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Abstract  14 

A groundwater model characterized by a lack of field data to estimate hydraulic model 15 

parameters and boundary conditions combined with many piezometric head observations 16 

was investigated concerning model uncertainty. Different conceptual models with a 17 

stepwise increase from 0 to 30 adjustable parameters were calibrated using PEST. 18 

Residuals, sensitivities, the Akaike Information Criterion (AIC and AICc), Bayesian 19 

Information Criterion (BIC), and Kashyap’s Information Criterion (KIC) were calculated for 20 

a set of seven inverse calibrated models with increasing complexity by gradually rising the 21 

number of adjustable model parameters. Finally, the likelihood of each model was 22 

computed. As expected, residuals and standard errors decreased with an increasing 23 

amount of adjustable model parameters. The model with only 15 adjusted parameters 24 

was evaluated by AIC as the best option with a likelihood of 98 %, while the model based 25 

on sedimentological information obtained the worst AIC value. BIC and KIC selected a 26 

simpler model than the model chosen by AIC as optimal. Computing of AIC, BIC, and KIC 27 
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yielded the most important information to assess the model likelihood. Comparing only 28 

residuals of different conceptual models was less valuable and would result in an 29 

overparameterization and certainty loss in the conceptual model approach. Sensitivities of 30 

piezometric heads were highest for the model with five adjustable parameters following 31 

distinctively changes of extracted groundwater volumes. With increasing amount of 32 

adjustable parameters piezometric heads became less sensitive for the model calibration 33 

and remained constant during the simulated period. With increasing freedom model 34 

parameters lost their impact on the model response. Additionally, using only 35 

sedimentological data to derive hydraulic parameters possessed a consistent error into 36 

the simulation results and cannot recommended generating a true and valuable model. 37 

 38 
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 40 

1. Introduction 41 

Uncertainty is a key issue in hydrogeological modeling. Uncertainties are 42 

associated with parameter values, chosen scale, data quality, validity of 43 

boundaries, and initial conditions. Moreover, groundwater models are subject to 44 

several errors resulting from conceptual and stochastic uncertainty. Uncertainty in 45 

calibrated parameters can originate from inaccuracies in field data, insensitivity 46 

with regard to changes in model parameters, and correlations within adjusted 47 

parameter sets (Singh et al., 2010). In many cases, measured field or laboratory 48 

data cannot be directly used to parameterize the model since they are collected at 49 

different temporal or spatial scale. Overparameterized models increase 50 

uncertainty since the information of the observations is distributed through all the 51 
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parameters. To simulate a natural system with a numerical model, data have to 52 

be filtered, averaged and modified. A way to reduce this uncertainty is to select a 53 

parsimonious model, which provides good performance with as few calibrated 54 

parameters as possible. 55 

There are several approaches to find this compromise between model fit and low 56 

number of calibration parameters (Hill and Tiedeman, 2007, Massmann et al. 57 

2006). One of these approaches is the Akaike Information Criterion (AIC; Akaike, 58 

1973). AIC is a probabilistic criterion based on the maximum likelihood theory and 59 

treats the problem of parsimonious model selection as an optimization problem 60 

across a set of proposed conceptual models (Burnham and Anderson, 2002). In 61 

addition, AIC allows the ranking of models and determines the optimal model for a 62 

given data set. It identifies wherever the results of the selected model are already 63 

satisfactory or wherever an increased effort is needed by introducing more 64 

parameters into a model, so that AIC is able to select a more complicated model 65 

with a better fit to the observed data. 66 

The application of the AIC is relatively new in groundwater modeling and still not 67 

standard, although it has been applied in several studies (e.g., Foglia et al., 2007; 68 

Hill, 2006; Hill and Tiedeman, 2007; Katumba et al., 2008; Parker et al., 2010; 69 

Poeter and Anderson, 2005; Singh et al., 2010; and Ye et al., 2010). Foglia et al. 70 

(2007) uses piezometric pressure heads and stream flow gauges for a 71 

groundwater model with a huge area of that were monitored over some month 72 

and calibrates the hydraulic conductivity. Poeter and Anderson (2005) analyzed 73 

synthetic data sets, Katumba et al. (2008) investigates the likelihood of models of 74 

tank experiments, and Parker et al. (2010) analyzes two impeller flow loggings. 75 
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Singh et al. (2010) and Ye et al. (2010) compared the model uncertainty with 76 

respect to the estimated recharge for the Yucca Mountain nuclear waste 77 

repository that is well documented over decades of years. In this study, a typical 78 

field-generated data set, as often available for numerical investigations for 79 

groundwater management issues was investigated. The data set suffers from a 80 

lack of information on boundary and initial conditions, however, observation data 81 

were collected in great quantities and over a long-term. Information criteria, such 82 

as the AIC, might be helpful to define the best model concept with respect to the 83 

model performance and uncertainty.  84 

The investigated groundwater model was based on very few data available from 85 

pumping tests giving hydraulic properties of the aquifer and most hydraulic 86 

parameters had to be estimated from sedimentological investigations. 87 

Sedimentological information was derived from borehole drillings conducted more 88 

than 100 years ago and was associated with high uncertainties. On the other 89 

hand, long-term data, in form of high resolution groundwater level time series, 90 

were provided for the model calibration. In this study, the uncertainty of different 91 

model approaches was adressed by gradually increasing the amount of 92 

adjustable model parameters to predict measured groundwater fluctuations. 93 

Finally, the optimal model selected by different information criteria (Akaike’s 94 

