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Reply to Referee#2 
 
We are grateful to Referee#2 for his/her thoughtful review, which certainly helps us in improving our 
paper. If the Editor agrees, the assimilation techniques will be described more in-depth in the revised 
manuscript. We admit that we have been too synthetic when describing the Kalman algorithms and a bit 
imprecise in the usage of the notations for some equations. 
We hope that the following replies clarify all points raised by Referee#2. 
 
Ref#2 
Summary: the paper repeats a synthetic assimilation study by Walker et al. 2001 with (i) different 
numerical methods to solve the Richards equations and (ii) different Kalman-filter-based assimilation 
schemes. 
Reply 
We would like to point out that the synthetic experiment (evaporation from a uniform soil column) is also 
similar to the one presented by Enthekabi et al. (1994). Analogously to Walker et al. (2001), we selected 
this synthetic experiment to take advantage of the outcomes of these previous works while exploring the 
feasibility of different assimilation algorithms applied to different numerical schemes of the Richards 
equation. 
 
 
Ref#2 
1) System description 
It would help if the system equations for each of the numerical schemes were written out upfront. That is, 
similar to Eq. 31 for the CN-scheme, please add the equations for the EX and NL schemes. Also, more 
explanation of the expected relative importance of the numerical scheme versus the chosen assimilation 
technique would be helpful. 
E.g.: if a forward solution converges faster with one numerical approach than another, then this should 
be indicated separately from the impact of assimilating. 
Reply 
We agree with Referee#2. In sections 2 and 3 we will add a more comprehensive description of the 
system equations (similarly to what we provided for the CN scheme) and we will also illustrate the 
performance of the numerical schemes as well as the relative importance of these schemes versus the 
chosen assimilation technique.  
 
 
Ref#2 
P.13295 Eq. 2 and L20: Please correct the equation. What are the state system parameters w doing in the 
observation system? The parameters in the observation system should solely reflect the parameters of the 
observation operator. The model state x is itself already a function of state system parameters w.  
Reply 
We employed this expression for the observation function H to emphasize that the parameters of the state 
system might also directly affect the observation system. For instance, this is the case when we observe 
the soil water content (θ ) and we would retrieve the matric pressure head (h) profiles (see section 4.4). 
The observed soil water contents are directly affected by both the state x and the system parameters w, i.e 



the parameters of the soil water retention function, which in our study is modelled by the van Genuchten 
relationship (van Genuchten, 1980): 

( ) ( )( )1
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However, to avoid any misunderstanding, in the revised manuscript we will not introduce the model 
parameters w in the state space equations, given that in this paper we are dealing with time-invariant 
parameters. Eqs. (1) and (2) will be written as follows: 
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 (2) 
We think that reporting the system parameter vector w in H is instead relevant and necessary when we 
also retrieve model parameters, as shown in Parts II and III of this study (as also done by van der Merwe 
(2004), Moradkhani et al. (2005), Liu and Gupta (2007) and others). 

 
Ref#2 
P.13295 L17: the forecasted state is a result of *both* the internal dynamics in F and the exogenous 
input u. 
Reply 
We will improve the sentence accordingly. Our statement, at least as we conceived it, is in agreement 
with this explanation. When we say “in response to the current exogenous input vector” we interpret it as 
“conditioned to” and consequently also dependent on the exogenous input vector.  
 
 
Ref#2 
P.13295 L24: Q_k reflects the model error variance, *not* the full uncertainty in the model predictions 
(the latter is Pˆ-) 
Reply 
We certainly agree on this. We are sorry for this imprecise sentence and we will change it accordingly. 
 
 
Ref#2 
P.13295 L7: p(u_k): this u_k should probably read n_k for obs error. 
Reply 
You are correct, thank you. 
 
 
Ref#2 
P.13295 L22: yˆ- = E[], remove the E[], the observation predictions are straight deterministic forward 
simulations 
Reply 
You are correct, thank you. 
 
