure ∧2 is more flexible than ∧1 since it can model
both fast and slow flow by routing flows through top layers and top and bottom layers
respectively.

To study the effect of larger complexity on instability in underlying process repre-
sentation, best approximations from the two model structures are obtained on one15

dataset and then the performances of the corresponding approximations are measured
on the second dataset from the pair of synthetic noisy data set generated above. This
is done as follows. Consider the pair of synthetic data sets, {r j ,oj}j=1,2. The model

structures are confronted with {r1,o1} and best representations, parameterized by θ1∗
1

and θ2∗
1 , are obtained from ∧1 and ∧2 respectively. Here, θ1∗

1 = k
∗ and θ2∗

1 = k∗ and20

provide us with model simulations p
1
1 and p

2
1 respectively. The best representations

from each model structure are then used to simulate streamflow on the input forcings
of the second data set, r2. Thus simulations p

1
2 and p

2
2 are respectively obtained on

another dataset. The distances ‖pm2 −o2‖ and ‖pm1 −o1‖ then represent ‖A‖ and ‖C‖ for
a model structure ∧m,m = {1,2}. We let ‖ • ‖ to be the mean of absolute values, for e.g.25

‖pm1 −o1‖ =
∑N
t=1
|pm1 (t)−o1(t)|

N . This choice of metric implies mean absolute errors when
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distances between a model simulation and observed values are measured. Similarly,

‖pm1 −p
m
2 ‖ provides us an estimate of ‖B‖ =

∑N
t=1
|pm1 (t)−pm2 (t)|

N .
The above process is repeated 100 times. By doing so, we obtain 100 values of
| ‖A‖−‖C‖ | and ‖B‖. Kernel density estimation is then used to estimate the probability of
exceedences for | ‖A‖−‖C‖ | and ‖B‖ for the two model structures, i.e. Pr(| ‖A‖−‖C‖ |>ε)5

and Pr(‖B‖>ε) respectively.
Note that ‖C‖ is the performance of the best representation of underlying pro-

cesses (inferred from one data set) on another realization of data. The probability
Pr(| ‖A‖−‖C‖ |>ε) thus quantifies the instability in process representation over different
realizations of data. A hydrological model structure that provides a less stable repre-10

sentation of underlying processes has higher Pr(| ‖A‖− ‖C‖ |>ε) for all possible values
of ε>0. This reiterates the definition of instability in process representation. A less sta-
ble process representation leads to larger deviations in model performances over any
two realizations of data. Meanwhile the probability Pr(‖B‖>ε) represents the variation
in the extent of model structure output space. It essentially represents how large is the15

output space of a model structure.
The stability of process representation can be reinterpreted in terms of the variability

in best model representations obtained on two different realizations of data. A model
structure that provides more unstable representation also has more variability in best
model representations obtained on two different realizations of data. In order to inter-20

pret instability in such a manner, we obtain best model representations θm∗j on each
of the two data sets, {r j ,oj}j=1,2 and from model structure ∧m,m = 1,2. Since we gen-
erate 100 such dataset pairs, we have 100 pairs of best representations from each

model structure. Kernel densities are then estimated for Pr
(
θm∗j
)

in order to study how

variability in best representations of the underlying processes differs across two nested25

model structures.

The Supplement related to this article is available online at
doi:10.5194/hessd-12-3945-2015-supplement.
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Table 1. Basins used in this study. P =Mean Annual Precipitation, EP =Mean Annual EP. P
and EP are calculated using data from the period 1948–1970. The hydrologic ratios Q

P [–], E
EP

[–] and EP

P [–] are ratios of annual runoff to annual precipitation, annual evaporation to annual
potential evaporation and annual potential evaporation to annual precipitation (dryness index)
respectively. Data obtained from Duan et al. (2006) and Brooks et al. (2011).

