
   

Response to reviewer #1 comments 

The authors would like to thank the reviewer for the meaningful comments on our study. As 

the reviewer points out some limitations in the paper, this will help us to improve 

comprehensibly our paper because it made us aware that some parts of the presentation of our 

methodology was omitted and the need to tailor the paper to hydro-meteorological view. 

Response to reviewer #1 general comments. The paper is tailored to hydro-meteorological 

view by adding the following literatures; “Since the work of Hurst (1951) that detected the 

presence of long-term persistence in series of annual minima of the Nile River, a lot of 

studies have been carried out for testing and modelling long-memory in hydrological 

processes. For example, Montanari et al. (1997) studied the monthly and daily inflows of 

Lake Maggiore, Italy using fractional ARIMA model. Rao and Bhattacharya (1999) studied 

the memory of four hydrologic time series in Midwestern United States by testing the null 

hypothesis that there is only short-term memory in the series using a modified version of the 

rescaled range. The main conclusion from the study is that there is little evidence of long-

term memory in monthly hydrologic series. However, for annual series, the evidence for lack 

of long-term memory is inconclusive, mainly because the number of observations is small 

and the power of the test based on modified rescaled range is low with small samples. 

Koutsoyiannis (2002) proposed a simple explanation of the Hurst phenomenon based on the 

fluctuation of a hydrological process upon different temporal scales. The stochastic process 

that was devised to represent the Hurst phenomenon, i.e. the fractional Gaussian noise, also 

studied. Based on its studied properties, three simple and fast methods to generate fractional 

Gaussian noise are proposed. Wang et al. (2005) analysed two daily stream flow series of the 

Yellow River in China, and found that both daily stream flow processes exhibit a strong long 

memory. Wang et al. (2007) applied four methods to the daily average discharge series 

recorded at 31 gauging stations with different drainage areas in eight river basins in Europe, 

Canada and USA to detect the existence of long-memory. The results show that 29 daily 

series exhibits long-memory as confirmed by three methods, whereas the other two series are 

indicated to have long-memory with two methods. Gil-Alana (2012) analysed the U.K. 

monthly rainfall data from a long-term persistence viewpoint using different modelling 

approaches, taking into account the strong dependence and the seasonality in the data. The 

results indicate that the most appropriate model is the one that presents cyclical long-run 

dependence with the order of integration being positive though small, and the cycles having a 

periodicity of about a year. 

Other applications of long memory models to hydrological time series can be found in 

(Hosking, 1984; Koutsoyiannis, 2003; Koscielny-Bunde, 2006; Rybski et al. 2006; Mudelsee, 

2007; e.t.c.). 

Several authors made a reasonably good job in testing for long memory in hydro-

meteorological time series; however, is it really a long memory process or a short memory 

with structural break? This is the main concern of this paper. 



 

“Equation (5) is given as an alternative form for the expression of the logarithm of the 

spectral density in (p. 12277)”. In this, we revised the methodology by assigning appropriate 

index of j and the reason for using the alternative for the expression of Eq. (5). 

The equation of the spectral density given in line 6 of p. 12277 is corrected to: 

2( ) [2sin( / 2)] ( )d

uf f   ,                                                                                            (4) 

Where   is the Fourier frequency, ( )uf   is the spectral density corresponding to tu  and tu  

is a stationary short memory noise with 0 mean. Consider the set of harmonic frequencies, 

(2 / )j j n  , j = 0, 1, … … n/2, where n is the sample size. Taking the logarithm of Eq. (4) 

we have: 

2ln ( ) ln (0) ln[4sin ( / 2)]j u jf f d                                                                               (5) 

Eq. (5) can be re-written in an alternative form following (Wang et al. 2007) as: 
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The fractional differencing parameter d can be estimated by the regression equations 

constructed from (6). Using the periodogram estimate of ( )jf  , if the number of frequencies 

m used in Eq. (6) is a function g(n) (a positive integer) of the sample size n, where m =

( )g n n  with 0 <   < 1 , it can be demonstrated that the least squares estimate d  using the 

above regression is asymptotically normally distributed in large samples (Geweke & Porter-

Hudak 1983). 
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Where 
2ln[4sin ( / 2)]j jU   and U  is the sample of 

jU , j = 1 … … g(n). 

