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Abstract12

As a key variable of the land-climate system soil moisture is a main driver of streamflow and evapo-13

transpiration under certain conditions. Soil moisture furthermore exhibits outstanding memory (per-14

sistence) characteristics. Also for streamflow many studies report distinct low frequency variations15

that represent a memory. Using data from over 100 near-natural catchments located across Europe16

we investigate in this study the connection between soil moisture memory and the respective mem-17

ory of streamflow and evapotranspiration on different time scales. For this purpose we use a simple18

water balance model in which dependencies of runoff (normalized by precipitation) and evapotran-19

spiration (normalized by radiation) on soil moisture are fitted using streamflow observations. The20

model therefore allows us to compute memory of soil moisture, streamflow and evapotranspiration on21

the catchment scale. We find considerable memory in soil moisture and streamflow in many parts22

of the continent, and evapotranspiration also displays some memory at monthly time scale in some23

catchments. We show that the memory of streamflow and evapotranspiration jointly depend on soil24

moisture memory and on the strength of the coupling of streamflow and evapotranspiration to soil25

moisture. Furthermore we find that the coupling strengths of streamflow and evapotranspiration to26

soil moisture depend on the shape of the fitted dependencies and on the variance of the meteorological27

forcing. To better interpret the magnitude of the respective memories across Europe we finally provide28

a new perspective on hydrological memory by relating it to the mean duration required to recover from29

anomalies exceeding a certain threshold.30
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1 Introduction31

Many past and recent publications have pointed out the remarkable persistence characteristics of soil moisture32

(Delworth and Manabe 1988, Vinnikov and Yeserkepova 1990, Entin et al. 2000, Koster and Suarez 2001, Schlosser33

and Milly 2002, Wu and Dickinson 2004, Seneviratne et al. 2006, Koster et al. 2010, Seneviratne and Koster34

2012). This soil moisture persistence, hereafter referred to as “memory”, is caused by the integrative nature of35

soil moisture as water storage. It has been found in observations and models, at point scale and on continental36

scales. Furthermore also for other land-surface variables, persistence characteristics have been reported, even if37

less pronounced than for soil moisture. For instance streamflow exhibits distinct low frequency variations that38

represent a memory resulting from a recession behavior of the streamflow response following a precipitation event39

(Rodriguez-Iturbe and Valdes 1979, Lins 1997, Labat 2008, Gudmundsson et al. 2011).40

Given the important role of soil moisture in the hydrological system and for land-atmosphere interactions (e.g.41

Seneviratne et al. 2010 for a review), the question arises if its memory may propagate to other quantities that are42

at least partly driven by soil moisture. For example, runoff and evapotranspiration may be highly dependent on43

soil moisture under certain conditions (Eagleson 1978, Koster and Milly 1997, Koster et al. 2004, Botter et al.44

2007, Bisselink and Dolman 2009, Kirchner 2009, Teuling et al. 2009), therefore soil moisture memory may induce45

persistence in these quantities.46

This study investigates under which conditions and to which extent soil moisture memory may propagate47

to streamflow and/or evapotranspiration. In case of streamflow, this question is of high importance in relation48

with flood prediction and water resource management. An evapotranspiration memory has implications on the49

exchange of water between the land and the atmosphere, as well as on near-surface temperature because evapo-50

transpiration is (negatively) related with sensible heat flux. Following the approach proposed in Orth et al. (2013),51

we calibrate a simple hydrological model (Koster and Mahanama 2012) with streamflow measurements from 10052

catchments across Europe to infer memory characteristics of soil moisture, streamflow and evapotranspiration. We53

identify drivers and properties of the memory propagation and investigate their dependencies on regional features.54

Moreover we determine favorable climate and land-atmosphere regimes that promote memory propagation into55

the climate system. In the last part of this study we investigate how the memories in soil moisture, streamflow56

and evapotranspiration change under dry and wet conditions, which is especially relevant in the context of the57

predictability of extreme events (Koster et al. 2010, Mueller and Seneviratne 2012).58
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2 Methodology59

2.1 Simple water-balance model60

We use a simple water-balance model adapted from Koster and Mahanama (2012) in this study. The revised61

formulation used here has been introduced and discussed in Orth et al. (2013). As in that study, we run the model62

with a daily time step. The model is based on the following water-balance equation:63

wn+4t = wn + (Pn − En −Qn)4t (1)

64

where wn, the only prognostic variable of the model (in mm), is the total soil moisture content at the beginning65

of time step n. Between time step n and n + 4t, the soil moisture content is changed by the accumulated66

precipitation Pn, evapotranspiration En, and runoff Qn (all in
mm

d
), to yield an updated soil moisture content67

wn+4t at the beginning of the following time step. Note that the employed simple model is highly conceptual,68

and that wn by definition stands for the total soil moisture content. As in Orth et al. 2013, we run the model in69

this study with a time step of one day (4t = 1d).70

2.1.1 Runoff and evapotranspiration dependencies on soil moisture71

In the simple water-balance model, evapotranspiration (normalized by net radiation) depends on soil moisture72

(scaled with the water holding capacity) only:73

λρwEn
Rn

= β0

(
wn
cs

)γ
with γ > 0 and β0 ≤ 1 (2)

where Rn denotes net radiation (in
W

m2
), λ is the latent heat of vaporization (in

J

kg
), ρw is the density of water74

(in
kg

m3
) and cs is a model parameter that refers to the water holding capacity of the soil (in mm). Another model75

parameter, β0 (unitless), allows to capture the evaporative resistance of the soil and the vegetation, whereas the76

parameter γ (also unitless) ensures a strictly monotonically increasing evapotranspiration ratio
λρwEn
Rn

77
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Similarly to evapotranspiration (ET), runoff normalized by precipitation depends on soil moisture only:78

Qn
Pn

=

(
wn
cs

)α
with α ≥ 0 (3)

79

where the exponent α ensures an increasing runoff ratio
Qn
Pn

with increasing soil moisture.80

In order to account for the transport of subsurface runoff to streambeds and the traveling time of surface runoff81

to the stream gauge site, Orth et al. (2013) distinguish between runoff and streamflow. The latter is computed82

from the simulated runoff with an imposed delay:83

Sn+t = Qn
1

τ
e
−
t

τ (4)

where τ refers to the delay time scale (in days) that determines the streamflow Sn+t at time n+ t which results84

from the runoff Qn at time n. The integral of
1

τ
e
−
t

τ equals 1 as t → ∞, such that all runoff is converted to85

streamflow. The total streamflow at any time step can be computed from the previously generated runoff amounts:86

Sn =

60∑
i=0

Qn−i4t

e− i4tτ − e
−
(i+ 1)4t

τ

 (5)

87

As in Orth et al. (2013) we compute the streamflow from the runoff amounts generated during the 60 preceding88

time steps to account for > 99 of the runoff water.89

To investigate the connection between streamflow and precipitation we furthermore define here the cumulative90

weighted precipitation, which is the precipitation used to compute the runoff amounts that contribute to streamflow91

at time n:92

93

P ∗n =

60∑
i=0

Pn−i4t

e− i4tτ − e
−
(i+ 1)4t

τ

 (6)

