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We would like to thank the reviewer for the assessment on the paper and constructive 

suggestions/comments. We have revised the manuscript, incorporating most of the comments made 

by the reviewer. To help in the assessment of our revision, reviewer's comments and our specific 

response to those comments are included. 

 

Response to comments made by Reviewer # 2:  

 

General comments:  The paper is well written, and has good structure, figures are informative and 

have very good quality. The topic is interesting and has practical significance. Overall, I recommend 

the paper for publication, although I would suggest authors consider several minor additions. 

 

Response: We thank the reviewer for the positive assessment that the paper is well written and the 

recommendation for publication with several minor additions. 

 

Comment 1: Firstly, the methods presented in the paper are complex and perhaps less accessible to 

a wide body of readers who may not be familiar with bayesian methods. Perhaps it would be good to 

add a short paragraph describing basics of the bayesian inference in not-so-technical language. 

 

Response:  We have now provided a more detailed information as well as a simplified equation on 

the Bayesian inference scheme. We believe that it will provide some introductory material to 

readers not familiar with the topic.  

 

The section 3.2 with added description on Bayesian inference now reads as –  

“The BJP modelling approach assumes that a set of predictands y(2), and their predictors y(1) follow 

a joint multivariate normal distribution in a transformed space. Normalization of the variables is 

achieved by using the log-sinh transformation (Wang et al 2012). The log-sinh transformation 

replaces the previously used Yeo-Johnson transformation (Yeo and Johnson 2000, Wang et al 2009, 

Wang and Robertson 2011).  Although both have data normalization and variance stabilization 

properties, the log-sinh has been shown to outperform the Box-Cox based Yeo-Johnson 

transformation when applied to catchments with highly skewed data (Wang et al 2011).  The 

posterior distribution of the parameters ���|���	
, including mean, variance and transformation 

parameters for each variable and a correlation matrix for the multivariate normal distribution, is 

estimated using a Bayesian inference (equation 1). 
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where Y��� contains the historical data of both predictor y(1) and predictand y(2) variables used for 

model inference, and θ is the parameter vector. ���
 is the prior distribution of the parameters of 

the multivariate normal distribution, representing any information available before the use of 

historical data YOBS. �����	|�
 is the likelihood function defining the probability of observing the 

historical data given the model and the parameters. The posterior parameter distribution is 

approximated by 1000 sets of parameters sampled using a MCMC method.  

 



The posterior predictive density for a new event is given by equation (2).  Here, we present a brief 

introduction of the BJP modelling approach, Details of the method for the numerical evaluation of 

Eq. (1), (2) and the prior distribution of the parameters can be found in Wang et al. (2009) and Wang 

and Robertson (2011).  
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Comment 2: Secondly, it would be good to demonstrate not just that the method works for the 

purpose intended, but also how its performance compares to simpler methods of error and bias 

correction, such as linear regression or quantile remapping. 

 

Response: A linear regression model generally assumes that the residual errors have constant 

variance. This causes problem when one wants to quantify prediction uncertainty, as larger events 

tend to have much larger variances in prediction uncertainty than smaller events. For this reason, we 

can rule out the use of linear regression as directly applied to the predictors and predictands. 

 

Having said above, the BJP method is essentially the same as the use of linear regression as applied 

to transformed predictors and predictands. There are only some subtle differences in the way 

parameters are estimated (but BJP can handle missing data and zero flow problem). For this reason, 

we have not made a comparison with the use of linear regression as applied to transformed 

predictors and predictands. 

 

We do not feel quantile mapping is any simpler than the use of parametric transformations to 

normalise data and stablise variance. An advantage of the BJP method is that it allows for 

uncertainty in the transformation parameters.  

 

 

 

Comment 3: Thirdly, authors stress the method’s skill in reducing simulation bias. Obviously, the 

post-processor reduces biases/errors when they are large. However, equally teaching are cases 

when the method is not skilful. Perhaps a plot of the gain in RMSEP expressed as a percentage of 

original RMSEP would be better in expressing postprocessor skill. Also, it would be interesting to see 

how performance of the postprocessor varies due to other factors, such as error variance. 

 

Response:  A problem with including RMSEP as percentage of original RMSEP is that it tends to 

unnecessarily highlight errors that are of very small magnitudes. However, we do appreciate 

reviewer’s comment that cases when the post-processor is not skilful are also important. 

 

We therefore have added an extra figure in the manuscript that shows post-processor’s 

performance across small and large error values and have included a discussion that clearly 

mentions conditions where the post-processor will not be effective.  

 

In addition, the added plots also demonstrate how the performance of post-processor varies against 

RMSEP error values (This conveys similar message as the plotting against the error variance, except 

that it is measured in probability space). 