Information Criterion, AIC and AICc, Bayesian Information Criterion, BIC, and 95 

Kashyap’s Information Criterion, KIC) were evaluated considering the calibration 96 

results and the parameter uncertainties of the model.  97 

98 
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 99 

2. Materials and Methods 100 

2.1 Investigated Field Site 101 

Geological Setting 102 

The study area is situated south of the city of Frankfurt and east of the Frankfurt 103 

International Airport in the German federal state Hesse. The site is located in the 104 

northern part of the Upper Rhine Graben (URG), which is part of the European 105 

Cenozoic Rift System (Ziegler and Dèzes, 2005). The URG, an approximately 106 

300 km long and 40 km wide elongate lowland is flanked by uplift plateaus and 107 

terminated in the northern part by the WSW – ESE striking southern boundary 108 

fault of the Rhenish Massif, bounded to the West by the Mainz basin and to the 109 

East by the Hanau basin and the Odenwald Massif (Fig 1a). The graben-filling 110 

sediments are of Eocene to Early Miocene and of Plio-/Pleistocene age (Berger et 111 

al., 2005). The subsidence of the graben resulted in up to 2000 m thick Tertiary 112 

deposits and more than 100 m thick fluvial Quaternary sediments (Anderle, 1968; 113 

Bartz, 1974). In the northernmost part of the URG between Mörfelden, Langen, 114 

Frankfurt, and the Lower Main area mainly fluvial sand and gravel with embedded 115 

clay lenses were deposited during the Pleistocene (Anderle, 1968). The 116 

thicknesses of these deposits in the northern offset of the URG range between 10 117 

and 40 m (Fig 1b). Holocene eolian silty fine sand was deposited on top of this 118 

layer. The base of the Quaternary and Tertiary sand and gravel consists of 119 

Permian sandstone and conglomerates as well as Tertiary basalt. 120 

 121 
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Hydrogeology and Hydrology 122 

Average groundwater flow velocities within the Quaternary and Tertiary sand and 123 

gravel deposits are about 0.5 m/d and groundwater flows from the Sprendlinger 124 

Horst in the South-East towards the river Main. The depth to the groundwater 125 

table varies between 3 and 5 m near the river Main and gradually increases up to 126 

15 m towards the South and East. 127 

 128 

Fig. 1: a) Simplified geological map showing the northern part of the Upper 129 

Rhine Graben, the adjacent Mainz and Hanau basins (modified after 130 

Lahner and Toloczyki (2004); W: Wiesbaden, M: Mainz, F: Frankfurt, H: 131 

Heidelberg). b) Thickness of the Quaternary sand and gravel deposits 132 

south of Frankfurt (after Anderle, 1968; Bartz, 1974; Anderle and 133 

Golwer, 1980). Location of the model domain, the water works, and of 134 

transect A-B.  135 

 136 

The long-term precipitation (1961-1993) averages around 675 mm/a as measured 137 

at the meteorological station in Frankfurt. About 15% of the precipitation, thus 100 138 

to 150 mm/a, can infiltrate into the groundwater (Berthold & Hergesell, 2005). The 139 

groundwater within this area is intensively used for drinking water and industrial 140 

purposes. Several water works are located within this region. In the water works 141 

Oberforsthaus, located directly in the study area, 18 production wells were 142 

operated. Groundwater extraction started already in 1894. About 100 years later, 143 

the water works was rebuilt and then extraction rates increased within a few years 144 

from 560,000 m3/a (1995) to 1.4*106 m3/a in 2000. Since 2005, the water works 145 

has been kept in stand-by operation. For sustainable groundwater management 146 

issues groundwater resources were recharged with treated water from the river 147 

Main to prevent an excessive groundwater table drop. Surface water was 148 
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infiltrated by horizontal pipes and a small pond (named Jacobi-pond). During 149 

periods of high groundwater extraction rates treated surface water infiltration 150 

reached up to 35 to 40% of the extracted groundwater volume and was reduced 151 

to about 25% in periods with average extraction rates. The artificial groundwater 152 

recharge stopped in 2005, when the water works changed to stand-by operation. 153 

 154 

2.2 Numerical Model Set-up 155 

Discretization  156 

The geological structure of the investigated Quaternary aquifer consists of a 157 

complex system of high and low permeable layers. Nine lithological units were 158 

identified in the borehole drillings. For translation of the complex geological 159 

information into a numerical model some simplifications were necessary. All 160 

geological information obtained from drillings and geological maps were 161 

summarized into three hydrostratigraphic layer (Fig. 2): (i) dominated by high 162 

permeable aquifer material (gravel and coarse sand), (ii) dominated by medium 163 

and low permeable aquifer material (medium and fine sand), and (iii) a deeper 164 

layer dominated again by high permeable material (gravel and coarse sand). The 165 

impermeable aquifer base is built of silt, clay, sandstone, limestone, or basalt. 166 

Then, 15 profiles were constructed containing these three hydrostratigraphic 167 

layer. Geological information between the profiles were interpolated to estimate 168 

the top and bottom of the three hydrostratigraphic layer (Fig. 2).  169 

With these simplifications the spatial discretization contained 22,680 grid cells. 170 

