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Herein we provide answers to the comments raised by the Anonymous Referee #1 to
facilitate further interaction on the critical points listed in his/her review. During the final
phase we will be providing a more extensive response and will revise the manuscript
to address the reviewer’s comments.

- We would like to clarify the GLUE application in this study. For a known set of the
Catchment model parameters (provided by previous applications of the specific model),
which represent what the reviewer can call a calibrated parameter set, we determine
model performance sensitivities to variations of two of its sensitive parameters. Specif-
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ically, we determine the Efficiency score metric between model integrations using the
calibrated parameter set versus a range of parameter variations. We then set a good-
ness of fit threshold (Efficiency score of 0.8) to define the range of parameter values
that represent ‘equifinality’ (namely, the model performance differences are not distin-
guishable within a tolerance). This is different than the typical GLUE approach where
model performances are determined against independent observations. Therefore,
and to avoid confusion, we will rename the framework to GLUE-based model param-
eter uncertainty approach. We agree with the reviewer regarding the arbitrariness of
the threshold value for the goodness of fit. We understand this is a limitation, first and
foremost, of GLUE, and, as a result, of our methodology, which is built on the GLUE
approach. However, in any calibration/validation process it is necessary to define a per-
formance criterion of acceptance. We believe it is fair to define an acceptance criterion,
as long as it is set in advance, and there is objectivity in the process that follows.

- About adding noise to model prognostics, in this study we adopted the method that is
currently used in the NASA-GMAO Land Data Assimilation System (LDAS) to perturb
model variables of the Catchment model. Specifically, we applied normally distributed
additive perturbations to the model prognostics, constraining ensemble means to zero,
and imposing time series correlations via a first-order autoregressive model. The per-
turbation parameter values are taken from the literature (Reichle et al. 2007, Liu et
al. 2011), and are the ones that are actually used in the NASA-GMAO-LDAS. We
will provide more information about the calibration of these parameters in the revised
manuscript. As far as ensemble verification, this would require independent observa-
tions of soil moisture, which is not typically available in large scale applications. In
fact, this study should be seen from the data assimilation application perspective. We
investigate how errors introduced through regionally defined model and rainfall forc-
ing uncertainty impact the characterization of soil moisture prediction uncertainty, and,
consequentially (in a future study) the assimilation of satellite soil moisture observa-
tions in a land data assimilation framework.
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- In our paper, we do demonstrate that by adding rainfall uncertainty to model param-
eter uncertainty we obtain larger ensemble members, but we also show that these
ensembles are NOT overestimated (UR close to 1) and better encapsulate the ‘refer-
ence’ simulation (smaller values of ER) when compared to the rainfall uncertainty only
experiment. In addition, we prove that using the prognostic perturbations contributes
a modest increase in the soil moisture prediction uncertainty, but, still underestimates
the uncertainty in the soil moisture output (UR smaller than 1). These observations
highlight the value of using model parameter uncertainty as described in our paper
combined with a stochastic model of satellite rainfall error for global land surface mod-
eling applications. These conclusions extensively contribute to the development of
the NASA-GMAO land data assimilation system, giving valuable insights about the in-
teraction between rainfall forcing and model uncertainties in case of satellite rainfall
application in land data assimilation.

- We agree with the reviewer that two parameters are not enough to fully characterize
the model sensitivity. In order to pick the two parameters presented in this study, we
performed a few analyses on different model parameters. We are attaching here in
Figure 3a just an example for another parameter (matric potential at saturation), to
which the model was found to be non-sensitive. This was typically the case for other
parameters in the model. As data assimilation runs are computationally expensive, we
find it very promising to be able to describe adequately uncertainty in soil moisture by
perturbing rainfall and a small sub-set of the model parameters. Further studies could
look at different parameters and investigate how results would differ from our findings.
Our conclusions may be different across varying hydroclimatic regimes, which is a point
we need to clearly make in the revised version of this paper.

- Fourteen probably represents the minimum acceptable number of ensemble mem-
bers if we deal with long time series and large regions. In this study we are considering
a very long time series (3 years at 3-hr time scale), and a large domain (220 pixels).
These ensemble time series represent a significant sample size of independent data
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to ensure statistical significance.

- Anomaly correlation coefficients are chosen as a performance metrics due to our
focus on data assimilation applications. In fact, traditional metrics, such as bias and
RMSE, would be inadequate to evaluate the performance of the model estimates in
a land data assimilation experiment, because of the underlying assumptions of un-
biased forcings, unbiased model errors, and unbiased observation errors. The ACC
metric captures the correspondence in phase between model estimates and ground
observations, and it emphasizes relative soil moisture variations at daily to weekly time
scales while disregarding any bias in the absolute values of the mean soil moisture or
its variability (Entekhabi et al. 2010, Liu et al. 2011).

- Exceedance and uncertainty ratios have been demonstrated to be viable metrics to
evaluate ensemble prediction performance in several studies (i.e., Hossain et al. 2004,
Hossain and Anagnostou 2005, Borga et al. 2006, Moradkhani et al. 2006). The com-
bination of these two statistics is very powerful as two contrasting issues are consid-
ered: if the uncertainty limits are too narrow (that is, ER is high), then the comparison
with the reference fields suggests that the model errors are underestimated; on the
other hand, if the limits are too wide (that is, UR is high), the model may not have an
adequate predictive capability (Hossain et al. 2004). However, the authors are willing
to add some more traditional ensemble verification in the revised manuscript (such as
the first few moments of the soil moisture ensemble pdfs).

- We’ll fix the references in the revised manuscript.

- We agree with the reviewer regarding the fact the parameters were perturbed fol-
lowing a systematic procedure (and not by adding random noise). The approach we
are using here deviates from the standard GLUE technique, from which we borrow,
though, the ‘equifinality’ concept and the scheme to split the total sample of simula-
tions into behavioral and non-behavioral parameter sets, based on a cutoff threshold.
As stated earlier, to avoid confusion, we will rename the framework to GLUE-based
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model parameter uncertainty approach, instead of defining it as the GLUE approach.

- We’ll fix the caption of Figure 1 in the revised manuscript.
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Fig. 1. Figure 3a Efficiency score and relative bias as a function of model parameter value
deviations (presented in %) for the matric potential at saturation.
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