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1 Overview

The purpose of this note is to demonstrate that sediment transport from land to ocean
results in the reduction of potential energy of continental crust material. To do so, we
consider a simple configuration that is shown in Fig. 1 (The figure is attached to this
comment as a supplement). A block of continental crust of length Lc with a density ρc

rests within oceanic crust of a higher density ρo and length L. The vertical position of
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the block of continental crust is given by the vertical extent ∆zc = ∆zc,l from a reference
line (lower dashed line in Fig. 1a). The thickness of the oceanic crust is considered
with regard to its vertical extent ∆zl = ∆zo,l taken from the same reference line. The
indices ’c’ and ’o’ refer to continental and oceanic crust, while the indices ’l’ and ’g’
refer to the local isostatic equilibrium shown in Fig. 1a and the global, stratigraphic
equilibrium shown in Fig. 1c.

To show the reduction in potential energy due to lateral sediment transport, we consider
the conservation of mass of the total mass of continental and oceanic crust, which set
the constraints on the vertical extents, and the changes in potential energy within the
system.

2 Mass balance constraints

We assume in this example that the mass of both, continental and oceanic crust, mc

and mo, are being conserved.

The mass of continental crust, mc, is given by the density ρc as well as the dimensions
of the block. In the configuration shown in Fig. 1a, this mass is determined by:

mc = ρcLc∆zc,l (1)

where, for simplicity, we assume that the third dimension is included in the density ρc.
For a given mass mc, this translates into an expression for ∆zc,l of

∆zc,l =
mc

ρcLc
(2)

Similarly, the mass of oceanic crust, mo, is given by the density ρo > ρc and the dimen-
sions:

mo = ρo(L− Lc)∆zo,l (3)
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For a given mass of oceanic crust, mo, this yields the vertical extent of the crust, ∆zo,l:

∆zo,l =
mo

ρo(L− Lc)
(4)

When continental crust is redistributed to the state shown in Fig. 1c, the mass of
continental crust is given by:

mc = ρcL∆zc,g (5)

and the vertical extent changes to ∆zc,g:

∆zc,g =
mc

ρcL
(6)

Likewise, the mass of oceanic crust is given by

mo = ρoL∆zo,g (7)

and the vertical extent changes to ∆zo,g:

∆zo,g =
mo

ρoL
(8)

3 Potential energy in local, isostatic equilibrium

The potential energy of the configuration shown in Fig. 1a is given by the contributions
by continental crust, Upe,c,l, and by oceanic crust, Upe,o,l. These contributions are given
by:

Upe,c,l =
∫ ∆zc,l

0
Lcρcgzdz =

Lcρcg

2
∆z2

c,l (9)
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and

Upe,o,l =
∫ ∆zo,l

0
(L− Lc)ρogzdz =

(L− Lc)ρog

2
∆z2

o,l (10)

Using eqns. 2 and 4 to express ∆zc,l and ∆zo,l in terms of the masses mc and mo, the
total potential energy is expressed by

Upe,tot,l = Upe,o,l + Upe,c,l =
g

2Lcρc
m2

c +
g

2(L− Lc)ρo
m2

o (11)

4 Potential energy in global, stratigraphic equilibrium

The potential energy of the configuration shown in Fig. 1c is derived equivalently. The
individual contributions by the continental and oceanic crust are given by:

Upe,c,g =
∫ ∆zc,g

0
Lρcgzdz =

Lρcg

2
(
∆z2

c,g −∆z2
o,g

)
(12)

and

Upe,o,g =
∫ ∆zo,g

0
Lρogzdz =

Lρog

2
∆z2

o,g (13)

Taken together, and using eqns. 6 and 8 as above to express ∆zc,g and ∆zo,g in terms
of the masses mc and mo, we obtain:

Upe,tot,g = Upe,o,g + Upe,c,g

=
g

2Lρc
m2

c +
g

2Lρo
m2

o

(
1− ρc

ρo

)
(14)
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5 Difference in potential energy

We now consider the difference in potential energy, ∆Upe,tot, between the global equi-
librium state shown in Fig. 1c to the local equilibrium state shown in Fig. 1a. We use
eqns. 11 and 14 to get the following expression for ∆Upe,tot:

∆Upe,tot = Upe,tot,g − Upe,tot,l

=
gm2

c

2ρc

(
1
L
− 1
Lc

)

+
gm2

o

2ρo

(
1
L

(
1− ρc

ρo

)
− 1
L− Lc

)

= − gm2
c

2ρcLc

(
1− Lc

L

)

− gm2
o

2ρo(L− Lc)

(
1−

(
1− Lc

L

)(
1− ρc

ρo

))
(15)

What can be seen from eqn. 15 is that both terms are negative, that is, that the potential
energy decreases from the state shown in Fig. 1a to Fig. 1c.

6 Summary

In summary, this note shows in relatively simple terms that the transition from a local
isostatic equilibrium to a global stratigraphic equilibrium is accompanied by a reduction
of potential energy in the overall system.

In principle, one could also show that the initial state of local isostatic equilibrium rep-
resents a state of minimum potential energy with respect to the vertical position of
continental crust, ∆zc,j , and that the state of global equilibrium represents a state of
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minimum potential energy with respect to the horizontal extent of continental crust Lc.
This would, however, require quite lengthly algebraic computations, which has been
omitted here for reasons of brevity.
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