The temporal discretization for the simulated period of 19 years, ranging between 171 
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1990 and 2009, included 379 stress periods to capture the monthly collected 172 

piezometric pressure heads. 173 

 174 

Fig 2: Averaged hydrostratigraphic layer from nine lithologic units along 175 

transect A-B.  176 

 177 

Hydraulic Properties 178 

Only very few data were available about hydraulic conductivities and storage of 179 

the aquifer layers. Within a layer, several micro layers may be present and an 180 

averaging technique was applied to account for these heterogeneities. First, all 181 

data obtained from the geological description of the borehole data were used to 182 

assign an initial estimate on hydraulic conductivities and storage coefficients to 183 

each of the nine lithological units. For each of the three hydrostratigraphic layer 184 

an equivalent hydraulic conductivity and storage coefficient was calculated to 185 

account for the contribution of the lithological units within each hydrostratigraphic 186 

layer, respectively (Fig. 3). 187 

 188 

Fig. 3: Averaging technique to derive the equivalent hydraulic 189 

conductivities around two wells within the three hydrostratigraphic 190 

layer that contain nine lithologic units.  191 

 192 

As an example, the equivalent hydraulic conductivity (Keq) of hydrostratigraphic 193 

layer 1 around well A was obtained by calculating the weighted arithmetic 194 

average of the lithological units with: 195 
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4321
1, 


    (1) 196 

with Keq,1  = Equivalent hydraulic conductivity of layer 1 197 

 dA  = Thickness of the lithological unit in the respective 198 

   hydrostratigraphic layer at well A 199 

 1,2,… = Number of the lithological unit 200 

 K = Hydraulic conductivity estimated from the sedimentological 201 

   description of the lithological unit 202 

 203 

Equivalent hydraulic conductivities and storage values were interpolated over the 204 

model domain for each of the three hydrostratigrahic layers and subdivided into 205 

ten conductivity and storage zones, respectively (Fig. 4). Hydraulic conductivity 206 

and storage zones showed a different pattern and frequency in each of the three 207 

layers or were not developed at all. The interpolation of the equivalent hydraulic 208 

conductivity zones failed around geological structures such as faults. Therefore, 209 

a final manual adjustment of the hydraulic parameters to maintain relevant 210 

geological features was necessary. 211 

 212 

Fig. 4: Spatial distribution of the ten equivalent hydraulic conductivities of 213 

Model 1 (uncalibrated model based on sedimentological information) 214 

within the three hydrostratigraphic layer. 215 

 216 

Numerical Model Boundaries 217 

The standard finite-difference model MODFLOW (Harbaugh et al., 2005) was 218 

used for the flow simulations. Groundwater levels measured in 1990 within 47 219 

observation wells were interpolated and used as initial head distribution (Fig. 5).  220 
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The main inflow into the groundwater system is recharge that varied monthly 221 

during the investigated 20 years. Further groundwater inflow was caused by 222 

surface water infiltration from the Jacobi Pond. Groundwater outflow mainly 223 

occurred by exfiltration into the river Main (Fig. 5). The stage of the river Main 224 

was adjusted monthly during the investigated period by applying a linear 225 

interpolation between two hydrological stations close to the model domain: 226 

Frankfurt Osthafen (4 km upstream) and Raunheim (16 km downstream). The 227 

water level of the Jacobi Pond was assumed to remain constant during the 228 

investigated period since groundwater levels measured near the pond remained 229 

fairly constant. Leakage between groundwater and surface water is driven by the 230 

gradient between the surface water stage and the groundwater, and the 231 

conductivity of the river bed and Jacobi Pond bottom sediments. The stage of the 232 

surface water was prescribed during the simulations, while the hydraulic 233 

conductivities of the river bed and Jacobi Pond sediments were adjusted in an 234 

initial manual “pre-calibration”. Along the South-West boundary, groundwater 235 

flowed out of the model domain towards the water works Goldstein, which started 236 

operation in 1995. This subsurface outflow was accounted for by a general head 237 

boundary. The piezometric head outside of the model domain was given by the 238 

monthly measured groundwater level at the pumping wells of the water works 239 

Goldstein. Within the model domain the water works Oberforsthaus operated 240 

about 18 pumping wells between 1990 and 2005. The monthly measured 241 

extraction rates were corrected by the injected artificial recharge, and resulting 242 

extraction volumes were assigned at the water works location. 243 

 244 
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Fig. 5: Boundary conditions, initial head distribution of the numerical flow 245 

model and location of the observation well groups.  246 

 247 

Model Calibration 248 

The non-linear parameter estimator PEST (Doherty, 2010) was used for the 249 

automated model calibration through an inverse parameter estimation process 250 

based on the Gauss-Marquardt-Levenberg method. PEST minimizes 251 

discrepancies between model simulated outputs and the corresponding 252 

measurements by minimizing the weighted sum of squared differences between 253 

the respective values. PEST also computes the sensitivities with regard to 254 

selected parameters at all observation points. These sensitivities provide a 255 

measure of how much a simulated value changes in response to a perturbation 256 

of an adjustable parameter (Hill & Tiedeman, 2007).  257 

In PEST the composite sensitivity sj of a parameter i is computed with (Doherty, 258 