94

.95
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2.1.2 Parameter fitting96

In total 5 model parameters (cs, α, τ, β0, γ) have to be fitted to determine runoff, evapotranspiration and97

streamflow of a catchment. This is done for each catchment using the same optimization approach as Orth et al.98

(2013), whereby the optimal set of parameters is determined as the set that yields the best fit between modeled99

and observed streamflow among 25 estimated sets (representing local maxima in the five-dimensional parameter100

space). This fit is evaluated as a correlation during July, August and September of all available years to avoid an101

impact of snow, which is not included in the model. As in Orth et al. (2013), we use a correlation to determine102

the fit because our focus is on the simulation of the temporal evolution of soil moisture and streamflow rather103

than on their absolute amount, because this is important to represent memory characteristics. Table 1 summarizes104

the accuracies with which the parameters are fitted (i.e. the step width for each parameter as applied in the105

optimization procedure), their upper and lower limits as well as maxima and minima of the actual parameter106

values found for the catchments considered in this study (see Section 3). Note that in contrast to Orth et al.107

(2013), we apply here upper limits to the exponents α and γ (15) and the water holding capacity cs (2000 mm)108

to accelerate the optimization process and to prevent unreasonable fitted parameter values.109

2.2 Computation of slopes110

To quantify the impact of soil moisture on streamflow and ET, we use the slopes of the runoff and ET111

functions (Equations (5) and (2)) normalized with precipitation and net radiation, respectively. These slopes are112

catchment-specific and depend only on the soil moisture content and on the fitted parameters. They are computed113

as follows: For every daily soil moisture value that occurs between May and September over the whole considered114

time period (see Section 3) in a particular catchment we compute the respective slopes of the normalized runoff115

and ET functions from their derivations with respect to soil moisture. Then we take the mean of all the slopes to116

derive a mean runoff function slope and a mean ET function slope for a particular catchment.117

As described and illustrated later in Section 4.2 the runoff and ET function slopes are important variables118

for the soil moisture-streamflow and soil moisture-ET coupling strength, such that for instance a slope of zero119

implies no impact of soil moisture, whereas a high slope tends to translate soil moisture changes into changes of120

streamflow or ET.121

6



2.3 Computation of memory122

To determine the persistence of soil moisture, streamflow and ET that are produced by the simple water-123

balance model, we calculate the respective memory as an inter-annual correlation over a particular lag (see Koster124

and Suarez 2001 and Seneviratne and Koster 2012): For a given quantity, the estimates of day n from all years125

are correlated with the estimates of day n + tlag from all years. To derive representative memory estimates for126

half-monthly periods, we compute inter-annual correlations for this period and for the preceding and subsequent127

30 days (as introduced by Orth and Seneviratne 2012 and also applied by Orth et al. 2013). For soil moisture128

memory, this corresponds to the following expression:129

ρ
(
wn, wn+tlag

)
=

1

tend − tstart + 60− tlag

tend+30−tlag∑
i=tstart−30

ρ
(
wi, wi+tlag

)
(7)

where tstart and tend refer to the respective start and end dates of the considered half-monthly time period.130

Starting 30 days prior to the beginning of the half-monthly interval and finishing 30 − tlag days after the end of131

the half-monthly period, we obtain a number of correlations of which we take a trimmed average (not shown in132

Equation (7); we avoid the 10% highest and 10% lowest values, as in Orth et al. 2013) to yield a representative133

memory estimate for the particular half-monthly period.134

In order to study the connection between soil moisture memory and the memory of streamflow and ET,135

respectively, we consider in the following 30-day-lag memories that are computed as described above for all136

quantities. To assess the impact of the investigated time scale we perform the same analysis using monthly137

averaged data from which we compute the respective 1-month-lag memories.138

2.4 Computation of persistence time scales139

While memory is considered as lag correlation in the previous subsection and previous studies (e.g. Koster and140

Suarez 2001, Orth and Seneviratne 2012), we relate the memories of soil moisture, streamflow and ET in this study141

also to persistence time scales. This is more easily interpretable and allows us to study the respective memories142

under different hydrological conditions.143

For the computation of this persistence time scale we proceed as follows: (i) We define “normal” conditions at144

a particular day as those differing at most by one standard deviation (computed over the values of that day from145

all years) from the mean of that day over all years; (ii) We choose deviations of 1.33 and 1.66 standard deviations146

from the mean as thresholds for medium and strong anomalies, respectively; (iii) We select all days of the time147
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series between May and September (focusing on the warm season we avoid cold season impacts due to snow and148

land cover change) that exceed a threshold and calculate for each day the delay until which the quantity of interest149

recovers to normal conditions; (iv) Finally, we take the mean of all the durations to derive a mean persistence of150

anomalous conditions once they have exceeded a certain threshold.151

Comparing the persistence time scale to respective memories expressed as lag correlations, we can relate these152

correlations to mean recovery times from respective anomalies determined by a chosen threshold.153

2.5 Coupling of streamflow and evapotranspiration to soil moisture154

As this study is investigating the propagation of memory from soil moisture to streamflow and ET, it is necessary to155

assess the extent to which streamflow and ET are driven by soil moisture. For this purpose, we introduce a measure156

of the coupling strength between soil moisture and streamflow, or soil moisture and ET, respectively. We define the157

coupling strength between soil moisture and streamflow (hereafter referred to as soil moisture-streamflow coupling158

strength) as the correlation between them, ρ (Sn, wn). Similarly, to measure the coupling strength between soil159

moisture and ET (hereafter referred to as soil moisture-ET coupling strength), we use ρ (En, wn).160

The computation of these correlations is performed in a similar way as in Equation (7). Instead of correlating161

estimates of a given quantity at day n from all years with the estimates of day n+ tlag from all years, we correlate162

estimates of one quantity at day n from all years with estimates of the other quantity at the same day n of all163

years. Similar to memory, the coupling strengths are also computed as representative estimates for half-monthly164

periods.165

Using these estimates we can determine and compare the respective coupling strengths with each other, in166

different seasons, and across the various catchments (see Section 3).167

3 Data168

In order to derive a spatially distributed evaluation of soil moisture, streamflow and ET memory across Europe we169

apply the simple water-balance model to near-natural catchments (i.e. catchments with negligible human impact)170

located throughout Europe. The corresponding streamflow data stem from a dataset compiled by Stahl et al.171
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(2010), who collected data from the European water archive (http://grdc.bafg.de [checked on 16 July 2012]), from172

national ministries and meteorological agencies, as well as from the WATCH project (http://www.eu-watch.org173

[checked on 16 July 2012]).174

The simple model uses precipitation and radiation information as an input. We use satellite-measured net radia-175

tion from the NASA/GEWEX SRB project (http://eosweb.larc.nasa.gov/PRODOCS/srb/table_srb.html [checked176

on 16 July 2012]). The precipitation data was obtained from the E-OBS dataset (http://eca.knmi.nl [checked on177

16 July 2012]), which is an interpolation of rain gauge measurements on a regular grid across Europe, and which178

was developed by the ENSEMBLES project (http://ensembles-eu.metoffice.com [checked on 16 July 2012]).179

