
Hydrol. Earth Syst. Sci. Discuss., 9, C4913–C4926,
2012
www.hydrol-earth-syst-sci-discuss.net/9/C4913/2012/
© Author(s) 2012. This work is distributed under
the Creative Commons Attribute 3.0 License.

Hydrology and
Earth System

Sciences
Discussions

Interactive comment on “Local sensitivity analysis
for compositional data with application to soil
texture in hydrologic modelling” by L. Loosvelt
et al.

J. J. Egozcue (Referee)

juan.jose.egozcue@upc.edu

Received and published: 20 October 2012

Analysis of sensitivity with respect to a
compositional parameter

A comment on “Local sensitivity analysis for compositional data with
application to soil texture in hydrologic modelling” by L. Loosvelt and

co-authors.

by

C4913

J. J. Egozcue1 and V. Pawlowsky-Glahn2

1 Dept. Applied Mathematics III, Universitat Politècnica de Catalunya, Barcelona,
Spain. e-mail: juan.jose.egozcue@upc.edu

2 Dept. Computer Science, Universitat de Girona, Spain. e.mail:
vera.pawlowsky@udg.edu

1 Introduction

To our understanding the article by L. Loosvelt and co-authors is an important contri-
bution (Loosvelt et al., 2012). The authors identify an important problem, the sensitivity
analysis to changes in compositional input parameters, and propose a way to deal with.
The problem is that input parameters of hydrological models can be compositional, and
variations of these parameters should be treated in an appropriate geometry. In the
studied case, the input of the model TOPLAST (see references Loosvelt et al. 2012) is
the clay-sand-silt composition characterising the soil texture. The goal was to carry out
a sensitivity analysis of the output soil hydraulic parameters (SHPs) taking into account
the compositional character of the input texture parameters. The presented analysis is
methodologically sound and the obtained results are potentially useful for further use of
TOPLAS and for improvements in the sampling techniques of soil characteristics. The
merit of this contribution is daring to use appropriate compositional techniques despite
of not commonly used in this context. Accordingly, the contribution states an important
criticism on methods which ignore the compositional character of used data and pa-
rameters. We agree with this criticism and we would encourage the revision of methods
used in geosciences, and all scientific fields, which deal with compositional data and/or
compositional parameters ignoring their character and overlooking the consequences.

At this point, a definition of compositional data or parameters is worth, since the au-
thors use a restrictive definition. However, this view has no further consequences in the
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paper. They use the classical idea that a composition is a vector with positive compo-
nents adding to a constant. Accordingly, they are called closed data as it is frequently
done in geosciences, e.g. Chayes (1960); Butler (1978); Chayes and Trochimczyk
(1978); Buccianti and Rosso (1999). As the authors point out, an important character-
istic of compositions is that the only information in a composition is contained in the
ratios between the components (Aitchison, 1986). However, compositions are better
thought of as equivalence classes of vectors with positive components: two of these
vectors are equivalent if their components are proportional (Barceló-Vidal et al., 2001).
A further step is that components of compositions do not need to add to a constant
(Buccianti and Pawlowsky-Glahn, 2005; Egozcue and Pawlowsky-Glahn, 2011). Typi-
cal examples in geosciences are concentrations given in molar concentrations or in mg
per liter. This kind of compositions can be changed into (closed) proportions using a
perturbation, the addition in the simplex, without loss of information.

In Loosvelt et al. (2012), clay-sand-silt proportions are adequately considered as a
composition –see an example in Aitchison (1986)–. However, other compositions are
mentioned in the paper. For instance, the soil moisture content θr (m3m−3) can be
considered as a two-part composition; also porosity can be treated as a two-part com-
position. It could have consequences in the sensitivity analysis proposed.

The present comment is centered in three specific points. The first one is related to
the fact that the authors avoid the use of ilr-coordinates. The second one refers to
some generalization of sensitivity analysis when input parameters are compositional.
The third tries to show that the role of the Dirichlet distribution in the sensitivity analysis
is irrelevant. These points should be considered as a positive consequence of the
Loosvelt et al. (2012) contribution and they are intended to encourage further studies.
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2 Use of ilr-coordinates in the simplex

The D-part simplex, SD, is the sample space of random compositions and the pa-
rameter space of compositional parameters. In Pawlowsky-Glahn and Egozcue (2001)
and in Billheimer et al. (2001) the D-part simplex, with perturbation, powering and
the Aitchison metrics (see eq. (1)–(4) in Loosvelt et al., 2012) was identified to be a
(D − 1)-dimensional Euclidean space. The corresponding geometry was called the
Aitchison geometry of the simplex. The main consequence of this result is that any
composition can be represented by its Cartesian coordinates, called isometric log-ratio
(ilr)-coordinates (Egozcue et al., 2003). When compositions are represented using
ilr-coordinates, perturbation, powering, inner-product, distance and norm in the sim-
plex are translated into the ordinary real operations (sum, multiplication by scalars)
and real metric (Euclidean inner product, distance and norm). The representation in
ilr-coordinates provides a framework where the Aitchison geometry of the simplex is
easily handled both for geometric and statistic computation. This practice has been
named as the the principle of working on coordinates (Mateu-Figueras et al., 2011).

