
August 16, 2012 

 

 

To Executive Editors H.H.G. Savenije, J. Carrera, and M. Sivapalan 

To Editor Insa Neuweiler 

Hydrology and Earth System Sciences 

 
Re: Revised Manuscript "EXTENDED POWER-LAW SCALING OF HEAVY-TAILED 

RANDOM FIELDS OR PROCESSES" by Alberto Guadagnini, Monica Riva and Shlomo P. 

Neuman,  

 

Dear Editors: 

 

We appreciate the efforts you and the reviewers have invested in our manuscript. We are pleased 

to submit a revised version in response the reviewers’ insightful comments. Modifications to the 

original version appear in red font within the revised manuscript. 

 

In response to a suggestion by Reviewer 2 we have changed the title to “EXTENDED POWER-

LAW SCALING OF HEAVY-TAILED RANDOM AIR-PERMEABILITY FIELDS IN 

FRACTURED AND SEDIMENTARY ROCKS”. 

 

The following is an itemized list of reviewers’ comments (in italics) and our responses.  

 

Comments by REVIEWER #1 
 

1. The paper presents a scaling analysis via Extended Self-Similarity aimed at investigating the 

behavior of two sets of log permeability data collected in the field at two different support scales.  

The data prove to be consistent with sub-Gaussian random fields subordinated to tfBm 

(truncated fractional Brownian motion); the parameters of the truncated power variograms and 

subordinators are then derived for the second data set.  The paper is fully within the scope of 

HESS, and of interest to its readership.  The analysis relies on a general scaling theory of 

subordinated tfBm previously developed by the authors; this is properly acknowledged and 

described in the technical background introducing the different kinds of subordinators.  The 

background section is concise and clear. The data sets are respectively analyzed in Sections 3 

and 4; the first deals with 3-D data from Apache Leap Research Site with support scale of 1 m; 

the second with 2-D data from Escalante, Utah, with a support scale of 0.15 m. Both the 

practical implementation of the methodology and the results obtained constitute an important 

and novel contribution. The method adopted and its assumptions are clearly outlined; the 

conclusions are solid.  The title and abstract reflect adequately the contents of the paper.  The 

paper structure, subdivision into sections, and language are sound; the paper cannot be 

shortened significantly, nor requires extensive editing. The reference section is broad.  

 

We thank the reviewer for his/her positive assessment of our work. We have modified the title as 

noted earlier. 

 

2. On p. 7390 lines 10-15 the previous analysis on the Arizona data illustrated in Riva et al. 



(2012) is cited. In what respect does the analysis presented here differ from the earlier one?  

 

Riva et al. (2012) analyzed the probability distributions of 1-m scale (natural) log k 

measurements and their increments at the ALRS. Here we analyze structure functions and 

scaling of the same data using the ESS approach.  

 

3. Section 3 on Arizona data does not present results for all parameters of the tfBm (e.g.  upper 

and lower cutoffs) as does Section 4 for Utah data.  These could be of interest to the reader, in 

view of the relationship between domain scale and upper cutoff.  

 

These parameter estimates, reported in Riva et al. (2012), are λl = 0.48 m and λu = 9.98 m. We 

prefer not to repeat these estimates in the revised HESS manuscript. 

 

4. On p. 7393 lines 4-9 the authors comment on the vertical data at the Utah site, and present 

results only for horizontal transects D and H. Do the result of the scaling analysis on the 

omnidirectional data differ significantly from those presented? Does this give any hint on the 

applicability of the analysis to 3-D data as compared to 1-D ones?   

 

Please see our response to Comment 5 of Reviewer 2 below. 

 

5.  In the analysis of the horizontal data at the Utah site, are the two transects analyzed jointly, 

i.e. M=2 and N=133-136 in (12)? 

 

Yes, in the original manuscript M=2. In the revised manuscript M = 2 when analyzing data along 

transects D and H and M = 3 when analyzing data along transects D, H and X. N varies with lag.  

 

6. Please check for consistency or typos the following sentences: - p. 7389 line 10 replace 

“are” with “is”. 

 

Done. 