Site Id Area [km2] P [mmyr−1] EP [mmyr−1] Q
P [–] E

EP
[–] EP

P [–] Code

03451500 945.00 1491 820 0.59 0.96 0.43 NC
11138500 281.00 380 1334 0.05 0.32 2.94 CA
05479000 1308.00 711 977 0.20 0.60 1.31 IA
02228000 2790.00 1215 1132 0.33 0.75 0.89 GA
01060000 141.00 1100 N/A 0.47 0.85 0.62 ME
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Table 2. SAC-SMA model structure parameter ranges used in the study.

Parameters Description “Reference” Parameter Description “Reference”

UZTWM [mm] Upper zone tension
water capacity

1–150 UZWFM [mm] Upper zone free wa-
ter capacity

1–150

UZK [day−1] Fractional daily upper
zone free water with-
drawal rate

0.1–0.5 PCTIM [–] Minimum impervious
area

0–0.1

ADIMP [–] Additional impervious
area

0–0.4 RIVA [–] Riparian vegetation
area

0

ZPERC [–] Maximum percolation
rate

1–250 REXP [–] Exponent for percola-
tion equation

1–5

LZTWM [mm] Lower zone tension
water capacity

1–1000 LZFSM [mm] Upper zone free wa-
ter capacity

1–1000

LZFPM [mm] Lower zone primary
free water capacity

1–1000 LZSK [day−1] Fractional daily sup-
plemental withdrawal
rate

0.01–0.25

LZPK [day−1] Fractional daily pri-
mary withdrawal rate

0.0001–0.025 PFREE [–] Fraction of percolated
water directly to lower
zone free storages

0.0–0.6

RSERV [–] Fraction of lower
zone free water not
transferred to lower
zone tension water

0.3 SIDE [–] Ratio of non-channel
baseflow to channel
baseflow

0.0
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Table 3. SIXPAR model structure parameter ranges used in the study.

Parameter Description “Reference” “High recession” “Low recession” “High storage/
Low recession”

“Equivalent”

UM [mm] Upper zone reservoir
capacity

0–50 0–50 0–50 1–300 1–300

UK [day−1] Upper zone recession
parameter

0–1 0.75–1.00 0.10–0.25 0.10–0.25 0–0.5

BM [mm] Lower zone reservoir
capacity

0–50 0–50 0–50 1–3000 0–3000

BK [day−1] Lower zone recession
coefficient

0–1 0.75–1.00 0.001–0.005 0.001–0.005 0–0.07906

Z [–] Percolation parameter 1 0–1 1–250 1–250 1–250 0–1
X [–] Percolation parameter 2 0–10 1–5 1–5 1–5 0–10
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18 Pande et al.: Hydrologic complexity

Fig. 01. An illustration of model output space. Consider a model parameterized by θ, say M(θ). Difference between observed and simulated
streamflows (for e.g. o1 and p1), say of size N , defines a N -dimensional vector

−→
C . N = 2 is considered for illustration purposes. The

magnitude of this vector may represent a measure of model performance, such as Mean Absolute Error. A similar vector
−→
A may be obtained

for another realization of the pair (o2,p2). The N -vectors (p1,p2) then define two simulation points in the mode output space. The distance
between them is indicated by

−→
B . Repeating realizations of such pairs then populates the model output space while an expectation of

−→
B over

these realizations then measures the span of the model output space

Figure 1. An illustration of model output space. Consider a model parameterized by θ, say
M(θ). Difference between observed and simulated streamflows (for e.g. o1 and p1), say of
size N, defines a N-dimensional vector C. N = 2 is considered for illustration purposes. The
magnitude of this vector may represent a measure of model performance, such as Mean Ab-
solute Error. A similar vector A may be obtained for another realization of the pair (o2,p2). The
N-vectors (p1,p2) then define two simulation points in the mode output space. The distance
between them is indicated by B. Repeating realizations of such pairs then populates the model
output space while an expectation of B over these realizations then measures the span of the
model output space
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Pande et al.: Hydrologic complexity 19

Fig. 02. An illustration of model structure output space. Here a model structure is thought of as a collection of model parameter sets. Here
consider such a model structure, ∧= {M(θ1),M(θ2)}. Model simulations corresponding to observations (o1,o2) for M(θ1) and M(θ2)
are indicated by pairs

(
p1

1,p
1
2

)
and

(
p2

1,p
2
2

)
respectively. These pairs populate the model output spaces correspoding to models M(θ1) and

M(θ2) respectively. Since the model structure is defined as a combination of the two models, the corresponding model structure output space
is the union of constituting model output spaces.