2010): 259 

  ms iii /2/1QJJt          (2) 260 

where J is the Jacobian matrix, Q is the weight matrix, JtQJ is the normal matrix, 261 

and m is the number of observations with non-zero weights. 262 

 263 

The composite observation sensitivity sj of observation j is computed in PEST 264 

with (Doherty, 2010): 265 

   ns jjj /2/1JJQ t          (3) 266 

where JtJ is the Hessian matrix, j is the counter of the observations, and n is the 267 

number of adjustable parameters. 268 

 269 
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Piezometric heads collected at 41 observation wells between 1990 and 2009 270 

were used for the model calibration giving a total number of 5,081 observation 271 

points (Fig. 5). For a better overview, observation wells were categorized into six 272 

groups: (i) near Jacobi Pond, (ii) near the River Main, (iii) Southern area, (iv) 273 

Western area, (v) Northern area, and, (vi), around the water works Oberforsthaus 274 

(Fig. 5) to account for the different factors influencing the hydraulic pattern of the 275 

investigated region. Hydraulic conductivities and storage coefficients were 276 

estimated using PEST. First guesses of these parameters were assigned as 277 

derived from sedimentological interpretation of the borehole data (Fig. 3 and Fig. 278 

4). 279 

Composite observation sensitivity sj were computed for each observation point to 280 

be an overall measure of the sensitivity of all 5,081 observation points to all 281 

adjustable parameter in the model, respectively.  282 

After calibration of the hydraulic parameters a validation was conducted with the 283 

optimal model selected by the information criterion. This validation analyzed 284 

piezometric pressure heads measured at six further observation wells 285 

representing each observation group. These observation wells were not used in 286 

the prior parameter estimation during the inverse modeling. This procedure was 287 

chosen due to the analysis of Bredehoeft and Konikow (2012). They emphasize 288 

that a professional judgment of the model is only possible using historical data, 289 

while the validation of the model against future response remains challenging. 290 

However, errors resulting from conceptual errors will neither be addressed by 291 

using historical nor future data in the validation (Bredehoeft and Konikow, 2012).  292 

 293 

 294 
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2.3 Principles to Weight and Rank Models using AIC, AICc, BIC, and KIC 295 

Akaike’s Information Criterion 296 

Computation of the AIC allows the selection of a parsimonious model that uses 297 

the smallest number of parameters needed to provide an adequate approximation 298 

to the measured data. Thus, a compromise between a “good” fit and a small 299 

number of parameters can be found. 300 

Akaike (Akaike, 1973) defined a model selection criterion called Akaike’s 301 

Information Criterion (AIC) that is based on the estimation of the information loss 302 

between an approximating model and an unknown parametrized truth. AIC is 303 

defined as follows (Ye et al., 2008): 304 

pQnnnAIC ML 2||ln)2ln()ˆln( 12    (4) 305 

where p equals the number of estimated model parameters plus one, n is the 306 

number of observations, Q is the weight matrix, and ML
2̂  represents an estimate 307 

of the variance of weighted residuals, which is given by: 308 

 

n

q
n

j
i

ML


 1

2

2ˆ




  
(5) 309 

where   stands for the residuals (observed minus calculated values), and q is the 310 

weight of the j th observation, respectively, which is always one for the present 311 

study. 312 

The first term in Eq. 4 represents the lack of the model fit, which decreases when 313 

more parameters are included. The last term can be seen as “penalty” term for 314 

incorporating more parameters as this term increases within rising amount of 315 
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adjustable parameters. 316 

The two middle terms are constants for a specific data set, and are not affected if 317 

parameters are added or removed from the models (Cavanaugh, 1997). Weights 318 

were set to one since no information about data uncertainty and measurement 319 

error was available. However, when additional information about confidence of 320 

the data is available the weight matrix of Eq. 4 allows comparing models based 321 

on a weighted data set of observations. This reflects the confidence to specific 322 

measurements, or simply, provides the flexibility to scale observations according 323 

to additional information or normalization procedures (Hill and Tiedeman, 2002). 324 

Akaike (1978) defined weights wj to obtain a relative measure of the likelihood of 325 

a model for a given set of N models. These weights are expressed as: 326 

wj =  exp(–0.5j)/   


N

j j1
5.0exp

 (6)
 327 

where j is the counter of models, and j = AICj – AICmin denotes the AIC 328 

difference to the smallest AIC of all considered models. 329 

The larger the AIC difference of a model, the less likely it is to be the best one. 330 

 331 

Alternative Information Criteria 332 

Several modifications of AIC have been developed. For the case of having a 333 

small sample, n/K<40, Burnham and Anderson (2002) suggest using AICc:  334 

1

)1(2





Kn

KK
AICAICc

       (7) 335 
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where AIC is the Akaike Information Criterion as defined by Eq. 4, and K is the 336 

number of estimable parameters. 337 

 338 

AICc tends to AIC when the number of observations is high relative to the number 339 

of calibrated parameters as in our study, where n/K equals 5,081/30 giving 169.  340 

Further information criteria were also computed to provide a contrast analysis to 341 

the results obtained by the AIC. The BIC (Bayesian Information Criterion) gives a 342 

response to the concern that AIC sometimes promotes the use of more 343 

parameters than required (Hill and Tidemann, 2007). The BIC is calculated with 344 

(Doherty, 2012): 345 

  )ln(ˆln 2 npnBIC            (8) 346 

The KIC (Kashyap’s Information Criterion) additionally considers the likelihood of 347 

the parameter estimates in light of their prior values and contains a Fisher 348 

information matrix term that imbues it with model selection properties not used by 349 

AIC, AICc or BIC. KIC weights and ranks alternative models with respect to the 350 

models’ predictive performance under cross validation with real hydrologic data 351 