 



Ref#2 
P.13295 
Eq 4: No idea how this equation was obtained, but it cannot be right – the dimensions are wrong and the 
covariances do not make any sense. If you prefer a fancy equation different from a regular PH/[HPH+R], 
please do provide a few lines to allow the reader to follow. 
Eq. 5: This equation is also wrong in my eyes and I cannot trace back where it comes from: should it not 
be Pˆ- - KHPˆ-; please prove me wrong by giving a derivation. Besides, the corresponding Eq. for the 
EKF (Eq. 10) is right. . . 
Reply 
We already replied to Referee#1 on these two points. First, we notice that there is an editing error in the 
first term on the right hand side of Eq. (4), as printed in the published manuscript. The correct form is the 
following: 
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Ref#2 refers to the more common expression of the Kalman gain: 
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The expression of Eq. (c.1#1) is equivalent to Eq. (4), as shown below. 
Reminding that 

=Hk k k+y x n  (c.#1_2) 
the covariance matrices P ,k

−
xy  and P ,k

−
y  can be expressed as follows  
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Eq. (c.#1_1) can be then obtained by combining (c.#1_3) and (c.#1_4).  
 
With respect to Eq. 5, Ref#2 refers to the common expression for the calculus of P ,kx : 
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This expression is equivalent to Eq. 5, which we repeat here for the sake of clarity: 
P =P K P KT

,k ,k k ,k k
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With the following equations we show that K P K =K H PT
k ,k k k k ,k
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Since P ,k
−
x  and ( )-1

P ,k
−
y are symmetric matrices, they do not suffer any change with the transpose operator 

and hence: 
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The expressions employed for K k  (Eq. 4) and P ,kx  (Eq. 5) are equal to those employed by van der 
Merwe (2004). Alternative expressions can be found in the literature, as reported for instance by Grewal 
and Andrews (2008). We can change these equations and write them according the common usage if this 
might be an issue. We believe it is interesting to provide a different interpretation of the Kalman gain and 
the covariance P. 



 
Ref#2 
P.13298 Eq. 7-8 and 11-12: please correct: all derivatives are calculated at x_{k-1} (all4 equations) and 
for the error term (either v or n) set to 0 in the first of each pair of equations. 
Reply 
We agree that the error term in Eq. 11 should be set to 0. However, the derivates in Eq. 11-12 should be 
calculated using the prior estimate of the state value ˆk

−x . In P.13298, L8, the text in parenthesis should be 

corrected as follows: “(computed at the a priori estimate ˆk
−x )”. 

 
 
Ref#2 
P.13299, L17, Eq.15: xˆa is an unfortunate choice as symbol for the augmented state. This xˆa is used as 
a symbol for the updated state (‘analysis’) in the DA community. Maybe choose another symbol? 
Reply 
We used the same symbols employed by van der Merwe (2004). If this is an issue, we can change it. 
 
 
Ref#2 
P.13300: Eq. 19: second diagonal term should be Q_k, not R_v, for consistency 
Reply 
We suggest changing the manuscript by using R (with different subscripts) for indicating the covariances 
of the different types of noise sources, while using “q” (lower case) for indicating the flux at the boundary 
conditions (see also the reply below). 
 
 
Ref#2 
P13304, Eq. 13: why here beta?, P. 13310, Eq. 33: why here Q? Please reserve Q for model error 
covariance. 
P13310, Eq. 33 and 35: why is the time in superscripts, rather than subscripts? I thought that iterations 
are indicated in superscripts in this manuscript. What is f() in this equation 33? 
Reply 
We will correct these inconsistencies in the usage of the notations. The symbol β in equation (31) refers 
to the generic boundary conditions, while Q in equation (33) refers to the flux boundary condition. We 
suggest using the lower case q instead of Q in the revised manuscript.  
The symbol f in equation (33) refers to the terms of the discrete system equation which are independent 
from the states. 
Please, also read our reply below, where we provide clear descriptions of the SKF-CN and SKFv-CN 
algorithms. 
 