Note that this study therefore uses only observed (streamflow, net radiation) or observationally-based (pre-180

cipitation) data. Given the different limitations in data availability of streamflow, precipitation and radiation, we181

consider a time period of 17 years between 1984 and 2000.182

3.1 Selection of catchments183

Given the large number of >400 catchments contained in the Stahl et al. (2010) dataset, we had to select a subset184

for two reasons: (i) the parameter fitting procedure (Section 2.1.2) is computationally demanding and (ii) in a few185

catchments the fitting procedure did not work well as seen from a low correlation between modeled and observed186

streamflow, probably due to impacts of snow (which is not included in the model).187

Running the parameter fitting procedure with 5 instead of 25 iterations (see Section 2.1.2) for all catchments188

to reduce the computational effort (thereby increasing the risk that the resulting parameter set is only a local189

instead of a global maximum in the five-dimensional parameter space), we selected 100 catchments for this study,190

for which the streamflow optimization (see Section 2.1.2) yielded the highest correlations. For the selected 100191

catchments we then performed the parameter fitting procedure another 20 times to ensure that we find the global192

optimum of the parameters. Corresponding information on name, coordinates, river, size, altitude and mean193

streamflow of the considered catchments is provided in Appendix A. Their locations together with their mean daily194

streamflow are displayed in Figure 1. The catchments are well-distributed across the continent, except for the195

south-east, thus allowing an analysis of persistence across a large area. As can be inferred from Table 1, the range196

of the fitted parameter values is larger compared to Orth et al. (2013) as we consider many more catchments,197

which are moreover distributed over a much wider area and across a broader range of climate regimes.198
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4 Results199

In this section we first present an evaluation of the simple model’s simulated streamflow and its memory in200

the considered catchments, followed by a case study to illustrate the model behavior under different hydrological201

conditions. Thereafter we investigate the connection between soil moisture memory on the one hand and streamflow202

and ET memory on the other hand, including an identification of the main driving mechanisms of these relationships.203

In the last part of this section we present a different view on memory; we quantify its strength as a recovery time204

from anomalous conditions, and we investigate its variations with extreme conditions.205

4.1 Evaluation of modeled streamflow206

The employed water-balance model was earlier validated at 13 Swiss catchments in Orth et al. (2013), with a207

focus on soil moisture memory. However, the present study also focuses on streamflow memory and considers a208

much wider region that covers a large fraction of Europe. Hence, we provide an evaluation of the performance209

of the simple water-balance model with respect to its representation of mean streamflow and streamflow memory210

at the investigated catchments. To allow an independent validation we consider monthly averages for June and211

October in all catchments as these months are not part of the optimization period in which the model is calibrated212

(see Section 2.1.2). The results are displayed in Figure 2. Note that we investigate here the subset of catchments213

described in Section 3.1 as well as the totality of the 430 catchments of the Stahl et al. (2010) dataset in order214

to show a meaningful performance of the simple water balance model also in the catchments we disregard for the215

remainder of this study. Note that for the excluded catchments we performed the parameter fitting procedure with216

5 instead of 25 iterations (see Section 2.1.2) to reduce the computational effort (thereby increasing the risk that217

the resulting parameter set is only a local instead of a global maximum in the five-dimensional parameter space).218

Considering all 430 catchments of the Stahl et al. (2010) dataset, we find a rough agreement of the modeled219

mean daily streamflow with observations in both months. The numerous catchments where streamflow is underes-220

timated (especially in June) are impacted by snow melt and melting glaciers, which are both not accounted for in221

the model. The agreement is better when only the 100 selected catchments are considered. The fitted regression222

lines are closer to the identity line. The match is still slightly worse in June than in October as there are some223

high-altitude catchments among the selected catchments (11% of the catchments have an average altitude higher224
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than 1000m above sea level, see Appendix A), which may therefore be impacted by snow melt. The relatively good225

fit between modeled and observed mean daily streamflow is an interesting feature as only the correlation between226

modeled and observed streamflow has been used for the calibration of the model. As shown on the right hand side227

of Figure 2 the streamflow memory is well captured by the model for most catchments, although the regression228

lines indicate a slight underestimation of high memories in both months. And for the same reason discussed above229

the explained fraction of variance is slightly higher in October compared to June. Note that the explained fraction230

of variance, R2, is higher (0.8) when comparing mean monthly memories of the selected catchments, averaged231

from May-September (as used in Sections 4.3 and 4.4). The agreement between modeled and observed streamflow232

memory is better for the selected, reduced number of catchments than for the totality of catchments, indicating233

that the quality of the modeled streamflow memory depends to some extent on the goodness of the streamflow234

optimization.235

In order to further validate the simple water balance model and the parameter fitting procedure we display the236

fitted water holding capacities in Figure 3. The fitted values fall in a physically meaningful range. Furthermore237

in many regions we find similar water holding capacities for nearby catchments, underlining the robustness of238

the parameter fitting approach. Some few exceptions are probably due to the heterogeneous nature of soil and239

land cover characteristics. There are also large-scale variations; in central Germany and across France the storage240

capacity tends to be higher, whereas in the Alps and at the Norwegian coast we find low water holding capacities.241

4.2 Case Study - Le Saulx catchment242

We illustrate the model behavior and the (modeled) relationships between soil moisture, streamflow and ET under243

dry, average and wet conditions based on a pronounced dry-down period between April and July 1998 in the244

Le Saulx catchment. We chose this catchment as example because it is located in eastern France where land245

cover and meteorological conditions are to some extent representative for central Europe, and also because of246

the especially pronounced 1998 dry-down. Figure 4 shows in the upper part the runoff function (normalized by247

precipitation) and ET function (normalized by net radiation) fitted for that catchment based on the observed248

streamflow time series. As shown by the background histogram, the soil moisture content during April through249

October (snow-free season) generally ranges between 100 and 150 mm, where the slope of the normalized ET250

function is rather constant, indicating a constant sensitivity of normalized ET with respect to soil moisture. In251
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contrast, the slope of the normalized runoff function increases strongly over this interval and therefore also the252

sensitivity of normalized runoff to soil moisture varies with the soil moisture content. Under dry conditions the253

soil moisture content occasionally decreases to about 50 mm, which slightly increases the sensitivity of ET to soil254

moisture and almost prevents any runoff as the normalized runoff function is almost zero. Under wet conditions255

the soil moisture content may rise up to over 150 mm. Under such conditions, if the soil moisture content is256

still lower than the water holding capacity of 170 mm, the runoff is very strongly dependent on soil moisture, in257

contrast to ET that shows a decreased sensitivity under wet conditions. However, beyond soil moisture values258

of 170 mm all precipitation is transformed into runoff and therefore the streamflow does no longer vary with soil259

moisture but only with precipitation. Note that the soil moisture content may exceed the water holding capacity260

of 170 mm as indicated by the background histogram. This is caused by a negative net radiation forcing during261

winter, which induces negative ET (condensation) and therefore increasing soil moisture; in some years it takes as262

long as April or May to remove this moisture surplus with seasonally increasing net radiation.263