Under the null hypothesis, of no long memory (d = 0), the t-statistic 
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 , has limiting standard normal distribution. 



The value of the power factor  is the main determinant of the ordinates included in the 

regression. Traditionally the number of periodogram ordinates m is chosen from the interval 

[T
0.45

, T
0.55

]. However, Hurvich and Deo (1998) showed that the optimal m is of order O 

(T
0.8

). 

 

“The correlogram of first order differenced data not shown”. Several plots were not shown in 

this paper, this is to reduce the bulkiness of the paper, and for example, the correlogram of 

the first difference series alone has 18 different plots and other plots like time plot, first 

difference series(s) plots etc. are having 9 plots each. These motivate us to reduce the number 

of plots to fewer factors. Nevertheless, the figure below shows the autocorrelation function of 

the first difference series of Kuantan and Kota Bahru. It is clearly shown from the figure that 

the autocorrelations at lag one exceeds -0.5 which is suggesting that taking the first difference 

is not appropriate to the series(s) under consideration. 

   

Figure 4 Autocorrelation functions of the first difference series 

 

The reviewer also called our attention on the omitted CUSUM test for break detection which 

was not shown in the paper. Therefore we present the test as follows: 

The CUSUM tests are concerned with testing against the alternative that an unknown 

coefficient vector varies over time (Zeileis, 2000). Ploberger and Kramer (1992) proposed a 

test based on the ordinary least squares residuals. The OLS-based CUSUM test uses the OLS 

residuals ˆˆ T

t t tu y x   . The OLS-based CUSUM type empirical fluctuation process is defined 

as: 
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 , this path will always start in 0 at t = 0 and it also returns to 0 

for t = 1, but if there is structural change at t0 it should have a peak close to the break 

point t0 . The null hypothesis H0 is rejected if the path crosses either of the boundaries (

,  ) which is equivalent to rejecting when the test statistic 
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is larger than   which determines the significance level of the test. As n , 

0 0( ) ( )d

nW t B t ,  

where 0 ( )B t   is the standard Brownian bridge. 

 

The reviewer suggests for additional comments on how to detect over-differencing. The very 

simple way to detect over-differencing is to check if the first lag autocorrelation of the 

differenced series is -0.5 or more negative than -0.5, this is an indication that the series has 

been over-differenced.  Another symptom of over-differencing is an increase in the standard 

deviation, rather than a reduction, when the order of differencing is increased. 

 

 “If detected breaks in the observations are real as opposed to spuriously generated by a long-

memory process, this can be tested by comparing the statistical properties of the sub-series 

between the breaks”. The authors tend to include the following as the outcome of the 

statistical properties of the sub-series comparison. “A time series which is generated by a true 

long memory process has a uniform data generating process (DGP) throughout the entire 

series. Thus if a structural break location method is mistakenly applied to the series it may 

report a number of breaks where no breaks exist. These spurious breaks will yield a number 

of partitions of differing lengths but this partition will only be subsamples of a single 

population. Thus the subsamples will have the same statistical properties as the full series. 

Table 2 (a-c) depicted a summary of the statistical properties for the full rainfall series, 

subseries before break and the subseries after the break. It could be observed from the tables 

that both series follows the same statistical patterns with standard deviation greater than the 

mean and high values for kurtosis and skewness.  

 

Table 2a Statistics for the daily rainfall series 

Station                Mean               Standard deviation            Skewness          Kurtosis 

 Alorsetar            5.54                        12.76                            4.05                   24.06 

 Bayan Lepas      6.64                        15.57                            4.22                   27.57 

 Ipoh                   6.72                        13.82                            3.18                   12.55 

 Kota baru          7.11                         22.37                            8.45                  120.06 



 Kuantan            7.98                         21.81                            7.01                  80.59 

 Malacca             5.45                        12.96                            4.37                   32.69 

 Mersing             7.31                        20.09                            7.25                   83.75 

 Sitiawan            4.83                        11.76                             4.13                   23.49 

 Subang              6.70                        13.84                             3.45                   16.41 

 

Table 2b Statistics for the daily rainfall series before break 

Station                Mean               Standard deviation            Skewness          Kurtosis 

