Status: this preprint was under review for the journal HESS but the revision was not accepted.
Effective rainfall: a significant parameter to improve understanding of deep-seated rainfall triggering landslide – a simple computation temperature based method applied to Séchilienne unstable slope (French Alps)
A. Vallet,C. Bertrand,and J. Mudry
Abstract. Pore water pressure, build up by recharge of hydrosystems, is one of the main triggering factors of deep seated landslides. Effective rainfall, which is the part of the rainfall which recharges the aquifer, is a significant parameter. Soil-water balance is an accurate way to estimate effective rainfall. Nevertheless this approach requires evapotranspiration, soil water storage and runoff characterization. Available soil storage and runoff were deduced from field observations whereas evapotranspiration computation is a highly demanding method requiring significant input of meteorological data. Most of the landslide sites used weather stations with limited datasets. A workflow method was developed to compute effective rainfall requiring only temperature and rainfall as inputs. Two solar radiation and five commonly used evapotranspiration equations were tested at Séchilienne. The method was developed to be as general as possible in order to be able to be applied to other landslides. This study demonstrated that, for the Séchilienne unstable slope, the displacement data correlation performance (coefficient of determination) is significantly enhanced with effective rainfall (0.633) compared to results obtained with raw rainfall (0.436) data. The proposed method for estimation of effective rainfall was developed to be sufficiently simple to be used by any non-hydro specialist who intends to characterize the relationship of rainfall to landslide displacements.
Received: 04 Jun 2013 – Discussion started: 10 Jul 2013
Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.