The ilr-coordinates involve log-ratios of products of components of the composition,
but they can be very simple. The prototype of simple ilr-coordinates are those ob-
tained using a sequential binary partition of the composition which are called balances
(Egozcue and Pawlowsky-Glahn, 2005, 2006). In Fig. 2 of Loosvelt et al. (2012) the
balances

x∗1 =
1√
2

log
x1

x2
, x∗2 =

√
2
3

log
(x1x2)1/2

x3
, (1)

are used as ilr-coordinates. It shows a circle centered at the origin of these ilr-
coordinates, crossed by three axes; the center corresponds to the neutral element
of S3 (the barycenter of the ternary diagram) and the bisector lines of the angles of the
ternary diagram denoted B1, B2, B3. A translation produces a shifted figure (dotted
lines). The shift in the ilr-coordinates is equivalent to a perturbation in the simplex. The
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Fig. 1. Space of ilr-coordinates (x∗1, x
∗
2). Full lines: a circle of radius 0.5 centered at the origin

and crossed by 6 axes. Dashed lines: the same figures shifted to the point (2.2, 0.7). Bold lines:
bisectors shown in Loosvelt et al. (2012). The axes of coordinates x∗1 and x∗2 are not shown.

Fig. 2. Ternary diagram corresponding to Fig. 1. Full lines: a circle of radius 0.5 centered at the
origin and crossed by 6 axes. Dashed lines: the same lines shifted to the ilr−1(2.2, 0.7). Bold
lines: bisectors shown in Loosvelt et al. (2012).

effect of the shift is shown in Fig. 3 (Loosvelt et al., 2012). An important feature of Fig.
3 is that the shifted bisectors B′1, B′2, B′3 appear again as straight-lines in the ternary
diagram. In fact, linear segments in the ternary diagram are again transformed into lin-
ear segments after a perturbation (von Eynatten et al., 2002). However, the mentioned
Figures hide some facts of the Aitchison geometry: stright-lines in the ilr-coordinate
space generally correspond to curved lines in the ternary diagram. Figures 1 and 2
show a similar construction including more axes than in Loosvelt et al. (2012). In Fig.
1, the axes at angles π/6, π/2, 5π/6, for both the centered circle and the shifted one,
are transformed into curved axes in the ternary diagram in Fig. 2.

Our purpose with Figures 1 and 2 is to show that computing the 2M intersections of M
axes regularly distributed on a circle is a simple task. In fact, the ilr-coordinates are

u∗k = r cos((πk)/M) , v∗k = r sin((πk)/M) , k = 0, 1, 2, . . . , 2M ,

where r is the radius of the circle. Computing these intersections in the ternary diagram
is quite demanding (see Appendix in Loosvelt et al., 2012), even for the bisector axes.
If the simplicial expression of these points is needed, the ilr−1-transformation can be
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used. The ilr-transformation and its back transformation, in matrix notation, are

x∗ = ilr(x) = V > log(x) , x = ilr−1(x∗) = C exp[V x∗] ,

where log and exp operate componentwise, C is the closure operator, and V is the
contrast matrix associated with the specific ilr-transformation (Egozcue et al., 2011).
In Loosvelt et al. (2012), the expression in the simplex of the intersection points (u∗k, v

∗
k)

is

ilr−1

(
u∗k
v∗k

)
= C exp


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2/3
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 · log

(
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)
,

where the matrix corresponds to V .

The algebra of ilr-transformations allows an easy generalization to more than the M =
3 axes (six points) taken in the perturbation circle presented in Loosvelt et al. (2012).

In a general case where the texture of the soil is described with more than 3 parts, e.g.
Parent et al. (2012), the perturbation circle is not easily generalized to the sphere and
hyper-spheres. A larger number of points on the hyper-sphere would be necessary
and the distribution of the axes may cause difficulties.