 

 

Comments by the REVIEWER #2 
 

1. The reviewed paper is aimed at the analysis of the scaling behavior of two log permeability 

data sets from pneumatic air injection tests, which were conducted (a) in six boreholes drilled in 

unsaturated fractured tuff at the University of Arizona Apache Leap Research Site (ALRS) near 

Superior, Arizona, and (b) along the two horizontal transects on the outcrop of lower shoreface 

bioturbated sandstone near Escalante, Utah. These two sites represent two different subsurface 

environments – unsaturated fractured tuff, and sediments that were impacted by depositional and 

biological processes.The authors clearly demonstrated that the data sets from both sites showed 

heavy-tailed frequency distributions, which are consistent with sub-Gaussian random fields 

subordinated to tfBm, as well as provided maximum likelihood estimates of parameters 

characterizing the corresponding Lévy stable subordinators and tfBm functions.  The paper fully 

corresponds to the scope of HESS, and would be of interest to its readers involved in the 

statistical analysis of field permeability tests. 



 

We thank the reviewer for his/her positive assessment of our work.  

 

2. The authors refer to “the heavy-tailed frequency distributions in three and two spatial 

dimensions,” which were obtained at the two sites.  It is the opinion of this reviewer that the 

notion of the three and two spatial dimensions is not clearly presented in the reviewed paper. It 

seems that the authors refer to different types of experiments at the field sites – 3D configuration 

of injection intervals in slanted and vertical boreholes at the ALRS, and the 2D transects at the 

Utah outcrop. It is apparent that the real air-flow dimensions resulting from pneumatic tests 

were not determined; it could be 2D, 3D, or fractional-dimension flow (e.g., Marechal et al., 

2004, Chakrabarty, 1994; Chang et al., 2011). 

 

As stated in the Abstract and the Introduction, “we analyze the scaling behaviors of two field-

scale log permeability data sets showing heavy-tailed frequency distributions in three and two 

spatial dimensions, respectively.” By this we mean that, in the first case, local log permeability 

measurements are distributed throughout a three-dimensional volume of rock and, in the second 

case, they are distributed along a two-dimensional planar outcrop. 

 

The dimensionality of local flow regimes developing during 1-m scale pneumatic packer tests in 

unsaturated fractured tuff at the ALRS was analyzed by Illman and Neuman (2000). The authors 

found that airflow in the vicinity of most such test intervals is three-dimensional, taking place 

within a locally interconnected set of fractures. Only in a few cases is the flow locally two-

dimensional, taking place within a single dominant fracture that intersects the test interval. 

 

We suspect, but are of course not sure, that the same may apply to mini-permeameter data along 

the Utah outcrop. 

 

Reference 
Illman WA and Neuman, SP (2000) Type-curve Interpretation of Multirate Single-Hole 

Pneumatic Injection Tests in Unsaturated Fractured Rock, 38, 6, 899-911, Ground Water.  

 

3. The analysis of the air permeability tests from the ALRS continues a series of publications 

stemming from a series single-hole and cross-hole pneumatic injection tests, which were 

conducted the ALRS. On Page 11, the authors indicate that their analysis is based on the log k 

values obtained by Guzman et al.  (1996) from steady-state interpretation of 184 pneumatic 

injection tests in 1-m long intervals along 6 boreholes. However, Neuman et al.  (2001) indicated 

that over 270 single-hole tests were conducted in 6 vertical and inclined boreholes at the site by 

Guzman et al. (1996). Did the authors of the reviewed paper use a subset of tests conducted 

Guzman et al. (1996)? . 

 

As explained by Illman and Neuman (2000), the 270 packer tests included injection intervals of 

lengths 0.5, 1, 2 and 3 m. To avoid mixing data measured on disparate scales we focus in this 

paper exclusively on 184 measurements within test intervals of length 1 m. 

 

4. Neuman et al. (2001) showed that at the ALRS the air permeability values represented 

directional values. They also showed that k derived from cross-hole tests were much higher than 



those from the smaller-scale single-hole tests.  In other papers, a pronounced k scale effect was 

determined from single- and cross-borehole pneumatic injection tests (for example, Illman and 

Neuman, 2001, 2003; Vesselinov et al., 2001; Neuman and Di Federico, 2003). Illman (2004) 

suggested that air permeability tests in single boreholes with limited fracture connectivity near 

the injection interval exhibited 2D flow, while cross-hole tests involved 3D air flow within a 

highly connective fracture network. 

 

All ALRS permeabilities analyzed in this paper were derived from single-hole pneumatic packer 

tests. These local permeabilities contain no directional information and are therefore treated as 

scalars.  

 

During cross-hole pressure tests at the ALRS (which we are not considering in the present HESS 

paper) pressure signals travelling along directional paths between injection and monitoring 

intervals allow one in principle to derive corresponding directional permeabilities on scales 

proportional to the length of each path. Such directional permeabilities, however, no longer 

represent local values of the kind we consider in this paper, and are therefore not relevant to our 

analysis.  