(Ye et al., 2008). KIC was derived in the Bayesian context by Kashyap (1982) 352 

and is calculated with (Doherty, 2012): 353 

         QJJtln2ln1ˆln1 2   kpnKIC      (9) 354 

 355 

Conceptual Approach 356 

All models were calibrated to the same data set of piezometric pressure heads, 357 

and the model with the smallest information criterion is regarded as the optimal 358 

one of all proposed models as selected by AIC, AICc, BIC, and KIC, respectively.  359 
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First, the uncalibrated model using only sedimentological information was 360 

simulated (Model 1), then the five most widespread horizontal hydraulic 361 

conductivities were estimated (Model 2). In Model 3, all horizontal hydraulic 362 

conductivities were considered and vertical hydraulic conductivities were tied by 363 

a factor of 0.1 (Kv = KH/10). The next model (Model 4) computed additionally to 364 

the horizontal hydraulic conductivity the five most widespread storage 365 

coefficients. Model 5 estimated all horizontal conductivities and storage 366 

coefficients. In Model 4 and 5 vertical hydraulic conductivities were still tied. Then 367 

in Model 6 all horizontal and vertical conductivities were estimated independently 368 

and in addition the five most widespread storage coefficients. Finally, Model 7 369 

independently estimated all horizontal and vertical hydraulic conductivities and all 370 

storage coefficients for all zones of the model domain giving a total amount of 30 371 

adjustable parameters (Tab. 1).  372 

 373 

Tab 1: Calibrated models analyzed with AIC, AICc, BIC, KIC. 374 

 375 

Finally, using the paired model methodology (Doherty and Christensen, 2012) 376 

the benefit of a more complex model associated with good calibration results 377 

versus a simple model yielding a higher certainty is assessed. Simulation results 378 

of both models are given against each other in a scatter plot. Coefficients 379 

(intercept and slope) of the regression line allow analyzing the bias of the simple 380 

versus the results obtained by the optimal and more complex model with a 381 

higher degree of freedom and uncertainty. 382 
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3. Results 383 

3.1 Sensitivity Analysis 384 

For each observation group time-dependent dimensionless sensitivity coefficients 385 

of the measured piezometric pressure heads are shown in Fig. 6. The relative 386 

pattern of the sensitivities between the groups is independent from the number of 387 

parameters used in the automated model calibration. Sensitivity is always highest 388 

for the Northern area as the best optimization results could be obtained for this 389 

region. Lowest sensitivities are always computed for observation wells near the 390 

River Main and the Jacobi Pond (Fig. 6). These low sensitivities display the 391 

impact of surface water-groundwater exchange on the groundwater level. in this 392 

In this part of the study area, groundwater levels were mostly driven by the stage 393 

of the surface water and leakage through the colmation layer of the river and 394 

pond bed sediments and that were not adjusted in the automated model 395 

calibration. Hydraulic conductivities of the colmation layers of the Jacobi-pond 396 

and Main were derived from a manual “pre-calibration” and fixed with 5·10-6 m s-1 397 

and 1.2·10-5 m s-1, respectively.  398 

Sensitivities of all observation groups follow changes of the groundwater level 399 

fluctuations and decrease, when the groundwater extraction stopped in 2005. 400 

 401 

Fig. 6: Sensitivity of the six observation groups with respect to the 402 

adjustable amount of parameters and the cumulative groundwater 403 

extraction at the water works Oberforsthaus. 404 

 405 
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Sensitivities were compared for the seven models differing by the number of 406 

adjustable parameters from initially 5 to finally 30 parameters. The PEST 407 

optimization with five adjustable parameters revealed highest sensitivity 408 

coefficients (Fig. 5). Increasing the number of adjustable parameters decreased 409 

the sensitivity of the piezometric heads. Therefore, considering a model set-up 410 

with large numbers of observation data, the number of adjusted model 411 

parameters must be chosen parsimonious to prevent an overparameterization 412 

and to maintain the influence of the measured data on the model response. 413 

 414 

3.2 Comparative Results of the Model Selection Criteria  415 

Four information criteria were computed to select the optimal model approach. 416 

Computing the AIC, AICc, BIC, KIC allowed the evaluation of the best conceptual 417 

model with respect to complexity and parameter uncertainty. Since Eq. (4) has to 418 

be minimized, the lowest information criterion value indicates the best model. 419 

Model complexity was gradually increased from the uncalibrated stage (based on 420 

sedimentological information) to 30 adjustable model parameters (Tab. 1). This 421 

increase in complexity was linearly penalized; as expected, by considering more 422 

parameters the model fit steadily improved until reaching a constant level with 423 

only little further improvement (Fig. 7). By comparing the model fit and the penalty 424 

against the value of the information criterion the models can be ranked. The 425 

scale of the y-axis is omitted in Fig. 7 since the information criterion is a relative 426 

measure and the absolute values are meaningless. Important are, however, the 427 

differences to the best model (AIC ∆j ; BIC ∆j ; KIC ∆j ; Tab 2) 428 
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Both, AIC and AICc assess the similar model as optimal. The lowest AIC and 429 

