
Ref#1 
Equation 4: This is not the expression for the gain that I have seen in many paper on data 
assimilation, for example De Lannoy et al., Reichle et al., etc. Please further explain or correct. I 
hope the formula has been applied correctly. 
Reply 
First, we noticed that there is a minor editing error on the right hand side of Eq. (4). The correct 
form is the following: 
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Ref#1 refers to the more common expression of the Kalman gain: 
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The expression of Eq. (c.1#1) is equivalent to Eq. (4). 
Reminding that 
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Eq. (c.#1_1) can be then obtained by combining (c.#1_3) and (c.#1_4).  
 
 
Ref#1 
Equation 5: Again, this equation is different from the equation in other papers on EKF. 
Same remark regarding the application. 
Reply 
Ref#1 refers to the expression: 
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This expression is equivalent to Eq. (5), which we repeat here for the sake of clarity: 
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Since xP
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y are symmetric matrices, they do not change with the transpose operator and 

hence: 
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The expressions employed for K k  (Eq. 4) and xP
k
(Eq. 5) are equal to those employed by van 

der Merwe (2004). Alternative expressions can be found in the literature, as reported for instance 
by Grewal  and Andrews (2008).  



Ref.#1 
Beginning of section 2.1. Looking at literature I would argue that the ensemble Kalman filter is 
the most widely used version of the KF for nonlinear settings. Please either prove the statement 
or correct. 
Reply 
We agree with Ref.#1. We suggest changing lines 16-17 of page 13297 as follows: 
“Within the general framework of the Kalman Filter, the Extended Kalman Filter (EKF) has 
been the first approach suggested for dealing with nonlinearity.” 
 
 
Ref.#1 
 Equation 18 is unclear. 1ˆ a

k−x  is multiplied to itself. Please explain or correct. 
Reply 
This is an editing error, we are sorry for this. A space is missing between the vectors. This is 
correct form of Eq. (18):  
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Ref.#1 
The explanation between equations 33 and 36 is unclear. This needs more explanation. 
Reply 
We agree with Ref.#1: this part needs more comments. We also noticed a formal error in Eq. 
(35). We suggest modifying this part as follows: 
“The same effect is achieved with the SKF-CN algorithm, where the dynamic equation assumes the 
following equation: 
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Coherently with Eq.1, in Eq. (33) the system noise kv  is adopted in such way that it drives the dynamic 

system through the nonlinear state transition function F, which is fully defined by 1A Bk k
− . As a result, the 

dynamic system operator affects the a priori estimate of the covariance matrix by acting simultaneously 
on both the state covariance ( P ,kx ) and the noise covariance ( kQ ) matrices: 
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As anticipated above, the SKFv-CN algorithm by Walker et al. (2001) differs from the SKF-CN algorithm, 
since in SKFv-CN the system noise is directly added to the a priori estimate of the current system state: 
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Thus the noise covariance matrix ( kQ ) directly contributes to the a priori estimate of the covariance 

matrix, without being transformed by the dynamic operator: 
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These differences between SKFv-CN and SKF-CN in the way of treating the system noise kv  are scarcely 
transcendent in the domain of a few hours of simulation, but become important when the frequency of the 
observations significantly decreases to one every several days, as could be in practical circumstances.” 

 
Ref.#1 
We need more explanation on how the principal components are calculated in section 4.5. 
Reply 
We also agree on this remark. We suggest modifying the initial part of section 4.5 as follows: 
“The dynamic evolution of the system state covariance has been explored by examining the 
relative change in the variance explained by the first two principal components of the state 
covariance matrix. The principal component analysis has been done by singular value 
decomposition of the state covariance matrix. Fig. 6 shows how the variances explained by the 
first two principal components (PC) of the state covariance evolve, considering the simulations 
during the first 24 hours for pressure head assimilations, and 72 hours for soil water content 
assimilations, with two different initial state covariance matrices, 103 cm2 and 104 cm2. Figs. 6a) 
and 6b) shows the evolution of the explained variance with the application of SKFv-EX and 
SKFv-CN schemes, respectively.” 

 
Ref.#1 minor remarks 
Reply 
We thank Ref.#1 for the suggested corrections. We will change the text according to these 
remarks. 
For what concerns the request  
 
“- Page 13308 line 13: please name some operational applications of this kind of model.” 
 
we recall that the Crank-Nicolson (CN) finite difference scheme has been very often applied to 
numerically solve the Richards equation (e.g. Romano et al., 1998). Moreover, and with a view 
to the analysis carried out in the third paper of this work, the CN scheme has been implemented 
to determine the soil hydraulic properties through inversion of laboratory evaporation 
experiments and drainage field tests (e.g., Romano, 1993; Romano and Santini, 1999). 
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