 

We have added following figure and discussion in section 5 of the manuscript –  

 

“In general, the reduction of errors by the post-processor does not necessarily depend upon the 

magnitude of errors and occur for small as well as large errors (figure 9). However, reductions of 

errors are not possible in all situations, as illustrated by the points lying in the 1:1 lines. As with all 



the statistical methods, the effectiveness of the BJP post-processor depends upon the correlation 

between predictand and predictors, stationarity in relationship (between predictors and 

predictands) and persistence in the error structure that allow for prediction updating. The post-

processor is not effective in situations where none of these occur, this seem to be the case for many 

points lying in the 1:1 lines, most prominent among them being the high RMSEP error values (>0.25) 

corresponding to predictions in Nillahcootie (see figures 9 and 3). However, more importantly the 

BJP post-processor is able to preserve skill (not degrade performance) of WAPABA prediction even 

when error correction is not possible.” 

 

 

 

Figure 9: Scatter plots of RMSEP values; (left) WAPABA predictions vs. Method A, (right) Method A 

vs. Method B. 

 

Comment 4: Lastly, the abstract revolves around the difference between post-processing on the 

daily and monthly basis, suggesting that the paper is about contrasting these two, which it isn’t. The 

abstract should be rephrased to reflect the contents of the paper appropriately. 

 

Response: We have changed the abstract, which now reads –  

 

“Hydrologic model predictions are often biased and subject to heteroscedastic errors originating 

from various sources including data, model structure and parameter calibration. Statistical post-

processors are applied to reduce such errors and quantify uncertainty in the predictions. In this 

study, we investigate a statistical post-processor based on Bayesian Joint Probability (BJP) modelling 

approach to reduce errors and quantify uncertainty in streamflow predictions generated from a 

monthly water balance model. The BJP post-processor reduces errors through elimination of 

systematic bias and through transient errors updating. It uses a parametric transformation to 

normalise data and stabilise variance and allows for parameter uncertainty in the post-processor. 

We apply the BJP post-processor to 18 catchments located in eastern Australia and demonstrate its 

effectiveness in reducing prediction errors and quantifying prediction uncertainty.” 

 

 

Specific comments: -  

Comment 5: p.11200 line3 ".. further reduce: : :" further compared to what? 
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Response: No longer relevant  

 

Comment 6: - p. 11202 line 12 "..reliable in uncertainty distribution.." what does that mean, exactly? 

 

Response: By reliable we mean that the post-processed probability distributions are statistically 

consistent with the observed frequency. The definition of reliability is included in section 4.2.1. In 

addition we have also re-phrased the sentence to make it more understandable. The sentence now 

reads –  

 

 “While daily predictions from daily models may be post-processed at the daily time scale and then 

aggregated to monthly, there is no guarantee that the monthly volumes so produced have reliable 

uncertainty distributions and least errors achievable.”  

 

Comment 7: - p. 11203, line 7 "..grassland to semi-arid type of climate". Maybe other, more 

informative term than grassland could be used. 

 

Response:  The word ‘grassland’ omitted from the manuscript. 

 

Comment 8: - p. 11219 fig.2 perhaps it would be interesting to plot too the BJP quantile ranges 

against the simulation error? 

 

Response: The figure below shows BJP quantile ranges vs. the absolute error [abs(WAPABS 

simulation –BJP prediction]. The figure does not add anything new to the manuscript so we do not 

include in the revised manuscript. 

 
 

Comment 9: - p 11212 line 20. The authors write that in case of the use of post-processor for 

predictions based on rainfall forecast, the post-processor would increase uncertainty spread to 

account for uncertainty in forecast rainfall. This is difficult to conceptualise. Perhaps a procedure for 

such application could be outlined in a couple of sentences? 
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Response:  The manuscript now includes a description of the procedure where the post-processor 

could be used on rainfall forecasts. We have modified and added a passage, which reads  – 

 

“However, the post-processor is equally applicable in the real world applications using rainfall 

forecast ensembles. In such case the hydrologic model could be forced with rainfall forecast 

ensembles, to create streamflow forecast ensembles. The streamflow forecast ensembles could then 

be post-processed to reduce errors and further quantify hydrologic uncertainty in the streamflow 

forecast (Seo et al. 2006). An alternative approach would be to force hydrologic model using the 

mean of rainfall forecast ensembles. Then train the post-processor on the deterministic streamflow 

forecast produced by the hydrologic model and finally post-process the deterministic forecast to 

reduce error and quantify the total uncertainty (Pokhrel et al 2012). “  

 

 