Keeping these relationships in mind, the lower part of Figure 4 displays the evolution of modeled soil moisture,264

streamflow and ET during the April-July 1998 dry-down period together with the corresponding precipitation and265

net radiation forcing. The dashed red line indicating the observed streamflow evolution compares well with the266

modeled streamflow in terms of the temporal evolution (on which we focus, see Section 2.1.2), pointing out267

a reasonable performance of the model. The first month, April, is rather wet (high precipitation) and cloudy268

(low net radiation). Consequently, the streamflow is high, responds strongly to precipitation, and its evolution269

corresponds well with the soil moisture evolution, underlining the high sensitivity to soil moisture discussed above270

(as soil moisture is still below the water holding capacity). In contrast to streamflow, ET is lower, mostly driven271

by net radiation, and displays a low sensitivity to changes in soil moisture. During May and June the catchment272

experienced mostly sunny and dry conditions (high net radiation), only interrupted by low to medium precipitation273

in late May and early June. Correspondingly the soil dries out remarkably. The streamflow therefore decreases274

to almost zero, showing almost no response to the precipitation and the following slight increase of soil moisture.275

This illustrates the decoupling of streamflow from soil moisture under dry conditions. On the other hand, ET is276

comparatively high and roughly follows the strong soil moisture decrease and the subsequent stabilization, although277

net radiation is still the main driver, as a maximum in net radiation in the second half of June causes a pronounced278

maximum in ET (even if soil moisture is decreasing). Finally, in July soil moisture has decreased to very low levels279

such that the ET level is also lower and, more importantly, despite strong day-to-day variations in net radiation,280
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the ET evolution corresponds roughly to soil moisture.281

4.3 Propagation of soil moisture memory282

In contrast to the previous subsections that focused on particular months, all quantities discussed in this subsection283

(memories, coupling strengths, variances) are computed as a mean of all months between May and September.284

However, all mechanisms identified in the following also play a role for seasonal cycles of the memories of (modeled)285

soil moisture, streamflow and ET in the specific catchments.286

4.3.1 Memory of soil moisture, streamflow and evapotranspiration287

Figure 5 displays the 30-day-lag memories of soil moisture (ρ (wn, wn+30)), streamflow (ρ (Sn, Sn+30)) and ET288

(ρ (En, En+30)) computed from daily data in all catchments as compared to the respective 1-month-lag memories289

computed from monthly averaged data. The memory patterns derived from daily and monthly data are very290

similar. The 1-month-lag memories are higher, which results from the aggregation of the data that minimizes the291

impact of day-to-day variations in the meteorological forcing.292

As reported in numerous earlier studies (e.g. Delworth and Manabe 1988, Entin et al. 2000, Robock et al.293

2000, Koster and Suarez 2001, Orth and Seneviratne 2012) we find considerable persistence in soil moisture in294

almost all catchments. Largest soil moisture memory is found across Central Europe (Germany, eastern France).295

We find generally weak soil moisture memory in mountainous areas (Alps, Massif central, Scandinavian mountains).296

Note that these large-scale patterns correspond with the spatial distribution of the fitted water holding capacities297

shown in Figure 3, pointing out the importance of the storing capacity for soil moisture memory. Also similar to298

the fitted water holding capacities, besides large-scale gradients there are also partly high small-scale variations299

(Germany, Norway). This highlights the importance of local soil and vegetation characteristics in comparison to300

the impact of the particular climate regime.301

Interestingly, also for streamflow we find medium memory in many parts of Europe, especially in the Center302

and in the South-West, where soil moisture memory is also highest. Apart from these rather dominant large-scale303

variations we find also small-scale variations, as can be seen from the partly high memory differences between nearby304

catchments in central Europe, pointing out some importance of the role of local catchment characteristics also for305
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streamflow memory. Figure 5 shows moreover some memory in ET only for monthly data in some catchments in306

southern France. Possible reasons for this feature will be discussed in the following subsections.307

4.3.2 Forcing memories and variabilities308

As described in Section 2.1.1 streamflow depends on runoff (and therefore also on soil moisture and precipitation)309

and on the delay time scale τ (Equation (5)). Therefore streamflow memory may result from propagating soil310

moisture memory, but it is also induced by the delay time scale. ET depends on soil moisture and net radiation311

(Equation (2)) and hence its memory may stem from soil moisture memory or net radiation memory.312

For daily data, net radiation memory and precipitation memory are negligible. Therefore ET memory results313

almost entirely from soil moisture memory, whereas streamflow memory is additionally impacted by the delay314

time scale. On the monthly time scale, however, we find small but no longer negligible memories for radiation315

and precipitation. Associated with that the forcing variabilities decrease towards longer time scales as day-to-day316

variations are averaged out. Note that the variability of radiation decreases more strongly than that of P ∗n as it317

already incorporates the joint impact of many daily precipitation sums.318

4.3.3 Controls of memory propagation319

To assess the connection between soil moisture memory versus streamflow and ET memory, a scatter plot of320

the streamflow and ET memories from all selected catchments as a function of the corresponding soil moisture321

memories is presented in Figure 6, where every point and every triangle represents one catchment. The left plot322

is based on daily data and shows 30-day-lag memories whereas the right plot is based on monthly data and shows323

1-month-lag memories. In agreement with Figure 5, this analysis shows that ET memories are generally lower than324

streamflow memories. With the help of the dashed identity line we find that streamflow memory seems to be limited325

by the corresponding soil moisture memory, which suggests that streamflow memory to some extent originates326

from soil moisture memory. However, in two catchments the streamflow memory clearly exceeds the estimated327

soil moisture memory. This is because streamflow memory is not solely induced by soil moisture memory, but it328

may also be generated through the delay time scale τ , i.e. by (slow) transport of runoff water to the streambed329

and in the streambed towards the stream gauge station. The delay time scale that is among the longest in these330

2 catchments. However, despite the impact of the delay time scale, the main control of streamflow memory is its331
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link with soil moisture memory as seen from the clear relationship in this plot.332

Using color coding, Figure 6 also shows the respective soil moisture-streamflow and soil moisture-ET coupling333

strengths (see Section 2.5). Streamflow memories are found to be dependent on ρ (Sn, wn). Almost all catchments334

that show comparatively high streamflow memories, also show comparatively high ρ (Sn, wn) together with also335

relatively high soil moisture memories. This supports the above-described propagation of soil moisture memory.336

