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Response to Dr Romanowicz

Many thanks for the time and effort reviewing this article. Also thank you for the sup-
portive and useful comments. Below we hope to address the issues you have quite
correctly identified.

Improved description of how the mathematical interpretation is applied

In the proposed revised manuscript the mathematical detail of the transfer function
modelling, the conversion to state space format, and the data assimilation algorithm
based on the Kalman Filter have been moved into an appendix to allow a clearer
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reading flow. The appendix includes a better description of the way the various equa-
tions are implemented in the final computational scheme including strengths and weak-
nesses. A short section is included to read:

“For transfer functions with a numerator and denominator order higher than one and
two respectively, the mapping to an equivalent network of 1st order components is am-
biguous. For example the second order TFs identified in the Eden case study could be
mapped as a feedback structure; however, such a configuration would be considered
non-mechanistic unless there is strong evidence to the contrary.”

Re-arranged input non-linearity and state space description ordering

Within the proposed new appendix section the description of the input nonlinearity
function is now before the description of the state space formulation as suggested.

More detail about the optimization process

As pointed out the estimation of the input nonlinearity function is a two stage opti-
mization process whereby at each iteration of the adjustments to the input nonlinearity
parameter set, a new optimal TF is estimated using an embedded call to the RIV func-
tion. In this way the input nonlinearity parameters and the transfer function parameters
evolve together. The significance, and a brief description of this process, is included in
the proposed new appendix section.

There are several parameter groups that require optimization:

• Transfer function

• Adaptive gain function

• Data assimilation hyperparameters

• heteroskedastic variance function
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Our approach was fairly straightforward but rather longwinded to describe, we car-
ried out the following steps for each of the 6 model nodes: We first identified and
estimated the TF structure and parameter values for a purely linear-in-the-parameters
model using the RIVID and RIV algorithms in order to get a first-approximation at the
TF model. We then used a 1st order approximation of this model within a State Depen-
dent Parameter SDP algorithm (again part of the Captain Matlab toolbox) to identify
an approximate, non-parametric, input nonlinearity shape. We then used a Piecewise
Cubic Hermite Interpolating Polynomial (PCHIP) spline to parameterize this initial input
nonlinearity shape. The PCHIP spline used 10 knots spaced logarithmically along the
x-axis up to a 5m depth. Keeping the x-coordinate of the PCHIP knot locations fixed,
we then optimized the y-coordinates using Matlab’s LSQNONLIN implementation of
the Interior Trust Region optimization algorithm. As mentioned above, this step also in-
cluded an embedded RIV algorithm to ensure the residual series was always generated
from the most optimal TF model given the present iteration of the input non-linearity
function. The steps described above provide the input nonlinearity parameterization
together with the a and b parameters of the TF. We then took the pragmatic decision
that these parameters are at least close to optimal and no further optimization is per-
formed on them. An alternative approach (also tried) would have been to incorporate
these parameters into the data assimilation algorithm together with the Kalman Filter
hyperparameters (state noise variance ratios, and heteroskedastic variance function
parameters), and optimize all together in a large-scale optimization process. However,
in testing, we found this large-scale optimization either: (1) would not converge on a
solution, or (2) produced parameter estimates with a very large variance suggesting
the cost surface is a big challenge for the optimization algorithm. In contrast retaining
the TF and input nonlinearity parameters from the first stage and limiting the second
optimization to the second order heteroskedastic variance term and the diagonal terms
of the NVR matrix, resulted in much more consistent and robust optimization results
that were less sensitive to initial parameter estimates. Following a scaling by the pro-
portionality constant as shown in Equations 6 and 7, the resulting uncertainty range
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was tested and found to bracket a good approximation to the expected percentage of
observations. However, please see below for issues relating to the uncertainty range
for short lead times. We believe we have developed an optimization approach that bal-
ances heuristic decisions with state of the art algorithms to arrive at a workable, robust
and pragmatic implementation. However, and not limited to the example presented in
this paper, we feel applied optimization for complex multi-component non-linear models
is an active area of research and we would welcome appropriate developments in this
field.

I appreciate the multi-stage process described above is rather hard to communicate,
especially in moving from a purely mathematical to an implementation-based descrip-
tion. The contact author would be happy of course to exchange further communications
and forward the Matlab and R scripts used to produce the paper if at all helpful.

Some of the above description (in a more concise form) has been included in the new
appendix section of the proposed revised paper.

Short lead time uncertainty estimates

The optimisation of the Q matrix and heteroskedastic variance parameters is carried
out for a specific f-step ahead forecast (in the Eden case study this is the maximum
lead time available for each node). This means that the estimates for the uncertainty
range at shorter lead times will be conservative. However, both you and Reviewer 2
have drawn our attention to the rather larger uncertainty range shown in the figures.
After an investigation we believe we have found an error in the Matlab implementation
used to produce the figures for the paper, where-by the scaling factor was not applied to
the 2nd order term in the heteroskedastic variance function (this problem is not present
in the FEWS R coding). Secondly we have performed the optimization for the f-step
lead time shown in each figure to provide a more realistic visualization of the estimated
uncertainty range at that specific lead time. The new figures are attached.

Discussion of specific requirements of an online algorithm
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The reviewer correctly points out that the paper does not provide enough detail of
the online nature of the operation required by real-time flood forecasting applications.
This is touched on in the flow chart of Figure 1 but, in hindsight, we see that this
does not emphasize that the steps followed in the flow chart are repeated, in this case
hourly, as each new data point arrives. As you point out we had to overcome a number
of challenges including maintaining the model state in a situation where the thread
running the process could be terminated or powered down. To address this style of
operation, the program uses a text file to store and retrieve the necessary state data.
These files are read at the beginning of each cycle through the workflow (where one
cycle is performed for each model for each new data point). At the end of the cycle the
updated state data is stored overwriting the previous version.

We take on board the comments about the lack of clarity in this section and the pro-
posed new version provides a slightly more extended and skillful description together
with a summary of the key points described above.

Better description of the gauge sites used by the model

A description of the rain gauge sites forming the input to the outer nodes of the model
together with the river level gauge sites forming the inner and terminating nodes is
provided in Figure 4. However we will extend the caption to the figure to read:

“Fig. 4 The configuration of the nodes and gauge sites making up the Eden DBM
FEWS catchment model. The square boxes contain the names of the gauge sites
providing an input source and are labeled as either rain or level. The rounded boxes
represent the individual model nodes. The output from each node is labeled and cor-
responds to a level gauge site.”

In summary

Thank you once again for your useful comments and feedback. We hope we have
addressed these issues in this comment (and comments to Reviewer 2) and can go on
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to provide the revised manuscript.
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Fig. 1. New version of Figure 5. Caption same as original
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Fig. 2. New version of Figure 6. Caption same as original

C3962


