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We would like to thank Anonymous Referee #2 for his/her helpful comments and sug-
gestions. Herein we provide answers to his/her comments to facilitate further interac-
tion on the points listed in the review. During the final phase we will be providing a more
extensive response and will revise the manuscript to address the reviewer’s comments.

1. In this study, we refer to ‘model uncertainty’ to describe model structural errors,
model calibration errors and parametric errors (i.e., uncertainties related to the model
itself). On the other hand, we define ‘prediction uncertainty’, or ‘modeling uncertainty’,
as the combination of ‘model uncertainty’ and ‘input forcing data uncertainty’. We use
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the so-called GLUE approach to characterize the parametric error component of the
‘model uncertainty’. In fact, as the reviewer highlighted, the GLUE methodology does
not separate out different error sources — all uncertainty is represented as parameter
uncertainty. On the other hand, we tested another approach to characterize ‘model un-
certainty’, which is adding randomly generated noise to the model prognostic variables.
This approach is more comprehensive as it addresses statistically both structural and
parametric uncertainties (Reichle et al. 2007). We would also like to clarify that GLUE
is not used in its typical application to identify the model parameter values that give in-
distinguishable error metric results evaluated on the basis of independent data. In fact,
we assume that the existing parameter set for the Catchment model (defined in previ-
ous studies) is the most appropriate, and then use the ‘equifinality’ concept of GLUE to
determine the range of parameter variations around that parameter set that give model
performances (relative to model simulations using the optimal parameter set) within a
threshold error metric value (i.e. Efficiency Score=0.8 for surface soil moisture and 0.7
for root zone soil moisture).

2. We agree with the reviewer on the fact that the sensitivity methodology adopted
in this study is local. However, this sensitivity analysis is only intended to identify
parameters to which the model is sensitive. Our aim is to limit those parameters to
a small subset that would allow computational efficiency. The two parameters that
exhibited major model sensitivity were then combined to determine parameter sets
that give model performances above the error metric threshold value used to define
‘equifinality’.

3. We agree with the reviewer regarding the subjectivity of the threshold value for the
goodness of fit and the choice of the likelihood function. We understand this is a lim-
itation of GLUE, and, as a result, of our methodology, which is built up on the GLUE
approach. We will revise the text to address this point in our revised manuscript. How-
ever, we would like to point out that our approach is different than the typical GLUE
technique. As a matter of fact, our methodology is closer to a model sensitivity anal-
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ysis. For this reason, we will avoid the term ‘GLUE’ in our revised manuscript and
rename what we called the GLUE-approach with a more precise terminology in order
to avoid any confusion. The parametric uncertainty in this paper defines deviations
from a previously defined parameter set that provide similar model performances in
terms of simulated soil moisture. We are not determining model performances using
independent observations (as the typical GLUE approach), instead, we use a ‘bench-
mark’ model run as reference (i.e., unperturbed radar-rainfall forced Catchment model
simulation with original calibrated parameters). From the GLUE approach we borrow
the concept of ‘equifinality’, which recognizes the acceptability of different parameter
sets that are similarly good in producing model predictions. We show that even with
a small subset of those parameters (two parameter combinations) combined with rain-
fall forcing uncertainty we can encapsulate the ‘benchmark’ prediction, showing small
ER values, and reproduce the total ‘reference’ uncertainty (i.e., ‘modeling’ uncertainty),
showing UR values close to unity. In summary, our method differs from the Blasone
et al. (2008) as we do not sample randomly the prior parameter space to find ‘poste-
rior’ parameter estimates. Instead, we start from a priori known best set of parameters
and perturb a subset of them - to which the model is mostly sensitive - to find param-
eter combination to provide indistinguishable model uncertainty in the simulated soil
moisture.

4. We agree with the reviewer. We will make sure to add this discussion in the method-
ology limitations and simplify the language used regarding our parameter sensitivity.
Again we plan to rephrase the statement used for GLUE.

5. We used two different approaches to study ‘model uncertainty’: the first one that
only accounts parameter uncertainty and a second one that addresses both structural
and parameter uncertainties. The first one was chosen to investigate uncertainty in
the parameters only, and study how parameter perturbations, that will still meet the
hypothesis of equifinality, would impact the output soil moisture uncertainty. We used
the second one to take into account errors in the structure of the model as well. The
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prognostic-perturbation method was chosen because this is the method that is cur-
rently used in the NASA-GMAO Land Data Assimilation System (LDAS) to perturb
model variables of the Catchment model.

6. This work is done with a data assimilation perspective, which is the reason why
we are interested in adopting the method that is currently used in the NASA-GMAO
Land Data Assimilation System (LDAS) to perturb model variables of the Catchment
model. Our findings highlight the incapability of this approach, even when combined
with rainfall model perturbations, to completely describe the ‘modeling’ (or prediction)
uncertainty. On the other hand, by adding some model parameter perturbations (de-
fined by the ‘equifinality’ concept) to rainfall forcing perturbations, we were able to
better characterize the ‘modeling’ uncertainty in soil moisture simulations. These con-
clusions extensively contribute to the development of the NASA-GMAO land data as-
similation system, giving valuable insights about the interaction between rainfall forcing
and model uncertainties in case of satellite rainfall application in land data assimilation.
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