 
 
 
 
Ref#2 
P13306, L17 and Eq.13-14: the SKF is really designed with additive noise terms in both the state and 
observation system. Consequently, naming the SKF with a subscript SKF_v is irrelevant: an SKF should 
not be applied with propagating errors through the dynamical state system (also, the _v is not added 
everywhere, why? E.g. section 4.5). I suppose the real problem is that the SKF is not described per se in 
this paper. How about rewriting the section 2 on ‘Kalman filtering’ to describe the exact basic SKF 
instead of giving a general description? 



Reply 
We admit that the manuscript might not devote enough space to explaining the difference between SKF 
and SKFv. In the revised manuscript, we will provide a detailed description of these algorithms as 
suggested by the Referee.  
Below we anticipate some key differences between SKF-CN and SKFv-CN 
To ensure physical consistency in the time-dependency one has to account (either implicitly or explicitly) 
for the continuous-time formulation of the dynamic model, as done, for example, by Katul et al. (1993), 
Entekhabi et al. (1994) and Reichle et al. (2002). When passing from the continuous formulation to the 
equivalent discrete-time system model, the zero-mean white Gaussian noise [v(t) in our case] normally 
appears multiplied by a term, necessarily proportional to the computational time-step. Otherwise, it is 
necessary to resort to an artificial normalization of the error (see Walker (1999), Chapter 6, pp. 6.26). 
Maybeck (1979) provides many details about these formal aspects. 
The governing soil water flow equation in its stochastic form is: 
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The corresponding discrete form according to the CN differential scheme for node i at time-step k+1 is for 
i=2,…,N-1: 
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For nodes i=1 and i=N the discrete forms at time-step k+1 are: 
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The forecasting equation of the system state kx , coinciding with the matric pressure head ( i i
k kx h= ), can 

be obtained by combining the discrete equations written for all N nodes in the following linear state-space 
form: 

1 1 1
1ˆ ˆA B A Ak k k k k k k k

− − − −
−= + +x x g v

     

   (c#2.5) 

where kA  is the tri-diagonal matrix obtained by assembling the terms in the first parenthesis on the right 

hand-side of Eqs. c#2.2-2.4, kB  is the tri-diagonal matrix obtained by assembling the terms in the first 

parenthesis on the left hand-side of Eqs. c#2.2-2.4. The term kg  is a vector obtained by assembling the 

source terms on the right hand-side of Eqs. c#2.2-2.4 which are independent from the process noise. 



The a priori estimate of the covariance matrix is calculated as follows: 

( ) ( )1 1 1 1
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where ,v kR  is the covariance matrix of the zero-mean Gaussian noise kv . Notice that in Eq. c#2.6, the 

effect of the system noise variance is transformed by a matrix kA  which includes terms proportional to 
the time-step kt∆ . 

In what we call SKFv, as implemented by Walker et al. (2001), the process noise ( )v t is added after the 

discretisation. In this case, the forecasting equations of the system state kx  and the corresponding 
covariance matrix are: 
 

1 1
1ˆ ˆA B Ak k k k k k k

− − −
−= + +x x g v

      

   (c#2.7) 
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From our point of view, this form of assuming the process noise explains the extremely large and 
unrealistic covariances reported by Walker et al. (2001) while adding a 5% of the state values, as 
conceived by Entekhabi et al. (1994).  
This approach demands an artificial normalization of the process noise, in order to make it the 
independent from the time step. This “unnatural” normalization should also modify the noise covariance 
matrix for the calculus of the state covariance.  
We implemented the SKFv just to show that with SKFv-CN we could get exactly the same results 
obtained by Walker et al. (2001) with SKFv-EX, i.e. SKFv implemented with an explicit finite 
difference scheme, as illustrated in Section 4.2. In all other cases we implemented the SKF algorithm. 
 
 
Ref#2 
Overall: unless I am mistaken, only scalar (one-dimensional) observations are assimilated in this paper. 
The use of boldface vectors for obs, and matrices for obs error covariances is thus not relevant. It may be 
an idea to simplify the notation to reflect the scalar nature of the obs. 
Reply 
The observations refer to more than one node. Only when the observation depth is equal to 0.5 cm the 
observation is a single scalar value. 
 
