
Response to Reviewer #2 
 
Note: reviewer comments, author responses, and the revision of the original manuscript are shown in 
black, blue, and (bold) purple, respectively. Page and line numbers for both comments and responses 
refer to the original manuscript published in HESSD. 
 
 
1) Because the paper focuses on challenge and opportunity (also progress) for DA application in 

operational hydrologic forecast, the current way of introduction of DA theory (section 2) looks like 
somehow redundant. A more concise way of introduction would be appropriate. 

 
Indeed, the focus of this paper is on the progresses, challenges and opportunities for DA applications in 
operational hydrology. Section 2 is designed to discuss the challenges and opportunities from the 
theoretical perspective and to also provide a context for discussions in the other sections. If the 
reviewer is referring to the state-space model shown in Eqs (1) and (2) on page 3424 as the redundant 
information, we feel that including this general DA framework is necessary since all the discussions in 
Section 2 on the theoretical aspects in terms of progresses and challenges are based on this framework 
and the notation used in Eqs. (1) and (2). Consequently, we prefer to keep this part of the introduction 
in Section 2 to maintain a minimum level of self-containedness. 
 
2) Page 3421, the second paragraph, here the authors want to contrast the DA for hydrology application 

with that for meteorological and atmospheric application; however, the picture is vague: why DA 
application for meteorology could achieve more progress (as the authors claimed in the paper) ; is 
this difference mainly related to the building of community-supported, open-source modelling 
systems, or other physical or dynamical reasons (regarding the difference between land hydrologic 
and atmospheric systems) could play an important role? 

 
We agree with the reviewer on this and will add additional text after the second paragraph on Page 
3421 to clarify: 
 
It is important to note that in addition to community support and the use of new sources of data (e.g., 
satellite-based products), other factors may have also contributed to the seemingly greater advances 
of DA in operational meteorology than in operational hydrology. These include, among other reasons, 
the differences in the underlying physical system (i.e., atmospheric vs. land/hydrologic systems), 
types of data and procedures used by the forecasting systems, as well as other historical/societal 
reasons such as more funding and higher relevance of good forecasts (e.g., for aviation and military) 
for operational meteorology. For example, in contrast to developments in operational meteorology, 
developments (in both science and technology) in operational hydrologic forecasting have taken place 
more on a local, national and regional (i.e., in the case of trans-boundary rivers) rather than multi-
national or international scale. Also, hydrologic forecasting systems often employ workflows with 
numerous models that represent different processes (see Weerts et al., 2010 for a list with hydrologic 
models or modules used by various hydrologic operational centers), all linked together to provide a 
forecast for the up- and downstream (often high-risk) locations. This has rendered it less 
straightforward to apply consistent automated DA procedures across the hydrologic forecasting 
systems. 
 
 



3) Section 3.1, here the authors talked less about another group of precipitation uncertainty and its 
representation in operational DA for hydrology: the uncertainty from GCM or regional climate model 
that produce the precipitation forecast; because a lot of seasonal (and large-scale) hydrological 
forecast applications are based on using precipitation from these models, more discussion and 
references are needed for this category. 

 
A paragraph will be added to the end of Section 3.1 to briefly discuss handling uncertainty in 
precipitation forecasts from NWPs used in large-scale hydrologic modeling.  
 
In large-scale hydrologic modeling and DA applications, statistically reliable quantitative precipitation 
estimates (QPEs) may need to be generated based on outputs from numerical weather prediction 
(NWP) models, often aided with other available sources of precipitation information (e.g., stations, 
radars, and satellites). Statistical post processing (e.g., downscaling and bias correction) of NWP-based 
precipitation estimates is commonly practiced to close the scale gap between NWP outputs and 
hydrologic applications and to reduce the systematic bias in the NWP precipitation estimates, while at 
the same time reproducing the observed local-scale space-time variability in precipitation and other 
forcing variables (e.g., Clark et al., 2004a and 2004b; Piani et al., 2010; Rojas et al., 2011). Ehret et al. 
(2012) however caution the use of bias correction on precipitation and other outputs from global and 
regional circulation models for hydrologic applications and propose that improving the simulations 
from these models (e.g., via increased resolutions and ensemble predictions) is the most promising 
solution for reducing the uncertainty in precipitation estimates from these models. 
 
 
4) Section 3.3.4, it’s not clear that how to quantify the capability of the multi-model ensembles for 

representing the uncertainty of simulating processes; e.g., the options that the multi-model 
framework provides may not fully include all the possible processes level representations, or say, 
incomplete sampling of the structural space. 

 
We fully agree with the reviewer that a multi-model ensemble may not fully address the uncertainty 
associated the model structure and it is a challenge to quantify the uncertainty representation by a 
multi-model ensemble. This point will be made more explicitly in the revised paper by adding the 
following comment to the beginning of the second paragraph in Section 3.3.4: 
 
It is important to note that, although the multi-model ensemble approach is widely known to increase 
predictability, a model ensemble (e.g., developed with the options provided by the multi-model or 
multi-parameterization frameworks discussed above) may not represent a complete sampling of the 
model space. One typical challenge involved in such an approach is then concerned with 
understanding the dependence or independence among the models, as well as the relationship 
between the model spread and the total predictive uncertainty. Based on the notion of conditional 
bias, Abramowitz and Gupta (2008) introduced an innovative “model space” metric that allows 
measuring the distance between models in a theoretical model space, thus helping to quantify how 
much independent information each model is contributing to representing the predictive uncertainty. 
Another typical challenge in a multi-model ensemble approach is concerned with developing an 
effective strategy to optimally combine the individual models … 
 
 
5) Page 3441,second paragraph (Line13-29),here the authors talked about mapping coarse resolution 

remote sensing data with model estimates; there is an important issue that can affect the efficiency 



of DA methods to use remote sensing data: the intrinsic correlation among model estimates that are 
within a same grid of remote sensing data; say, if the model estimates show large heterogeneity, the 
benefit of knowing their spatial aggregation might be relatively small compared with the 
homogeneity counter-parts. Since this issue might provide both challenge and opportunity for DA 
application, the authors may want to give comment and discussion about it. 

 
If we understand the reviewer correctly, this refers to the fundamental fact that the observations carry 
no information on spatial patterns within the footprint, which can affect the efficiency of DA. We agree 
with this and made the point more explicitly in the text. The sentence on P3441, L21-23 will be modified 
as follows in the revised manuscript: 

While approaches can and have been developed to deal with such issues (e.g., Zaitchik et al., 2008), they 
tend to be observation specific and hence not generically available; also, they do not overcome the 
fundamental lack of information on spatial patterns at scales finer than the observation footprint. 
This can affect the efficiency of DA when assimilating coarse remote sensing data into relatively high 
resolution models, presenting both challenges and opportunities for realizing the full potential of DA 
in such applications. Conceptual “mapping” can also be a problem… 
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