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The manuscript discusses the use of two multi-model post-processing techniques. The first 
one applied to temperature refers to the technique introduced by Krishnamurti  et al. in two 
papers dated 1999 and 2000. The second one, used to merge precipitation conditional 
density functions.  

The manuscript is interesting and well written, but I do not think it is acceptable in its present 
form.  

The main problem lies in the fact that the authors seem not aware of important literature in the 
field of multi-model uncertainty post-processors which has led to the Bayesian Model 
Averaging (BMA) introduced by Raftery et al., (2003; 2005) and the Model Conditional 
Processor (MCP) developed by Todini,  (2008), to quote two of the most recent ones. 

A multi-model approach obviously aims at obtaining a better estimate of the real unknown 
value by eliminating the bias and most of all by reducing predictive uncertainty, which in the 
case of the proposed approach, for the temperatures is obtained by minimizing the variance 
of the observed minus predicted values. In practice this corresponds to a multi-regression 
approach, which implicitly assumes an underlying Normal heteroscedastic conditional 
probability density. This underlying hypothesis is neither formally acknowledged nor proven 
by the authors. A way of overcoming this problem is for instance given by MCP, in which  the 
development of a multi-dimensional regression in order to derive the conditional distribution of 
the predictand (the actual temperature in this case) given the predictors (the model forecasts), 
is preceded by the conversion of predictand and predictors into a Normal space via the 
Normal Quantile Transform (which in practice corresponds to a Normal Copula approach) 
(Van der Waerden B.L., 1952; 1953a; 1953b; Krzysztofowicz, 1997). In this space it is 
possible to identify a multi-Normal joint probability density from which one can analytically 
derive the conditional probability density (Todini, 2008). This again corresponds to a multi-
regression type of approach, which is justified by the fact that the joint density is now multi-
Normal. Although in practice the estimation of the weights is very close to the one proposed, 
the transformation into the multi-Normal space has the advantage of allowing for the correct 
estimation of the weights. Moreover, as opposed to proposed approach, which implies 
symmetry and is limited to the estimation of the first and second order moments, the 
derivation of the conditional density in the multi-Normal space allows  for the estimation the 
full “predictive uncertainty” probability density function, which can be, and generally is, a-
symmetrical. The transformation into the multi-Normal space and the re-projection of results 
into the real space marginally increases the complexity of the proposed algorithm, but offers 
instead improved performances. 



Alternatively, one can also use BMA, which builds the probability density of the observations 
conditional to the different models as a Bayesian mixture of densities.  
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Also in this case it is appropriate to convert all the data into the Normal space prior to forming 
the BMA likelihood function (Vrugt and Robinson, 2007; Todini, 2008), which again implies 
a multi-Normal probability density function. Results of BMA can be proven to be similar but 
less performing than results from MCP, because the resulting conditional density is a generic 
conditional density obtained as the weighted average of the single model conditional 
densities, which differs form the one descending from the Kolmogorov definition as the joint 
divided by the marginal density. 
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Where 𝑦 is the predictand, and   𝑦(!),𝑦(!),… ,𝑦(!) the 𝑚 models predictors. 

One thing which is not clearly specified in the manuscript. In Appendix A of Krishnamurti et al 
(1999) it is clearly stated that “The weights ai are computed at each grid point by minimizing 
the following function…”. In other words the weights are estimated at each single pixel 
“independently” from neighboring pixels. Apart from the resulting large number of weights, it 
seems to me that either one of the models is consistently well performing in a region (the 
aggregation of a number of pixels or a super-pixel) or it is not. Therefore the weights should 
be, in my view, computed per regions (which is what BMA does for instance), not per pixel. 
Otherwise a model could be the best in one pixel and the worst in the adjacent one, which is 
not totally reasonable. In any case the authors are invited to clarify this point.  

As far as the approach used to merge precipitation forecasts, referred to as “Probabilistic 
Multimodel SuperEnsemble Dressing”, this is an alternative way to BMA for building a 
conditional predictive density, which again does not match the “conditional density” 
descending from Kolmogorov definition. 

There are three points to be addressed by the authors.  

The first one is to describe the approach within the frame of alternative used approaches and 
in particular to BMA, to which the approach is closer. 

The second one is to avoid using in their graphs of a log-probability scale, which tends to hide 
the fact that over 90% of observations and of at least of two models forecasts are zeroes 
(while it is very strange that two of the used models do not show this characteristics). This is a 
very important point because one of the major problems for effectively estimating predictive 



precipitation conditional densities lies in the fact that “misses” and “false alarm” rates can be 
quite large. Given that the rate of zeroes accounts for over 90% of the cases the effect is 
enhanced when no precipitation occurs or when the models predict no precipitation. 

The third one is that also in the case of precipitation it is not clear if the averaged conditional 
densities are derived for each pixel. This implies the use of a large number of estimated 
parameters (number of merged models times number of pixels). 
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