 
Ref#2 
P.13293 L21: the Kalman filter is *not* a technique “to describe dynamic systems”, but a technique to 
filter observations or to merge observations with dynamic systems. 
L23: the Kalman filter does *not* provide a prediction of the state system, but instead it provides an 
*analysis* (or posterior estimate or update). The system itself provides the prediction or forecast (or 
prior estimate). 
Reply 
The Kalman filter, as a DA technique, effectively merges information from different sources. We will 
change the sentence accordingly, to avoid any possible misunderstanding.  
We agree, “prediction” is not a precise term. Sorry for this, we will change it accordingly. 
 
 



Ref#2 
P.13294 L2: EKF: ‘but still widely used’: where for example? Either insert a reference or delete. EK is 
still used in e.g. ECMWF-operations and Meteo-France, but in reality, all institutes have moved or are 
moving to EnKF. Also, P. 13297: I question if EKF is “undoubtedly the most widely used approach for 
dealing with nonlinearity”. 
Reply 
As already replied to Referee#1 for a similar comment, we agree on this point and suggest changing lines 
16-17 of page 13297 as follows: 
“Within the general framework of the Kalman Filter, the Extended Kalman Filter (EKF) has been the 
first approach suggested for dealing with nonlinearity.” 
At Page 3294 Line 2, we remove “but still widely used” from the sentence. 
 
 
Ref#2 
L19: if it is important to think about DA techniques for operational settings, then it would be good to 
explain why the UKF is preferred in this study over the Ensemble KF (EnKF) or the particle filter (PF, 
admitted, the last one is no KF and may not fit in this paper): these are the most commonly used 
techniques in hydrologic DA. The UKF is not a commonly used KF-technique in hydrologic DA to deal 
with nonlinearities. What is the exact reasoning for trying the computationally more intensive UKF? 
Reply 
There is plenty of literature about EnKF, but only few studies deal with alternative non-linear approaches, 
such as the UKF technique. 
In the revised manuscript, we will acknowledge that EnKF is a feasible approach for practical large-scale 
problems, as shown by several studies.  
In the UKF, similarly to the EnKF, the update mean and covariance of the system states are approximated 
by the sample mean and covariance of the update ensemble. However, while the ensemble size required in 
the EnKF is heuristic, in the case of the Unscented Kalman Filter the ensemble is defined by the sigma 
points which are deterministically chosen and the number of points required is of the same order as the 
dimension of the system.  
The sensitivity analysis carried out by Camporese et al. (2009) showed that an ensemble size greater than 
50 did not add accuracy to the data assimilation scheme when considering a synthetic soil column 
experiment similar to that used by Walker et al. (2001). However, many of the practical drawbacks found 
during the implementation of the retrieving algorithms with the Richards equation using the UKF might 
affect the EnKF. Luo and Moroz (2009) showed that in the estimation scheme of the ordinary EnKF, the 
random samples generally introduce spurious modes in the transformed distribution even if the set of 
sample points has the correct mean and covariance. 
Our decision to evaluate the UKF should be also seen in the context of our overall study, which includes 
retrieving model parameters. We consider that many of the generalizations emerged from state retrieving 
applications cannot be straightforwardly applied to parameter retrieving. In several cases parameter 
retrieving is normally associated with a lesser dimensionality, but a higher nonlinearity and more complex 
physical constraints.   
However, the EnKF-UKF comparison will be a focus of subsequent studies.  
We would also be interested in studying the particle filtering, following the recent discussions on this 
topic (Morakhadni et al. 2013; Vrugt et al., 2013). 
 
 
Ref#2 
4)– Numerical experiment: Unless I missed it, please indicate in the text (not just in the table) how the 
synthetic observations are generated, both for the pressure heads and the soil moistures. I understand 
that the R (obs error variance) is defined in the table, but only for the pressure heads, not for soil 
moisture. Did the authors also perturb the observations themselves to generate them based on the truth? 