3 Sensitivity, scale and derivatives

Local sensitivity of an output parameter θ is described by a derivative of θ with respect
to input parameters, as Loosvelt et al. (2012) state. In practice, the derivative is ap-
proximated, for instance, using finite differences. A sensible question is, which is the
scale of the parameter θ or, equivalently, how the difference between two values of θ
is computed. For instance, the soil moisture content θr (m3m−3) could be considered
as a composition of two parts: moisture, solid+gas. If this choice is taken, the differ-
ence between two values θr1, θr2 is computed according perturbation-difference, i.e.
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as C[θr1/θr2, (1− θr1)/(1− θr2)]. The square-distance is then

d2
A(θr1, θr2) =

(
1√
2

log
θr1

1− θr1
− 1√

2
log

θr2

1− θr2

)2

,

which corresponds, up to a constant, to the squared difference of the logit transfor-
mations. The log-ratio 2−1/2 log(θr1/(1 − θr1) is the ilr coordinate of the composition
(θr1, 1 − θr1). Taking the difference between two values θr1, θr2 as the difference
θr1 − θr2, implies assuming that θr has the absolute scale. In this case, the differ-
ence between soil moisture content of 10−3 and 10−2 is equal to the difference be-
tween 0.300 and 0.309. In the first pair, the moisture content of the second value is 10
times the first one; for the second pair, the moisture content of the second value is only
slightly greater than the first one. The option taken in Loosvelt et al. (2012) assumes
that the differences for the two pairs are equal.

A way to deal with the choice of scale of an output parameter θ is to select a one-to-
one function ϕ such that ϕ(θ) has an absolute scale. For instance, if θr is considered
compositional, ϕ(θ) = 2−1/2 log(θr/(1 − θr); if the hydraulic conductivity K (ms−1),
is considered in a ratio scale, then ϕ(K) = log(K). The decision on the scale of
each parameter is subjective but implications of such a decision should be carefully
analysed.

Local sensitivity of an output parameter θ consists of estimating the derivative of y =
ϕ(θ) with respect the soil texture x represented in ilr-coordinates by x∗ = ilr(x). In this
case, the derivative at x is the gradient

∇y(x) =
(
∂y

∂x∗1
,
∂y

∂x∗2
, . . . ,

∂y

∂x∗d

)
, (2)

where d = D − 1 is the dimension of the simplex. The derivative of y = ϕ(θ) in a
compositional direction v, with ilr-coordinates v∗ and ‖v∗‖ = 1, is Dvy(x) = ∇y(x) ·v∗,
where the dot is the ordinary Euclidean inner product of vectors. For ϕ being the
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identity function, the directional derivative can be approximated by the finite difference
in Eq. (6) of (Loosvelt et al., 2012). It is remarkable that, once the gradient∇y(x) in Eq.
(2) is estimated, any directional derivative is obtained as ∇y(x) · v∗; therefore, only d
derivatives are needed, one for each orthogonal axis on the ilr-coordinate space. This
is not relevant for d = D − 1 = 2 as in Loosvelt et al. (2012). Alternatively for D > 3,
a large number of points on the perturbation hyper-sphere can be required to compute
the scalar sensitivity index. Then, using the gradient in (2) can simplify the computation
of the directional derivatives dramatically.

In Loosvelt et al. (2012), the scalar sensitivity analysis continues taking absolute value
of directional derivatives, computing the root mean square average of them, and finally
averaging the root-mean-square values on the perturbation circle (see Eq. (8)). The
appropriate order of these operations can be discussed, but it is out of the scope of
this comment.

4 Use of Dirichlet distribution and measure in the simplex

In order to get a representation in the ternary diagram of sensitivity indexes, Loosvelt
et al. (2012) propose to use a Dirichlet sampling providing points in which the sensitivity
index is computed and afterwards interpolated. Particularly, they use the uniform dis-
tribution in the ternary diagram. For representation purposes, a deterministic uniform
triangular grid is enough and would guarantee quality interpolations similar to those
presented in Figure 6. We think that using the Dirichlet sampling may induce confusion
to the reader. It appears as a piece of the compositional analysis, while it is simply a
technique to obtain a uniform grid of points. At this point, a question arises: what is a
uniform grid of points in the simplex? or, more technically, how are areas measured in
the simplex?