 

Cross-hole tests at the ALRS were analyzed in two ways: (a) tomographically, yielding three-

dimensional distributions of permeabilities on a grid of many cells measuring 1 cubic meter 

each, and (b) by treating the rock covered by this grid as if it was uniform. The first approach 

yielded permeabilities that are comparable in the mean to those obtained independently from 1-m 

scale single-hole packer tests. The second approach yielded much larger mean uniform 

equivalent permeabilities across the entire grid. Since our present analysis deals only with 1-m 

scale data, this scale effect does not affect it. 

 

The issue of local flow dimensionality was addressed in our response to Comment 2. 

 

5. For the Utah outcrop test, the authors analyzed permeability measurements, which were taken 

from the two lower transects, and found (Page 14) that the data collected along the vertical 

profiles were poorly suited for an analysis of vertical log permeability scaling. It would be useful 

for a reader to explain why the conclusions of the reviewed paper cannot be used for vertical 

direction at this site.  Note that in their paper, Castle et al.  (2004) indicated that fractal-based 

statistical analysis of the horizontal log k increments yielded nearly identical results for both the 

bioturbated facies and the cross-bedded facies, possibly suggesting an underlying statistical 

commonality in the formation of both facies. Also, Castle et al. (2010) analyzed the data from the 

lower portions of the vertical wells in association with the data from the horizontal transects, but 

the authors of the reviewed paper did not use these data. On Page 14 of the reviewed paper, the 

authors referred to the total number of measurements (515) collected along the vertical and 

horizontal cross-sections, while they analyzed only the data along two horizontal transects.   

 

Our revised manuscript now states the following: "Castle et al. (2004) found that whereas sample 

statistics of (natural) log permeability, log k, vary depending on which facies are considered, the 

frequency distributions of horizontal log k increments in the two facies are similar. Lu et al. 

(2002) used a fBm model to generate log k increments within a mix of distinct facies. They 

showed that, when data from different facies are jointly analyzed, the simulated log k increments 



exhibit an apparent non-Gaussian distribution. They concluded that observed Lévy-like behavior 

of sample probability distributions of permeability data can in some cases be an artifact 

stemming from mixing data associated with different facies. Accordingly, Moltz et al. (2007) 

focused their analysis on increments along horizontal transects D and H (Fig. 8) within the lower 

bioturbated facies. They found the horizontal log k increments to be well represented by a 

fractional Laplace noise model. We note however that this model has no provision for 

characterizing the log k values themselves. 

 

In this paper we analyze the frequency distributions and scaling of log k values and their 

horizontal increments (a) along transects D and H within the lower bioturbated facies and (b) 

jointly along transects D, H and X (Fig. 8) in the two facies. We also attempted to perform a 

similar analysis of log k values and their increments along the four vertical transects at the site 

but found the corresponding samples too small to yield meaningful statistics." 

 

To elaborate further on this latter point, Figure R1 shows the number of data pairs associated 

with each vertical lag considering (a) data from both facies and (b) data solely from the lower 

bioturbated facies. In both cases the number of pairs is too small to yield meaningful statistics of 

the kind we deal with in our manuscript, especially so when one considers a single facies. 
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Fig. R1. Number of Utah data pairs associated with each vertical lag. 

 

6. In the list of References (Page 19, lines 368-370), the authors give the title of the paper by 

Castle et al. (2004) “Sedimentology and facies-dependent permeability,. . .” It was the working 

title of the paper, and then it was published under the title “Sedimentology and fractal-based 

analysis of permeability data,. . .” in the Journal – see the citation below. 

 

We thank you the reviewer for pointing out this oversight. 

 

6. In their explanation of the ESS expression (3), the authors refer to the classical case of 

turbulent velocities with the reference to Chakraborty et al. (2010). It seems it would be 

important to explain for the readers what is common between turbulent velocities and air 

permeability tests in fractured rock and sediments. 

 



As noted in our introduction, ESS applies not only to log permeabilities and turbulent velocities 

but also to a host of other variables such as river morphology, sediment dynamics, financial time 

series and the like. In this respect, there does not appear to be any special relationship between 

the first two variables. 