 Alorsetar            6.25                          13.92                          3.91                  25.15 

 Bayan Lepas      6.46                          15.12                          4.00                  24.99 

 Ipoh                   6.57                          13.62                           3.20                 15.63  

 Kota baru           6.74                          22.24                          9.49                 153.17 

 Kuantan             7.72                          21.26                          7.15                 89.79 

 Malacca             5.21                          12.84                           5.29                 58.96 

 Mersing             7.55                          20.89                           7.23                 85.32 

 Sitiawan            4.61                          11.56                           4.42                 31.14 

 Subang              6.13                          12.89                           3.34                 19.08 

 

 

Table 2c Statistics for the daily rainfall series after break 

 Station              Mean               Standard deviation           Skewness                Kurtosis 

 Alorsetar            5.31                          12.35                          4.09                        27.55 

 Bayan Lepas      7.61                          17.78                          4.81                        43.95 

 Ipoh                   7.58                          14.89                          3.05                        14.82 

 Kota baru           8.03                          22.65                          6.01                        53.50 

 Kuantan             9.39                          24.66                          6.31                        59.78 

 Malacca             5.59                          13.04                          3.85                        22.98 

 Mersing             6.44                          16.94                          6.84                        79.77 

 Sitiawan            5.08                          11.99                           3.83                        21.70 

 Subang              7.38                          14.89                           3.40                        18.86 

 

 

Detailed comments 

1. “If d is non-integer… 

The authors revised the methodology of fractional integration as follows. “If a time series is 

non-stationary, one possibility for transforming the series into a stationary one is to take first 

differences of the series, such that:  

 



(1 ) t tB X    ,    t = 1, 2, …                                                                                                (2)                                                                                                        

where B is the lag-operator (B tX  = 1tX   ) and t  is I(0). In such a case, tX  is said to be 

integrated of order 1, denoted I(1). Likewise, if two differences are required, the series is 

integrated of order 2, denoted I(2). If the number of differences required to get I(0) stationary 

is not an integer value but a fractional one, the process is said to be fractionally integrated or 

I(d). Therefore, tX  is I(d) if 

 

(1 )d

t tB X   ,        t = 1, 2, ...                                                                                             (3) 

 

With t  equal to I(0). The expression in the left-hand-side in Eq. (3) can be presented in 

terms of Binomial expansion, such that, for all real d, 
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Therefore, Eq. (3) can be written in the following form: 
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                                                                                                (4) 

If d is a positive integer value, tX  will be a function of a finite number of past observations, 

while if d is not an integer, tX  depends strongly upon values of the time series far in the past 

(e.g., Granger and Ding, 1996; Dueker and Asea, 1998). Moreover, the higher the value of d, 

the higher will be the level of association between the observations (Gil-Alana, 2007).  

 

The parameter d plays an important role from a statistical viewpoint. Thus, if -0.5< d < 0.5, 

t   is a stationary and ergodic process with a bounded and positively valued spectrum at all 

frequencies. One important class of process occur when t  
is I(0) and is covariance 

stationary. For 0 < d < ½, the process exhibits long memory in the sense of Eq. (1), its 

autocorrelations are all positive and decay at a hyperbolic rate. For -0.5 < d < 0, the sum of 

absolute values of the process autocorrelations tends to constant, so that it has short memory 

according to Eq. (1). In this situation the ARFIMA (0, d, 0) process is said to be anti- 

persistent or to have intermediate memory and all its autocorrelations excluding lag zero are 

negative and decay hyperbolically to zero. As d increases beyond ½ and through 1 (the unit 

root case), tX  can be viewed as becoming “more nonstationary” in the sense, for example, 



that the variance of the partial sums increases in magnitude. This is also true for d > 1 (Gil-

Alana, 2007). 

 

2. “In the final paragraph of section 3”, the fluctuation process and the F-statistics 

Action taken: 

In line 18 of p. 12280, “Figure 3” changed to Figure 5. 

3. “The fluctuation process needs to be clearly defined”. 

Action taken: 

The authors decided to remove the fluctuation process (Fig. (5)) and its content due to the 

fact that it is a repetition to the OLS-based CUSUM test for break dates presented in 

Table 4. 
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