For the ET memory the link to ρ (En, wn) is less clear, nonetheless most of the catchments with comparatively337

high ET memory also display a higher ρ (En, wn). In most catchments ρ (En, wn) is weaker than ρ (Sn, wn),338

which explains why streamflow memory exceeds ET memory.339

Whereas streamflow memories increase only slightly from daily to monthly time scales, the ET memories340

increase much stronger. This is because ρ (En, wn) increases stronger than ρ (Sn, wn) for most catchments,341

thanks to the strong reduction in radiation variability with increasing time scale (see Section 4.3.2). These findings342

highlight the importance of the time scale used in memory considerations. Although the forcing memories are no343

longer negligible on the monthly time scale (Section 4.3.2), Figure 6 illustrates that streamflow and ET memory344

are mostly controlled by soil moisture memory and the respective coupling strength, ρ (En, wn) or ρ (Sn, wn), as345

on the daily time scale.346

When computing the memory of evaporative fraction
En
Rn

instead of ET on the daily time scale (not shown)347

we find far stronger memory that is similar to soil moisture memory, underlining the strong weakening impact of348

daily net radiation variability on ET memory. Similarly, the memory of
Qn
Pn

is similar to soil moisture memory on349

the daily time scale (not shown), and therefore stronger than that of streamflow, which underlines the weakening350

impact of day-to-day precipitation variability.351

Summing up, we have shown in this section that streamflow and ET memory depend on (i) soil moisture352

memory, which also acts to some extent as an upper limit, (ii) the strength of the coupling to soil moisture, and353

(iii) the memory of the forcing (predominantly on longer time scales). Furthermore streamflow memory may be354

generated by the delay time scale τ reflecting the conversion of runoff to streamflow. A schematic view of these355

dependencies is presented in Figure 7, with positive relationships denoted by red arrows and negative relationships356

shown with blue arrows. It also illustrates that the forcing memory not only supports the streamflow and ET357

memories but also the soil moisture memory itself (Orth and Seneviratne 2012). Moreover the scheme includes358

controls of ρ (Sn, wn) and ρ (En, wn), which are discussed in the following subsection together with a further359

discussion of Figure 7.360
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4.4 Soil moisture-streamflow and soil moisture-ET coupling361

4.4.1 Geographical distribution362

Figure 8 displays the geographical distribution of the two coupling strengths introduced in Section 2.5 and computed363

with daily and monthly averaged data, respectively. The geographical patterns appear to be independent of the364

applied averaging time scale. As seen previously for the streamflow and ET memories, the soil moisture-streamflow365

coupling strengths are similar for different time scales whereas the (absolute values of the) soil moisture-ET366

coupling strengths increase significantly in many catchments. This is also reflected in a clear increase of the367

standard deviation of all respective soil moisture-ET coupling strengths.368

The soil moisture-streamflow coupling ρ (Sn, wn) is overall clearly stronger than the soil moisture-ET coupling369

ρ (En, wn). It is comparatively weak in coastal areas (Great Britain, Norway) and rather strong in flat, continental370

regions (Germany, France). However, in coastal areas around the Baltic sea (Denmark, Estonia, Finland) there is371

no reduction in ρ (Sn, wn). Overall, large-scale variations are dominant, although in some regions (e.g. Norway372

and Great Britain) partly great differences are found for nearby catchments.373

For the soil moisture-ET coupling ρ (En, wn) small-scale variations are more prominent than large-scale vari-374

ations, especially on the monthly time scale. In southern France the coupling is particularly strong due to the375

dry regime under which soil moisture is rather low and the ET function slope rather high (see Section 4.2).376

Negative ρ (En, wn) as seen at the monthly time scale for some catchments in central and northern Europe can377

be explained with very low slopes of the fitted ET ratio functions in these catchments; as a consequence ET de-378

pends almost entirely on net radiation which is usually negatively related with precipitation and hence soil moisture.379

380

4.4.2 Controls381

Having shown that streamflow and ET memory are originating from soil moisture memory and are furthermore382

controlled by the respective soil moisture-streamflow and soil moisture-ET coupling strengths, we analyze here383

the two coupling strengths themselves. Thereby we determine which climatic regime or catchment characteristics384

support or inhibit memory propagation. As shown in Figure 7, we investigate and identify two controls for the385

coupling strengths: (i) the slopes of the runoff (normalized by precipitation) and ET (normalized by net radiation)386
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functions (Equations (5) and (2); and shown exemplary for the Le Saulx catchment in Figure 4), (ii) the variance387

of the forcing, i.e. of cumulative weighted precipitation (P ∗n , Eq. (6)) and net radiation (Rn). We consider the388

forcing variances as they influence the translation of a soil moisture signal into streamflow and/or ET. For instance389

even if the respective slope is high, the respective coupling strength may be reduced by a high forcing variance.390

Figure 9 shows the impact of both drivers described above on the two coupling strengths for daily and monthly391

averaged data. Every point (streamflow) and every triangle (ET) represents one catchment. The respective slopes392

of the fitted runoff and ET functions are plotted on the y-axes and the forcing variances can be read from the393

color coding of the symbols.394

Focusing on ET first, we find increasing ρ (En, wn) with increasing mean slope of the ET function on both395

time scales. The radiation variances are very similar at all catchments. When comparing the variances from396

different time scales we find a clear reduction towards the longer, monthly time scale (see also Section 4.3.2).397

This is because day-to-day variations are averaged out, which also causes a stronger increase of ρ (En, wn) with398

increasing slope of the ET function.399

Interestingly, ρ (Sn, wn) does not increase with increasing runoff function slope, but instead it decreases400

slightly on both considered time scales. Apart from the slope, ρ (Sn, wn) is also controlled by the variance of the401

atmospheric forcing (cumulative weighted precipitation P ∗n). Different precipitation variances cause a gradient in402

the coupling strengths of catchments with similar slopes. The rather strong role of the precipitation variance for403

ρ (Sn, wn) compared to the role of the radiation variance for the soil moisture-ET coupling is due to the much404

larger spread of the precipitation variances between all catchments, as shown in the color bars in Figure 9. Note,405

however, that the displayed variance of P ∗n is not strictly a forcing variance as P ∗n is determined in part by the406

delay time scale τ (see Equation (6)), which means consequently that also τ may impact ρ (Sn, wn).407

The scheme in Figure 7 summarizes all the relationships investigated above. It also illustrates how ρ (Sn, wn)408

and ρ (En, wn) feed back on soil moisture memory. The stronger streamflow and ET respond to soil moisture,409

the more they tend to dampen initial soil moisture anomalies. For instance a dry anomaly causes a decrease in410

streamflow and ET, whereas a wet soil moisture anomaly would cause a strong increase, especially in streamflow411

(see Figure 4). The impact of the initial soil moisture anomaly for the subsequent soil moisture memory is discussed412

in Section 4.5. The variability of the forcings (precipitation and radiation) may weaken the streamflow and ET413

memory, but this effect only plays a role in case of low slopes of the runoff and ET functions, as seen especially414

for streamflow in Figure 9.415
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4.4.3 Differences between soil moisture-streamflow and soil moisture-ET coupling416

As discussed in Section 4.3.3, streamflow memory exceeds ET memory in almost all catchments on the daily time417

scale and in most catchments on the monthly time scale. This is caused by the stronger coupling of streamflow to418

soil moisture (ρ (Sn, wn) > ρ (En, wn)) found in most catchments. The reason for this is that the runoff function419

slopes typically exceed the ET function slopes in the investigated catchments. Also the forcing variabilities play420

a role. As described in Section 4.3.3, they decrease with increasing time scale because day-to-day variations are421

averaged out, but the radiation variability decreases stronger, which explains why the ET memory increases more422

than the streamflow memory with increasing time scale.423

The larger runoff function slopes and the consequently stronger impact of streamflow on soil moisture dynamics424

compared to the impact of ET on soil moisture dynamics are furthermore another reason for the considerable spread425

of the triangles in Figure 9. Catchments with similar ET function slopes may have very different runoff function426

slopes that impact soil moisture dynamics differently, thereby causing different ρ (En, wn). It should be noted427

that these results are likely dependent on the climatic region where the catchments are located (as the considered428

catchments are mostly located in central and northern Europe, i.e. in rather radiation-limited conditions).429