AICc value is achieved by Model 4 with 15 adjustable parameters. The selection 430 

of AIC and AICc mirrors the trend of the model fit that improved distinctively 431 

between Model 1 and Model 4, and stagnated with more than 15 adjustable 432 

model parameters. Model 2 (5 adjustable parameters) and Model 7 (30 433 

adjustable parameters) were assessed similarly poor due to a lack of model fit to 434 

the data (Model 2) or an unjustified complexity (Model 7). 435 

 436 

Fig. 7: AIC (diamond), AICc (square), BIC (triangle), KIC (circle) assessment 437 

of the calibrated models with respect to complexity and model fit. 438 

 439 

Relative Akaike weights (AIC wj), Eq. (4), were computed for all models to 440 

express in percent the likelihood of a model, where a likelihood of 100 % means 441 

that the corresponding model alone is regarded to represent the “best option”, 442 

while a likelihood of 0 % corresponds to a model that has absolutely no support 443 

when compared to other models (Tab. 2). In our case, the model selected as 444 

optimal (AIC ∆j = 0) is associated with a likelihood of about 98 %. All other 445 

models have practically no support according to the AIC and are either 446 

underparameterized (Models 1, 2 and 3) or clearly overparametrized (Models 5, 6 447 

and 7). 448 

 449 

Tab 2: Differences ∆j of the AIC, BIC and KIC values to the optimal model, 450 

respectively, and likelihood of the flow models from the Akaike 451 

weights (AIC wj). 452 

 453 
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All information criteria (AIC, AICc, BIC, and KIC) selected Model 1 (uncalibrated 454 

model based on sedimentological information) as worst model (highest 455 

information criteria). However, differences occurred in the selection of the optimal 456 

model and model ranking (Fig. 7). 457 

The BIC assesses a very simple model, Model 2 with 5 adjustable parameters, 458 

as the optimal model and Model 7 (30 adjustable parameters) as unfeasible. BIC 459 

values of the different models are varying more pronounced than AIC values 460 

differ (Tab. 2). The KIC evaluates Model 3 (10 adjustable parameters) as optimal 461 

model and also Model 7 (30 adjustable parameters) as worst model. BIC and KIC 462 

choose as best model approaches with fewer adjustable parameters as they 463 

assume that in the true model still the prior information exist (Burnham and 464 

Anderson, 2004). Thus, they select for greater certainty, which threatens to 465 

capture a precise, but less accurate answer than that selected by AIC. Also due 466 

to a decreasing sensitivity of the observation data with increasing parameter 467 

freedom, Model 3, as selected by KIC, might still provide a valuable model 468 

concept with a reasonable precise match of the observation data. Finally, all 469 

selection criteria argue against increasing the model complexity to more than 15 470 

adjustable parameters.  471 

The model based solely on sedimentological information is assessed by all 472 

information criteria as worst model. The bias and worth of this simple model can 473 

be explored in detail with the paired model methodology as given in Doherty and 474 

Christensen (2012). The model output of the simple uncalibrated model is 475 

compared against the results of the optimal model selected by the AIC (Fig. 8). 476 

The regression coefficients (intercept and slope) of the line through the scatter 477 

plot allow addressing effects of simplification on the model predictions. The 478 
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intercept differs distinctively from zero indicating the null space contribution of the 479 

parameter matrix to the prediction error and thus that the simple model possess 480 

consistent an error into the predictions (Doherty and Christensen, 2012). The 481 

slope of the scatter line is near 1. Hence, parameter surrogacy does not affect 482 

the uncalibrated model’s ability to predict the piezometric pressure heads. The 483 

correlation coefficient of 0.99 indicated that the model based on sedimentological 484 

information might give already reasonable results. However, due its null space 485 

contribution to the prediction error the uncalibrated model based on 486 

sedimentological information can be excluded to provide already a true model. 487 

 488 

Fig 8: Paired model analysis: predicted piezometric pressure heads of 489 

Model 1 (based on sedimentological information) versus the results 490 

of the optimal model selected by AIC (Model 4), regression line 491 

equation, and correlation coefficient (R2). 492 

 493 

3.3 Optimization Results 494 

Obtained residuals 495 

The model calibration was based on piezometric heads measured monthly 496 

between 1990 and 2009 in 41 observation wells. Measurements were not 497 

available every month at every observation well, giving a total amount of 5,081 498 

piezometric pressure head data for the calibration. Computed and measured 499 

piezometric heads of the model with the smallest AIC (Model 4) are compared for 500 

each observation group in Fig. 9. 501 

Within the Western area groundwater levels varied over 3 m. This fluctuation 502 

resulted from the impact of the water works Goldstein located south of this 503 
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region. Within the southern part groundwater levels varied up to 2.1 m and also 504 

displayed the impact of the water works Goldstein. Around the water works 505 

Oberforsthaus groundwater levels varied over a range of 1.2 m. This lower 506 

groundwater level drop can be explained by the artificial recharge infiltrated at 507 

this water works. Within the Northern area, near the River Main and the Jacobi 508 

pond, groundwater levels remained almost constant with only minor fluctuations 509 

associated with changes in precipitation and river discharge during the year. 510 

 511 

Fig 9: Simulated piezometric heads of Model 4 (optimal model) versus 512 

measured piezometric heads between 1990 and 2009. Observation 513 

wells were summarized in six groups. One observation well of each 514 

group is illustrated within the figure.  515 

 516 

Within most regions, measured groundwater levels were reasonably well 517 

reproduced by the flow model (Tab. 3, Fig. 9). The smallest standard error of the 518 

weighted residuals was obtained with 0.22 to 0.23 near the Jacobi pond (group 5; 519 