For the three-part simplex (silt-sand-clay), the space of ilr coordinates is the two dimen-
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sional real space R2. The measure (area) of a rectangle is the product of the lengths of
the two sides in the ordinary sense. This measure is called Lebesgue measure in R2. A
regular uniform grid is obtained intersecting two orthogonal families of equally-spaced
parallel axes. If this grid of points in the ilr-coordinate space is translated back into the
simplex, the squares appear distorted in the ternary diagram (Fig. 3). The squares of
the regular grid in coordinates have Lebesgue measure 1 × 1. In the ternary diagram
they appear strongly distorted, the closer to the borders the more distortion, but they
have unit Aitchison measure, i.e. they are squares of unit Aitchison side-length. The
regular grids in the simplex, as that shown in Fig. 3, may be inadequate to plot sur-
faces similar to those shown in Fig. 6 in Loosvelt et al. (2012), but they are advisable
for a plot in the ilr-coordinate space, as they do not distort measures near the borders
of the ternary diagram. This comment is more than an advise on how to plot surfaces
on the two-part simplex. It essentially concerns the the computation of mean values of
the local sensitivity indexes. For instance, the mean value of the sensitivity index over
an USDA-class of texture can be estimated as the arithmetic average of sensitivity in-
dexes computed over all soil texture points evaluated within the USDA-class if the grid
points are uniformly sampled in the ilr-coordinate space. However, this is not the case
if the sampling was Dirichlet (unit parameters) or selected on a deterministic regular
triangular grid on the ternary diagram.

We would suggest to perform the sensitivity analysis on a (limited) regular grid in ilr-
coordinates, where both contour plots of the index and mean values are not distorted.
As a traditional way of presenting results, ternary plots may be also useful, but distor-
tion near the borders should be taken into account.
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Fig. 3. Regular grid in the three-part simplex. Thick lines correspond to the axes of the ilr-
coordinates in Eq. (1). Other lines are parallel axes shifted ±1, ±2 forming a grid of 25 points.

5 Concluding comment

The contribution by Loosvelt et al. (2012) is relevant because it fosters the problem
of sensitivity analysis of a numerical model. These kind of analyses are not new,
but are frequently overlooked in the standard practice. The novelty is considering the
compositional character of the input parameters.

The sensitivity study of the output hydraulic parameters of the TOPLATS model with the
input texture of soil leads to important conclusions. One of them is that USDA-classes
seem to be too rough to characterize the soil texture. We would add that three grain
classes (silt, sand, clay) are not enough for an accurate description of the soil texture,
thus claiming for a revision of the code.

Our comments try to point out ways to deal with a more detailed description of the
soil texture. Specifically, we remark the importance of working with ilr-coordinates
to improve computation, evaluation of mean values of sensitivity indices and plotting
techniques.
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Suggestions

1. Throughout the paper use baricenter in place of barycenter. We would recom-
mend this substitution.

2. Powering in the simplex is not commutative, i.e. for a real number α and a com-
position x, α � x is not x � α. The standard form is α � x. However, this is just
a convention, and the authors can use the reverse expression, but a definition is
advisable. Note that in standard real operations this is not important as both α
and x are real and the implied operation is the commutative real multiplication.

3. We do not like to call ξ perturbation factor. In fact, it appears in the form (1 ±
ξ), which involves standard addition. We would feel more confortable if (1 ±
ξ) were called powering factor or scaling factor (it is a factor in the Aitchison
geometry as it is a powering-factor). It is not easy to give an appropriate name
to ξ; perhaps something like powering rate thus taking the name of rate from
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economic terminology: something that has decreased 3% means multiplication-
perturbation with the coefficient 0.97.

4. In Figure 2, an ilr-transformation has been used. Although different ilr-
transformations consist of a rotation of the figure, we guess that the used ilr-
coordinates (balances) were

x∗1 =
1√
2

log
x1

x2
, x∗2 =

√
2
3

log
(x1x2)1/2

x3
.

They should be mentioned in the caption of Fig. 2 (or in the text).

4. In Eq. (1) summation subindexes do not match.

5. Before Eq. (6), notation yt is used. However, t is only defined after the discussion
of Eqs. (6) (7) and (8). A brief description of what is t is therefore convenient
before Eq. (6).

6. In page 8856, lines 4-6 (before the algorithm listing) the sentence Note that the
presented methodology does not allow to calculate the sensitivity for the baricen-
ter as the scalar multiplication p0 � (1 ± ξ) has no effect on this composition is
wrong. The operation p0� (1± ξ) is not needed for computation of the sensitivity
index, as p0 is a center of a circle and what is powered by 1 ± ξ is a (unitary)
vector placed at p0. We would recommend to delete this confusing statement.

7. Section 3.2.2, lines 10-13. The statement is unclear, due to the concept of cor-
relation in this context. Which correlation is referred to? A better explanation is
advisable.

8. First paragraph in section 3.2.3 is difficult to read. Please, use short sentences.

9. Section 3.2.3, lines 28-31. Please, rewrite avoiding repetition of on the other
hand and on the contrary.
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10. Section 4, page 8866, line 16. Separate words verythe.

11. In Reference Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., and
Barcelo-Vidal, (2003) an accent is missing, i.e. Barceló-Vidal.
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