4.5 Relating memory to persistence time scales430

In Section 2.4 we introduced a methodology to compute time scales of persistence. Applying this methodology431

to the (modeled) streamflow and soil moisture data from the 100 selected catchments we derive maps of the432

mean persistences of dry and wet anomalies of medium and high strength in Figure 10. The geographical patterns433

of the persistences compare generally well to the mean memories derived from daily data as shown in Figure 5,434

suggesting consistency between the different approaches for memory computation. Note that partly strong small-435

scale variations of persistence are due to the heterogeneous nature of soil and vegetation characteristics. For soil436

moisture we find median persistences over the considered catchments ranging from 17 to 25 days depending on437

the considered anomaly. For streamflow the medians of the persistence time scales range between 5 and 7 days.438

Note that we do not investigate persistence in ET here as there is almost no memory on the daily time scale as439

shown previously in Figure 5. We find that it takes generally longer to recover to normal conditions from strong440

anomalies than from medium anomalies. In other words, the stronger an initial anomaly, the more pronounced441

is the following memory effect. While this is not unexpected, it has important implications for the forecasts of442

18



extreme events. Also previous studies reported an enhanced soil moisture memory following hydrological extreme443

conditions (Koster et al. 2010, Orth and Seneviratne 2012). This impact of the initial soil moisture anomaly on444

the strength of the subsequent memory is also included in the schematic provided in Figure 7.445

Comparing persistences of dry and wet anomalies we find that for soil moisture dry anomalies persist longer,446

even if the difference to the persistence of wet anomalies is small in comparison to the absolute value of the447

persistences. The reason for this result may be that the climate in most considered European catchments is448

generally humid which means that dry anomalies can be very extreme whereas wet anomalies are rather limited (as449

it cannot get much wetter). Unlike the soil moisture patterns, streamflow memory shows similar strength during450

dry and wet anomalies. While the propagating soil moisture memory supports the streamflow memory especially451

during dry anomalies, this result is due to the fact that ρ (Sn, wn) is stronger under wet conditions (see Section452

4.2) which allows a better propagation of the soil moisture memory to streamflow (see Section 4.3.3). Note that453

streamflow persistences for strong, dry anomalies could not be computed for all selected catchments as in some454

catchments the respective threshold is only exceeded on very few days. This is because streamflow values rather455

follow an exponential than a normal distribution.456

Figure 11 displays a comparison of memories computed as lag correlation and as persistence time scales.457

As above, we focus on soil moisture and streamflow, and we additionally investigate observed streamflow. The458

reasonably high R2 values of the linear fits indicate consistency between the two approaches, only persistence time459

scales computed for dry (modeled and observed) streamflow anomalies correspond less well to the respective lag460

correlations due to the exponential distribution of the streamflow values discussed above. Figure 11 also shows461

that dry soil moisture anomalies persist longer than respective wet anomalies whereas for streamflow we find462

the opposite for the weaker anomalies of 1.33 standard deviation considered here. The results for modeled and463

observed streamflow are similar, indicating a good representation of streamflow memory/persistence in the simple464

water balance model (which is not surprising, however, as the model is calibrated with observed streamflow).465

The logarithmic scale of the persistence time scales indicates interestingly that persistence time scales increase466

exponentially for a linear increase in estimated lag correlation. This underlines the red noise character of soil467

moisture, which was already reported by Delworth and Manabe (1988). Note that the findings of this figure are468

robust, even if we consider persistence time scales related to other anomaly thresholds or lag correlations of other469

time lags.470
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5 Conclusions471

Using data from 100 catchments located across Europe we have shown that a simple water balance model is able472

to simulate realistic streamflow as well as realistic streamflow memory characteristics compared to observations,473

thereby expanding the validation earlier performed by Orth et al. (2013).474

Further, this study investigated the connection between soil moisture memory and both streamflow and ET475

memory. We showed that soil moisture memory to some extent serves as an upper bound for streamflow and476

ET memory. Furthermore we defined measures of the coupling between soil moisture and streamflow as well as477

between soil moisture and ET and found that the strengths of these couplings also determine the memory strength478

of streamflow and ET, respectively. These findings explain why one can infer that the memory propagates from479

soil moisture to streamflow and ET as illustrated in Figure 7. As streamflow and ET are moreover driven by the480

meteorological forcing, also the (small) memories of cumulative weighted precipitation and net radiation (only on481

the monthly time scale) play a (minor) role for the strength of their respective memories.482

Comparing the results for daily and monthly time scales we generally find higher memory for monthly averaged483

data and for all three quantities. This is due to the reduced impact of the day-to-day variations of the meteorological484

forcing.485

Figure 7 also displays the special role of the coupling strengths between soil moisture and streamflow as well486

as between soil moisture and ET. We showed that the soil moisture-ET coupling is mostly controlled by the slope487

of the fitted (normalized) ET function whereas the soil moisture-streamflow coupling is strongly related to the488

variance of the weighted cumulative precipitation. In most catchments, the ET function slope is smaller than the489

runoff function slope, which is the main reason for the generally weaker coupling between soil moisture and ET490

and the consequently lower ET memory as compared to streamflow memory.491

In the last part of this study we introduced an alternative approach for computing memory to study its492

dependency on different hydrological conditions. Instead of using a lag correlation we calculated the mean time493

required to recover from anomalous conditions above a certain threshold to normal conditions. Applying the494

new methodology we found increased memory under more extreme conditions, as illustrated in Figure 7 by the495

positive impact of the initial soil moisture anomaly on subsequent soil moisture memory. We further point out496

that soil moisture memory is strongest for dry anomalies whereas streamflow memory is stronger during wet497

anomalies (in the investigated catchments). These results have important implications for sub-seasonal forecasts498

of dry and wet soil moisture and streamflow anomalies, including drought and flood events. As the resulting499
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persistence time scales are expressed in days, this measure of memory it is more easily interpretable, which is of500

particular relevance for applications and practitioners. We show consistency between the two approaches, which501

is furthermore underlined by the consistency of the derived geographical soil moisture and streamflow memory502

patterns. We also find that the persistence time scales are exponentially related to the respective lag correlations,503

pointing out a special importance of high lag correlations identified for soil moisture.504
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Appendix A: Overview of catchments515

Catchment
(river)

Country Gauging
station

Size
(km²)

Mean
altitude
(m

above
sea
level)

Mean
daily

stream-
flow
(mm)