Tab. 3). Around the water works Oberforsthaus (group 1) and within the Western 520 

part (group 4) computed standard errors of the weighted residuals increased to 521 

0.47 to 0.51, which can still be assessed as sufficient with respect to the high 522 

uncertainties in boundary conditions and model parameter values. Calibration 523 

results obtained for observation wells located near the river Main (group 6) 524 

showed the highest standard error of the residuals with up to 1.34 that might 525 

result from the interpolation of the river stage within the model domain. 526 

Six observation wells were used for the model validation containing 1,445 527 

observations or 22% of initial available calibration data. Groundwater levels 528 

simulated by the optimal model matched measured values at most locations 529 
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reasonably well (group 1, 4, 5, and 6) and demonstrated that model parameters 530 

were estimated within a reliable range (Tab. 3). However, at two locations (group 531 

2 and 3) the model fit was distinctively poor and with a similar standard error as 532 

obtained with the model based on sedimentological information.  533 

In summary, by increasing the amount of adjustable hydraulic conductivities, 534 

mean residuals decreased and the standard error of weighted residuals improved 535 

from 1.18 (Model using only sedimentological information) to finally 0.74 in Model 536 

7 with 30 adjustable model parameters.  537 

 538 

Tab 3: Standard error of the weighted residuals of the six observation 539 

groups and total sum of squared weighted residuals for each of the 540 

seven conceptual models obtained by the inverse PEST model 541 

(Model 1 to 7) and with the AIC optimal model (Model 4) during the 542 

model validation. 543 

 544 

Obtained Parameter Estimates 545 

Very limited information was available from field investigations about hydraulic 546 

conductivity and storage. The ratio between vertical and horizontal hydraulic 547 

conductivities was assumed to be 1:10 within Models 2, 3, 4. Applying this 548 

assumption and additionally calibrating the most widespread storage coefficients 549 

(Model 4) was assessed by the AIC as the most certain model with a likelihood of 550 

98 %. Hydraulic conductivities were estimated distinctively higher by PEST in 551 

most regions than derived from sedimentological information (Tab. 4). These 552 

differences may result from the impact of secondary flow pathways or local 553 

heterogeneities that were missed by the interpretation of the borehole data.  554 

 555 
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Tab. 4: Comparison of the initial guesses of the hydraulic conductivity 556 

based on sedimentological information and values estimated by 557 

PEST for the AIC optimal model (Model 4) 558 

 559 

4. Concluding Remarks 560 

The investigated combination of model parameters and calibration data could 561 

lead to an overparameterized conceptual model. A sensitivity analysis clearly 562 

demonstrated that the sensitivity at all observation points decreased by increasing 563 

the number of adjustable parameters. This reduced the influence of the field data 564 

as constrain for the model predictions. Computing the AIC, AICc, BIC, and KIC 565 

allowed the evaluation of the benefit adjusting high numbers of model 566 

parameters. The simplest model based on sedimentological information as well 567 

as the complex models were rejected by all information criteria since they are 568 

likely to be under- or overparameterized. The paired model methodology also 569 

displays the high bias possessed by the simple model into the model predictions.  570 

Differences prevail in the choice of the optimal model. AIC selects as best model 571 

a model of “medium complexity”. It adjusted five of ten storage coefficients and all 572 

ten horizontal conductivities, while keeping the vertical conductivities tied by one 573 

order of magnitude lower. The results of the optimal model selected by the AIC 574 

approximately resemble observed hydraulic piezometric heads, while keeping 575 

estimated model parameters at a minimum. The AIC was able to maintain 576 

parsimony and makes predictions with a reasonable uncertainty. KIC and BIC 577 

give preference to simpler models increasing the model certainty and to maintain 578 

prior information. The optimal models selected by BIC and KIC adjusted only five 579 

or ten hydraulic conductivities, respectively, while storage coefficients are kept as 580 

deduced from the sedimentological investigations. The model fit is unacceptable 581 
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in the optimal model selected by BIC. The KIC might be able to select the optimal 582 

model for an aquifer system that is described by more precise and well-known 583 

field data about model parameter than they were available at our study site. 584 

However, in situations with poor information about model parameter and 585 

boundary conditions the AIC selection should be given preference as it chooses a 586 

parsimony model, but with a sufficient freedom to receive an acceptable model fit. 587 

The choice made by AIC reflects the data available for calibration better than the 588 

optimal models chosen by the KIC and BIC. In our case, where extensive 589 

observation data were available, computing the AIC, and eventually the KIC, can 590 

improve model confidence, as it avoids an under- or overparameterization of 591 

conceptual models for a given data set. However, to decide between the optimal 592 

model selected by the AIC and KIC, respectively, the modeler still needs an 593 

overview about the data types converted to boundary and initial conditions and 594 

model parameters, which is disregarded in the model ranking by all information 595 

criteria.  596 
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Tab 1: Calibrated models analyzed with AIC, AICc, BIC, KIC. 686 

Model Number of adjusted parameters 
during automated model calibration

Conductivities Storage coefficients 

1 based on sedimentological data 
2 5 0 
3 10 0 
4 10 5 
5 10 10 
6 20 5 
7 20 10 