Or was the exact true value assimilated? It looks like almost perfect observations are assimilated, which 
is not too realistic. 
Reply 
Section 4.1 describes how the synthetic observations are generated.  
We agree that the explanation of the numerical experiments should be also more informative.  
The observations were also perturbed with respect to the “true” values, adding a random error with mean 
zero and a standard deviation of five percent of these values. We noted that only for deviation larger than 
20% of the true values, the responses start to be sensibly distorted.  
Please also note that Part III of this study is focused on real experimental data. 
 
 
Ref#2 
P.13308, L7: ‘. . .propagated from the initial conditions’ –> ‘. . .propagated from the initial *uniform* 
conditions’: were the profiles each propagated with their respective numerical scheme (CN, EX, NL)? 
See above comment: I would like to find out the relative effect of the numerical scheme versus that of the 
DA, i.e. the effect on convergence speeds. 
Reply 
As we mentioned above, the numerical solutions obtained with the different numerical schemes are 
almost identical. We could not notice any difference in terms of accuracy of the numerical solution 
obtained with the different numerical schemes. This was achieved by choosing an appropriate time-step 
for each numerical solution. 
We will also specify this in the manuscript, including some statistics about the relative effect of the 
numerical scheme versus that of the data assimilation algorithm.  
 
 
Ref#2 
Section 4.2, fig 1 and the subsequent figures: assimilation at different depths is shown in fig 1: please 
discuss in the text what you see and relate to Walker et al. 2001 in this paragraph. The next figures do not 
need the results for the different assimilation depths after having discussed them once in fig 1. Instead, 
the subsequent figures should merge information in the different panels for 1 assimilation depth, to focus 
on the differences caused by the different DA aspects or numerical schemes. 
Reply 
We will provide more comments about the effect of the assimilation depths. However, we would like to 
keep the figures showing the results for all assimilations depths. Although the assimilation depth is not 
relevant for hourly assimilated pressure head values, it becomes more relevant when pressure heads are 
assimilated every two days (Figure 4) and when soil water content is the assimilated variable (Figure 5).  
 
 
Ref#2 
Section 4.3: could part of the success of the UKF be solely due to the iterative nature of the numerical 
scheme in the NL (as opposed to no iterations in the other schemes), rather than to the intrinsics of the 
UKF? 
Reply 
As stated above we verified that for the considered time steps identical responses of the numerical 
schemes were obtained. 
 
 
Ref#2 
Section 4.3 L21: LKF?? SKF instead?? 
Reply 
Yes, thank you for evidencing this typo error. 



 
Ref#2 
Section 4.4: please indicate what is new here compared to what is already found in Walker et al. 2001? 
Reply 
We provide valuable insights about the practical implementation of the UKF, a scarcely pondered 
approach, for soil moisture retrieving using the Richard equation, some of which are extensible to the 
EnKF. 
We provide insights about the links between the numerical scheme for formulating the Richards equation 
and the KF approach. 
We deal with the problem of the nonlinearity in the observation equation, in particular with that 
associated to the observation of soil moisture while retrieving pressure heads.  
New insights are also provided concerning the formulation of the process noise (also after Referee#2’s 
suggestions) and the evolving state covariances. 
 
 
Ref#2 
Conclusions: that ‘general guideline’ is not generally useful as indicated later on: in general, we start 
with a model that has its own numerical scheme. Maybe think of a conclusion more in terms of 
suggestions for model development, rather than in terms of evaluating DA? 
Reply 
Thank you for the suggestion, we will do that.  
As highlighted also in the conclusion, it is true that generally the assimilation algorithm is implemented 
with closed on-hand model software, however it is also important to point out that this is not the most 
desirable practice. It would be much more desirable that models are developed simultaneously with the 
assimilation algorithms, in order to achieve the optimal combination.  
In this paper we show that, for the specific case study, a CN numerical scheme, although less numerically 
efficient than NL (which is implemented in the most popular soil water dynamics simulation software), 
when combined with SKF provides assimilation performances similar to those obtained with a UKF-NL 
algorithm, with much less practical drawbacks. However, we acknowledge that an explicit formulation of 
the covariance propagation using the standard KF constitutes a limitation of the SKF-CN in large scale 
applications. The UKF-based approaches represent a very suitable alternative for circumvent this issue.  
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