Figure 2. An illustration of model structure output space. Here a model structure is thought of as
a collection of model parameter sets. Here consider such a model structure, ∧ = {M(θ1),M(θ2)}.
Model simulations corresponding to observations (o1,o2) for M(θ1) and M(θ2) are indicated

by pairs
(
p

1
1,p1

2

)
and

(
p

2
1,p2

2

)
respectively. These pairs populate the model output spaces

correspoding to models M(θ1) and M(θ2) respectively. Since the model structure is defined as
a combination of the two models, the corresponding model structure output space is the union
of constituting model output spaces.
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20 Pande et al.: Hydrologic complexity

Fig. 03. Instability in system representation. Consider two model structures, ∧2 that is nested in ∧1. The larger the model output space of ∧1

leads to higher possibility of differences between any two simulations, shown by p1
1 and p1

2, than ∧2 as shown by p2
1 and p2

2 for the same
input forcings. This implies higher instability in system representation offered by ∧2.

Figure 3. Instability in system representation. Consider two model structures, ∧2 that is nested
in ∧1. The larger the model output space of ∧1 leads to higher possibility of differences between
any two simulations, shown by p

1
1 and p

1
2, than ∧2 as shown by p

2
1 and p

2
2 for the same input

forcings. This implies higher instability in system representation offered by ∧2.
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Pande et al.: Hydrologic complexity 21

Fig. 04. Estimation of Pr
(∣∣∣‖−→A‖−‖−→C ‖∣∣∣ > ε

)
and

Pr
(
‖−→B‖> ε

)
based on 100 synthetic data pairs. Two nested

model structures are considered, i.e. single reservoir and two
reservoir model structure. See Appendix C for additional details.

Figure 4. Estimation of Pr(| ‖A‖−‖C‖ |>ε) and Pr(‖B‖>ε) based on 100 synthetic data pairs. Two
nested model structures are considered, i.e. single reservoir and two reservoir model structure.
See Appendix C for additional details.
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22 Pande et al.: Hydrologic complexity

Fig. 05. Instability in system representation over different realizations of observations. Consider two model structures, ∧2 that is nested in
∧1 as in Figure 03. Let M

(
θ11
)

and M
(
θ12
)

be best system representations offered by model structure ∧1 based on two observations o1 and
o2 respectively. Since the model structure ∧2 has smaller model output space and given that hydrological model outputs are continuous in
their parameters, best system representations M

(
θ21
)

and M
(
θ22
)

corresponding to o1 and o2 offered by ∧2 are closer to each than those
offered by ∧1. Here we assume θ21 = θ22 and suggest that larger possibility of variation in best model representation implies higher instability
in system representation offered by ∧1.

Figure 5. Instability in system representation over different realizations of observations. Con-

sider two model structures, ∧2 that is nested in ∧1 as in Fig. 3. Let M
(
θ1

1

)
and M

(
θ1

2

)
be

best system representations offered by model structure ∧1 based on two observations o1 and
o2 respectively. Since the model structure ∧2 has smaller model output space and given that
hydrological model outputs are continuous in their parameters, best system representations

M
(
θ2

1

)
and M

(
θ2

2

)
corresponding to o1 and o2 offered by ∧2 are closer to each than those

offered by ∧1. Here we assume θ2
1 = θ

2
2 and suggest that larger possibility of variation in best

model representation implies higher instability in system representation offered by ∧1.
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Pande et al.: Hydrologic complexity 23

Fig. 06. Kernel density estimation of variability in system repre-
sentations selected from A) ∧2 and B) ∧1 over 100 pairs of data
realizations from the data generating process provided in Appendix
C. while figure 06B plots the pairwise kernel density estimate of the
same for ∧1. θk∗ and θ̃k represent two models selected from model
structure ∧k on two realizations of data. Here ∧2 is a single reser-
voir model structure while ∧1 is a 3 parameter two-reservoir model
structure. See Appendix C for additional details.