 687 

688 
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Tab 2: Differences ∆j of the AIC, BIC and KIC values to the optimal model 689 

respectively, and likelihood of the flow models from the Akaike weights 690 

(AIC wj). 691 

Model AIC ∆j BIC ∆j KIC ∆j AIC wj 

1 4698 4823 4645 0.00 
2 37.8 0.0 21.8 0.00 
3 10.1 4.9 0.0 0.01 
4 0.0 27.5 2.8 0.98 
5 8.8 68.9 20.8 0.01 
6 18.9 111.8 19.7 0.00 
7 29.8 155.3 50.8 0.00 

 692 

693 
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Tab 3: Standard error of the weighted residuals of the six observation 694 

groups and total sum of squared weighted residuals for each of the 695 

seven conceptual models obtained by the inverse PEST model 696 

(Model 1 to 7) and with the AIC optimal model (Model 4) during the 697 

model validation. 698 

Model 

Standard error of weighted residuals [-] 

G1 G2 G3 G4 G5 G6 Total 

Residual

1 0.734 1.966 0.752 0.728 0.265 1.393 1.18 

2 0.472 0.640 0.499 0.494 0.219 1.341 0.750 

3 0.470 0.607 0.628 0.503 0.233 1.306 0.745 

4 0.475 0.602 0.591 0.507 0.225 1.317 0.745 

5 0.473 0.599 0.636 0.509 0.234 1.307 0.744 

6 0.473 0.600 0.628 0.508 0.234 1.305 0.744 

7 0.472 0.613 0.574 0.508 0.217 1.306 0.743 

Validation 0.397 0.844 0.990 0.509 0.317 1.092 - 

 699 

Group 1:  Around water works Oberforsthaus 700 
Group 2:  Southern area 701 
Group 3:  Northern area 702 
Group 4:  Western area 703 
Group 5:  Near Jacobi Pond 704 
Group 6:  Near river Main 705 
Total residuals: obtained for 5,081 piezometric pressure head data 706 
Validation: Residuals obtained for 1,445 piezometric pressure head data with the optimal 707 
model (Model 4) 708 

 709 

710 
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Tab 4: Comparison of the initial guesses of the hydraulic conductivity 711 

based on sedimentological information and values estimated by 712 

PEST for the AIC optimal model (Model 4) 713 

Zone Hydraulic conductivity [m/s] 

 Horizontal Vertical 

 Estimated from 
sedimentological 

information 

Estimated 
by 

PEST

Estimated from 
sedimentological 

information

Estimated 
by 

PEST 
1 5.6·10-3 1.7·10-1 5.6·10-4 1.7·10-2 

2 3.8·10-3 4.8·10-1 3.8·10-4 4.8·10-2 

3 5.3·10-3 1.5·10-1 5.3·10-4 1.5·10-2 

4 6.8·10-3 3.5·10-2 6.8·10-4 3.5·10-3 

5 8.3·10-3 5.7·10-3 8.3·10-4 5.7·10-4 

6 9.8·10-3 1.8·10-2 9.8·10-4 1.8·10-3 

7 1.1·10-2 2.0·10-2 1.1·10-3 2.0·10-3 

8 1.3·10-2 6.8·10-2 1.3·10-3 6.8·10-3 

9 1.4·10-2 6.6·10-2 1.4·10-3 6.6·10-3 

10 1.0·10-7 4.3·10-7 1.0·10-8 4.3·10-8 

714 
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 715 

Fig. 1: a) Simplified geological map showing the northern part of the Upper 716 

Rhine Graben, the adjacent Mainz and Hanau basins (modified after 717 

Lahner and Toloczyki (2004); W: Wiesbaden, M: Mainz, F: Frankfurt, H: 718 

Heidelberg). b) Thickness of the Quaternary sand and gravel deposits 719 

south of Frankfurt (after Anderle, 1968; Bartz, 1974; Anderle and 720 

Golwer, 1980). Location of the model domain, the water works, and of 721 

transect A-B.  722 

 723 

724 
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 725 

Fig 2: Averaged hydrostratigraphic layer from nine lithologic units along 726 

transect A-B.  727 

728 
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 729 

Fig 3: Averaging technique to derive the equivalent hydraulic conductivities 730 

around two wells within the three hydrostratigraphic layer that 731 

contain nine lithologic units.  732 

733 
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 734 

Fig 4: Spatial distribution of the ten equivalent hydraulic conductivities of 735 

Model 1 (uncalibrated model based on sedimentological information) 736 

within the three hydrostratigraphic layer. 737 

738 
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 739 

Fig 5: Boundary conditions, initial head distribution of the numerical flow 740 

model and location of the observation well groups.  741 

742 
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 743 

Fig 6: Sensitivity of the six observation groups with respect to the 744 

adjustable amount of parameters and the cumulative groundwater 745 

extraction at the water works Oberforsthaus. 746 

747 
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 748 

 749 

Fig 7: AIC (diamond), AICc (square), BIC (triangle), KIC (circle) assessment 750 

of the calibrated models with respect to complexity and model fit.  751 

 752 

753 
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 754 

Fig 8: Paired model analysis: predicted piezometric pressure heads of 755 

Model 1 (based on sedimentological information) versus the results 756 

of the optimal model selected by AIC (Model 4), regression line 757 

equation, and correlation coefficient (R2). 758 

 759 

760 
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 761 

Fig 9: Simulated piezometric heads of Model 4 (optimal model) versus 762 

measured piezometric heads between 1990 and 2009. Observation 763 

wells were summarized in six groups. One observation well of each 764 

group is illustrated within the figure.  765 