Catchment
centroid

Antiesen Austria Haging 165 512 1.35 48.3°N 13.4°E

Braunaubach Austria Hoheneich 292 580 0.60 48.8°N 15.0°E

Griesler Ache Austria St. Lorenz 122 732 2.99 47.8°N 13.3°E

Große Rodl Austria Rottenegg 226 703 1.19 48.3°N 14.1°E

Große Tulln Austria Siegersdorf 202 348 0.51 48.3°N 15.9°E

Leogangbach Austria Uttenhofen 112 2.14 47.4°N 12.8°E

Traun Austria Obertraun 334 1078 5.39 47.6°N 13.7°E

Otava Czech Republic Rejtejn 334 1025 2.22 49.1°N 13.5°E

Svratka Czech Republic Borovnice 128 0.97 49.7°N 16.2°E

Teplá Vltava Czech Republic Lenora 176 1018 1.47 48.9°N 13.8°E

Volynka Czech Republic Nemetice 383 728 0.63 49.2°N 13.9°E

Vantaa Finland Oulunkylä 1680 78 0.90 60.2°N 25.0°E

L’ Aisne France Mouron 2239 208 0.95 49.3°N 4.8°E

L’ Ance Du
Nord

France St-Julien-D’ance
(Laprat)

354 995 1.01 45.3°N 3.9°E

Le Bes France St-Juery 283 1200 2.10 44.8°N 3.1°E

La Colagne France St-Amans (Ganivet) 89 1286 1.30 44.7°N 3.4°E

Le Doubs France Goumois 1060 992 2.36 47.3°N 7.0°E

La Drome France Luc-En-Diois 194 1014 1.02 44.6°N 5.4°E

La Loire France Bas-En-Basset 3234 968 0.90 45.3°N 4.1°E

La Moselle France St-Nabord
(Noir Gueux)

633 720 3.35 48.1°N 6.6°E

Le Saulx France Vitry-En-Perthois 2109 264 1.12 48.7°N 4.6°E

La Seine France Bar-Sur-Seine 2344 320 0.94 48.1°N 4.4°E

La Sioule France St-Priest-Des-Champs
(Fades-Besserve)

1305 781 1.08 46.0°N 2.8°E

La Tardes France Evaux-Les-Bains 854 507 0.84 46.2°N 2.4°E

La Truyere France Malzieu-Ville
(Le Soulier)

582 1122 1.13 44.8°N 3.3°E

La Truyere France Neuveglise (Grandval) 1803 1069 1.17 44.9°N 3.1°E
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Catchment
(river)

Country Gauging
station

Size
(km²)

Mean
altitude
(m

above
sea
level)

Mean
daily

stream-
flow
(mm)

Catchment
centroid

Aitrach Germany Lauben 308 732 1.52 47.9°N 10.0°E

Apfelstädt Germany Ingersleben 371 449 0.60 50.9°N 11.0°E

Attel Germany Anger 244 523 1.39 48.0°N 12.2°E

Brugga Germany Oberried-Ibrech 40 989 3.41 47.9°N 8.0°E

Dhron Germany Papiermühle 170 489 0.95 49.8°N 6.9°E

Elsava Germany Rück 145 356 0.72 49.8°N 9.2°E

Engnitz Germany Hüttengrund 46 654 2.08 50.4°N 11.2°E

Gaissa Germany Hoerrmannsberg 212 457 1.30 48.7°N 13.4°E

Grosse Ohe Germany Schönberg 82 811 2.13 48.8°N 13.4°E

Grosser Regen Germany Zwiesel 177 886 2.52 49.0°N 13.2°E

Helme Germany Sundhausen 201 255 0.76 51.5°N 10.8°E

Kinzig Germany Schwaibach 964 600 2.16 48.4°N 8.0°E

Kollbach Germany Deggendorf 36 1.73 48.8°N 13.1°E

Lahn Germany Biedenkopf 309 477 1.60 50.9°N 8.5°E

Lohr Germany Partenstein 217 400 1.20 50.0°N 9.5°E

Mindel Germany Offingen 951 595 1.14 48.5°N 10.4°E

Mitternacher Oh Germany Eberhardsreuth 114 663 1.55 48.8°N 13.4°E

Osterbach Germany Röhrnbach 121 645 1.88 49.0°N 13.2°E

Reschwasser Germany Unterkashof 61 967 2.69 48.9°N 13.5°E

Rodach Germany Streitmühle
bei Due

55 633 1.55 50.4°N 11.5°E

Rottach Germany Rottach 31 1159 2.88 47.7°N 11.8°E

Saalach Germany Unterjettenberg Rech 760 1211 3.34 47.7°N 12.8°E

Schwarzwasser Germany Aue1 362 745 1.51 50.6°N 12.7°E

Sinn Germany Mittelsinn 461 456 1.19 50.2°N 9.6°E

Steinacher Ache Germany Fallmuehle 22 1355 3.73 47.6°N 10.5°E

Stoisser Ache Germany Piding 50 738 2.08 47.8°N 12.9°E

Tiroler Achen Germany Staudach 944 1139 3.21 47.8°N 12.5°E

Traun Germany Stein Bei Altenmarkt 378 850 2.85 48.0°N 12.6°E

Uessbach Germany Peltzerhaus 176 410 0.84 50.1°N 7.1°E

Ulster Germany Guenthers 182 598 1.38 50.7°N 10.0°E

Untere Steinach Germany Oberhammer 67 576 1.44 50.2°N 11.5°E

Vils Germany Pfronten Ried 110 1369 3.78 47.6°N 10.6°E

Weisser Regen Germany Koetzing 226 692 1.72 49.3°N 13.0°E

Wertach Germany Biessenhofen 442 882 2.44 47.8°N 10.7°E

Weschnitz Germany Lorsch 383 214 0.71 49.7°N 8.6°E

Wipper Germany Hachelbich 524 324 0.63 51.3°N 11.0°E
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Catchment
(river)

Country Gauging
station

Size
(km²)

Mean
altitude
(m

above
sea
level)

Mean
daily

stream-
flow
(mm)

