Modeling regional evaporation through ANFIS incorporated solely with remote sensing data
Abstract. The study aims to model regional evaporation that possesses the ability to present the spatial distribution of evaporation across the whole Taiwan by the adaptive network-based fuzzy inference system (ANFIS) based solely on remote sensing data. The remote sensing data used in this study consist of Landsat image products including Enhanced Vegetation Index (EVI) and land surface temperature (LST). The model construction is designed through two types of data allocation (temporal and spatial) driven with the same ten-year data of EVI and LST derived from Landsat images. Evidences indicate the estimation model based solely on remotely sensed data can effectively detect the spatial variation of evaporation and appropriately capture the evaporation trend with acceptable errors of about 1 mm day−1. The results also demonstrate the composite of EVI and LST input to the proposed estimation model improves the accuracy of estimated evaporation values as compared with the model using LST as the only input, which reveals EVI indeed benefits the estimation process. The results suggest Model-T (temporal input allocation) is suitable for making island-wide evaporation estimation while Model-S (spatial input allocation) is suitable for making evaporation estimation at ungauged sites. An island-wide evaporation map for the whole study area (Taiwan Island) is then derived. It concludes the proposed ANFIS model incorporated solely with remote sensing data can reasonably well generate evaporation estimation and is reliable as well as easily applicable for operational estimation of evaporation over large areas where the network of ground-based meteorological gauging stations is not dense enough or readily available.