Figure 6. Kernel density estimation of variability in system representations selected from (a) ∧2
and (b) ∧1 over 100 pairs of data realizations from the data generating process provided in
Appendix C. While Fig. 6b plots the pairwise kernel density estimate of the same for ∧1. θk∗

and θ̃k represent two models selected from model structure ∧k on two realizations of data.
Here ∧2 is a single reservoir model structure while ∧1 is a 3 parameter two-reservoir model
structure. See Appendix C for additional details.
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24 Pande et al.: Hydrologic complexity

Fig. 07. A selection of basins across the United States spanning different hydro-climatic regions. Data obtained from Duan et al. (2006) and
Brooks et al. (2011).

Fig. 08. Complexity curves for 50th percentile values of different
month permutations. Here ’Medium 4’ means that 4 blocks of 3-
month tuples were permuted to create data resamples.

Fig. 09. Asymptotic complexity using reference ranges for SAC-
SMA and SIXPAR model structure.

Figure 7. A selection of basins across the US spanning different hydro-climatic regions. Data
obtained from Duan et al. (2006) and Brooks et al. (2011).
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24 Pande et al.: Hydrologic complexity

Fig. 07. A selection of basins across the United States spanning different hydro-climatic regions. Data obtained from Duan et al. (2006) and
Brooks et al. (2011).

Fig. 08. Complexity curves for 50th percentile values of different
month permutations. Here ’Medium 4’ means that 4 blocks of 3-
month tuples were permuted to create data resamples.

Fig. 09. Asymptotic complexity using reference ranges for SAC-
SMA and SIXPAR model structure.

Figure 8. Complexity curves for 50th percentile values of different month permutations. Here
“Medium 4” means that 4 blocks of 3 month tuples were permuted to create data resamples.
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Fig. 07. A selection of basins across the United States spanning different hydro-climatic regions. Data obtained from Duan et al. (2006) and
Brooks et al. (2011).

Fig. 08. Complexity curves for 50th percentile values of different
month permutations. Here ’Medium 4’ means that 4 blocks of 3-
month tuples were permuted to create data resamples.

Fig. 09. Asymptotic complexity using reference ranges for SAC-
SMA and SIXPAR model structure.

Figure 9. Asymptotic complexity using reference ranges for SAC-SMA and SIXPAR model
structure.
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Figure 10. Asymptotic complexity using different parameters ranges for SIXPAR model struc-
ture.
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26 Pande et al.: Hydrologic complexity

Fig. 011. Variation of computed complexity with sample size N
for SAC-SMA and SIXPAR. A) Reference parameter ranges and B)
equivalent parameter ranges.

Fig. 012. Asymptotic complexities of ”reference” SAC-SMA, ”ref-
erence” SIXPAR and ”equivalent” SIXPAR.

Figure 11. Variation of computed complexity with sample size N for SAC-SMA and SIXPAR.
(a) Reference parameter ranges and (b) equivalent parameter ranges.
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26 Pande et al.: Hydrologic complexity

Fig. 011. Variation of computed complexity with sample size N
for SAC-SMA and SIXPAR. A) Reference parameter ranges and B)
equivalent parameter ranges.

Fig. 012. Asymptotic complexities of ”reference” SAC-SMA, ”ref-
erence” SIXPAR and ”equivalent” SIXPAR.

Figure 12. Asymptotic complexities of “reference” SAC-SMA, “reference” SIXPAR and “equiv-
alent” SIXPAR.
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Figure 13. Asymptotic complexities of SIXPAR model structures for multiple basins across
the counterminous US (CA, IA, GA, ME; see Table 3) and for various parameter ranges
as described in Table 2 (Ref= “Reference”, HR= “High recession”, LR= “Low recession”,
LR/HS= “Low recession/High storage”).
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