Catchment
centroid

Årgårdselv Norway Øyungen 230 316 4.51 64.2°N 11.1°E

Engesetelev Norway Engsetvatn ndf 41 206 4.92 62.5°N 6.6°E

Etna Norway Etna 565 925 1.44 61.0°N 9.6°E

Etneelv Norway Stordalsvatn 140 611 9.09 59.7°N 6.0°E

Flisa Norway Knappom 1655 414 1.38 60.6°N 12.0°E

Forra Norway Høggås bru 458 525 3.77 63.5°N 11.4°E

Fusta Norway Fustvatn 520 472 5.58 65.9°N 13.3°E

Glomma Norway Atnasjø 468 1140 1.85 61.9°N 10.2°E

Guddalselva Norway Nautsundvatn 214 436 7.17 61.3°N 5.4°E

Jondalselv Norway Jondal 150 569 1.73 59.7°N 9.6°E

Kløvtveitelv Norway Kløvtveitvatn 5 466 11.06 61.0°N 5.3°E

Lygna Norway Tingvatn 265 564 5.80 58.4°N 7.2°E

Moelv Norway Salsvatn 435 285 5.18 64.7°N 11.5°E

Nordelva Norway Krinsvatn 210 435 5.42 63.8°N 10.2°E

Ogna Norway Helleland 75 336 6.79 58.5°N 6.2°E

Øren Norway Øren 151 264 4.05 62.8°N 7.7°E

Oselv Norway Røykenes 55 328 8.63 60.3°N 5.4°E

Strandå Norway Strandå 27 212 5.89 67.5°N 14.9°E

Tovdalselv Norway Austenå 310 752 3.01 58.8°N 8.1°E

No name Norway Karpelv 129 194 1.72 69.7°N 30.4°E

Biely Vah Slovakia Vychodna 106 1055 1.26 49.0°N 19.9°E

Kysuca Slovakia Cadca 492 647 1.46 49.4°N 19.0°E

Poprad Slovakia Poprad-Matejovce 311 1001 1.13 49.1°N 20.3°E

Rajcianka Slovakia Poluvsie 243 706 1.18 49.1°N 18.7°E

Dalelven Sweden Ersbo 654 728 3.34 61.3°N 13.0°E

Moelven Sweden Anundsjön 1457 283 1.10 63.4°N 18.3°E

Kleine Emme Switzerland Littau 78 2.00 47.5°N 8.9°E

Murg Switzerland Waengi 477 662 2.79 47.1°N 8.3°E

Allan Water United Kingdom Kinbuck 172 245 3.07 56.2°N 3.9°W

Coln United Kingdom Bibury 107 181 1.12 51.8°N 1.8°W

Cree United Kingdom Newton Stewart 368 243 3.77 55.0°N 4.5°W

Dart United Kingdom Austins Bridge 249 327 3.91 50.5°N 3.8°W

Dee United Kingdom Woodend 1394 512 2.46 57.1°N 2.6°W

Kinnel Water United Kingdom Redhall 78 245 3.45 55.2°N 3.4°W

Nith United Kingdom Friars Carse 812 293 3.28 55.1°N 3.7°W

Thet United Kingdom Melford Bridge 315 40 0.53 52.4°N 0.8°E

Tweed United Kingdom Boleside 1559 361 2.31 55.6°N 2.8°W

Weaver United Kingdom Audlem 207 89 0.76 53.0°N 2.5°W
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Table 1: Overview of model parameter accuracies, boundaries and the range of their respective estimates.
Parameter Accuracy Lower

limit
Upper
limit

Minimum
value found

Maximum
value found

water holding
capacity cs

(mm)

30 20 2000 50 890

inverse
streamflow
recession

timescale
1

τ
(1/days)

0.02 0.02 - 0.04 0.78

runoff exponent
α

0.2 0 15 0.2 15

ET exponent γ 0.03 0 - 0.03 3.87
max ET ratio β0 0.03 0.03 0.99 0.24 0.99
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Figure 1: The colored large dots indicate the locations of the selected 100 catchments. The color coding indicates
the mean daily streamflow between May and September. The smaller black dots indicate the locations of the
remaining catchments of the Stahl et al. (2010) dataset, as considered for the validation of streamflow (memory)
in Section 4.1. The arrow points to the Le Saulx catchment later considered in Section 4.2.
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Figure 2: The left plots show modeled versus observed mean daily streamflows for June (in black) and October
(in red). Note the logarithmic scale of both axes. The thick straight lines are fitted with least-squared regression,
R2 values shown on top are a result of this. The right plots show the same, only for mean monthly streamflow
memory ρ (Sn, Sn+15 days). The upper row shows results for all 441 catchments, the lower row only contains the
selected catchments.
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Figure 3: Fitted water holding capacites for the selected catchments. Note the logarithmic scale of the color-
coding.
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Figure 4: a) Fitted normalized streamflow (Equation (5)) and ET (Equation (2)) functions for the Le Saulx
catchment in eastern France (indicated by an arrow in Figure 1). The background histogram shows the relative
abundance of soil moisture contents between April and October.
b) Time series of forcing (net radiation at the top, precipitation at the bottom) and according output of the
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pronounced dry-out period from April until July 1998. The dashed red line indicates the evolution of the observed
streamflow. The fitted water holding capacity for this catchment is 170 mm, such that the normalized streamflow
function reaches 1 at this soil moisture content. Note that the ET time series has been smoothed to facilitate the
readability of the graph such that each value represents the average of the current day, the three preceding days
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Figure 5: Geographical distribution of mean May-September memories of soil moisture (ρ (wn, wn+lag), upper
row), streamflow (ρ (Sn, Sn+lag), center row) and ET (ρ (En, En+lag), lower row) for daily and monthly averaged
data (all memories computed for a lag of 30 days (daily data) or 1 month (monthly data)) computed as described
in Section 2.3.
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Figure 6: Streamflow (dots) and ET (triangles) memories ρ (Sn, Sn+lag) and ρ (En, En+lag), respectively, of all
selected catchments plotted versus the corresponding soil moisture memories ρ (wn, wn+lag) for daily and monthly
averaged data (all memories computed for a lag of 30 days (daily data) or 1 month (monthly data)). The color
coding denotes the strength of the soil moisture-streamflow coupling ρ (Sn, wn) and the soil moisture-ET coupling
ρ (En, wn), respectively (see Section 2.5).
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Figure 7: Schematic view of propagation of soil moisture memory to streamflow memory and ET memory. Red
arrows denote positive impacts, blue arrows show negative impacts. Only dependencies investigated in this study
are shown.
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Figure 8: Geographical distribution of mean May-September soil moisture-streamflow (upper row) and soil
moisture-ET (lower row) coupling strengths ρ (Sn, wn) and ρ (En, wn), respectively, for daily and monthly av-
eraged data. Respective strengths are shown through the color coding. In the upper left corner of each plot the
mean and standard deviation over the selected catchments are displayed.
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Figure 9: Soil moisture-streamflow (dots) and soil moisture-ET (triangles) coupling strengths, ρ (Sn, wn) and
ρ (En, wn), respectively, plotted against the respective runoff and ET function slope (computed as described in
Section 4.4.2) for daily and monthly averaged data. The color coding denotes the variance of the weighted
precipitation sum precipitation (P ∗n) and of radiation, respectively. All involved quantities computed as means
from May-September. Points that do not fit with the range of the x- and/or y-axis are also included together with
an arrow pointing in the direction of their actual location and the true value displayed next to it.
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Figure 10: Overview of mean durations to recover from (very) dry/wet conditions (1.33 and 1.66 standard
deviations away from the respective daily mean of the respective quantity) to normal conditions (± 1 standard
deviation around the mean) for (modeled) soil moisture and streamflow. The results are based on daily data. In
the upper left corner of each plot the median over all selected catchments is displayed. Gray color indicates that
no persistence can be computed because the applied threshold is almost never reached.
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Figure 11: Comparison of memory estimates computed as lag correlation and as persistence time scale (based on
anomalies of 1.33 standard deviations from the mean) for modeled soil moisture and streamflow (left and middle)
and observed streamflow (right). Red points refer to persistence time scales estimated from dry anomalies whereas
blue points are derived from wet anomalies. The red and blue lines denote the respective linear least-squares fit.
Note the logarithmic scale of the persistence time scale.
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