 

7. The paper is entitled, “EXTENDED POWER-LAW SCALING OF HEAVY-TAILED RANDOM 

FIELDS OR PROCESSES.” It is the opinion of this review that this title is too general, and it 

should be designed to let readers anticipate the content of the paper,which is specifically focused 

on the analysis of the scaling behavior of air permeability in fractured rock and sediments. For 

example, “Extended power-law scaling of heavy-tailed random fields of air permeability in 

fractured porous media.” 

 

We changed the title to “EXTENDED POWER-LAW SCALING OF HEAVY-TAILED 

RANDOM AIR-PERMEABILITY FIELDS IN FRACTURED AND SEDIMENTARY 

ROCKS.” 

 

8. Comments to the figure captions: Fig.  1 – cite the reference to the plot.   

 

Done. 

 

9. Fig.  8.  The caption indicates that the figure is modified after Castle et al. (2004). I compared 

Fig. 8 with the original figure in the paper by Castle et al. and did not see any modification, 

except a different font of labels. What is modified? 

 

We have redrawn the original figure of Castle et al (2004) by adopting a different frame and 

symbols to represent measurement locations. 

 

10. Comment to Fig. 7: Would it be useful to find an analytical expression to describe the 

computed values given by squares? 

 

The values in Figure 7 could easily be represented by a polynomial or other analytical 

expression, but we do not see much purpose in doing so. 

 

Sincerely, 

 

Alberto Guadagnini 

D.I.I.A.R. − Politecnico di Milano 

Piazza L. Da Vinci, 32 

20133 Milano (Italy) 

Tel: +39 02 2399 6263 

Fax: +39 02 2399 6298 

email: alberto.guadagnini@polimi.it 
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ABSTRACT 21 

We analyze the scaling behaviors of two field-scale log permeability data sets showing heavy-22 

tailed frequency distributions in three and two spatial dimensions, respectively. One set consists of 1-m 23 

scale pneumatic packer test data from six vertical and inclined boreholes spanning a decameters scale 24 

block of unsaturated fractured tuffs near Superior, Arizona, the other of pneumatic minipermeameter 25 

data measured at a spacing of 15 cm along three horizontal transects on a 21 m long and 6 m high 26 

outcrop of the Upper Cretaceous Straight Cliffs Formation, including lower-shoreface bioturbated and 27 

cross-bedded sandstone near Escalante, Utah. Order q sample structure functions of each data set scale 28 

as a power ( )qξ  of separation scale or lag, s, over limited ranges of s. A procedure known as Extended 29 

Self-Similarity (ESS) extends this range to all lags and yields a nonlinear (concave) functional 30 

relationship between ( )qξ  and q. Whereas the literature tends to associate extended and nonlinear 31 

power-law scaling with multifractals or fractional Laplace motions, we have shown elsewhere that (a) 32 

ESS of data having a normal frequency distribution is theoretically consistent with (Gaussian) 33 

truncated (additive, self-affine, monofractal) fractional Brownian motion (tfBm), the latter being 34 

unique in predicting a breakdown in power-law scaling at small and large lags, and (b) nonlinear 35 

power-law scaling of data having either normal or heavy-tailed frequency distributions is consistent 36 

with samples from sub-Gaussian random fields or processes subordinated to tfBm or truncated 37 

fractional Gaussian noise (tfGn), stemming from lack of ergodicity which causes sample moments to 38 

scale differently than do their ensemble counterparts. Here we (i) demonstrate that the above two data 39 

sets are consistent with sub-Gaussian random fields subordinated to tfBm or tfGn and (ii) provide 40 

maximum likelihood estimates of parameters characterizing the corresponding Lévy stable 41 

subordinators and tfBm or tfGn functions. 42 

43 
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I. INTRODUCTION 44 

Many earth and environmental (as well as physical, ecological, biological and financial) 45 

variables exhibit power-law scaling of the following type. Let  46 

( )
( )

( )
( )

1

1
N s

qq

N n

n

S s Y s
N s =

= ∆∑  (1) 47 

be an order q sample structure function of a random function ( )Y x  defined on a continuum of points x 48 

in one- or multi-dimensional space (or time), ( ) ( ) ( )n n n
Y s Y s Y∆ = + ⋅ −x m x  being a sampled 49 

increment of ( )Y x  over a separation distance (lag) s in one or multiple directions, defined by one or 50 

more unit vectors m, between two points and ( )N s  the number of measured increments. Power-law 51 

scaling of ( )Y x  is described by 52 

( )
( )q

q

NS s s
ξ

∝  (2) 53 

where the power or scaling exponent, ξ(q), is independent of s. When the scaling exponent is linearly 54 

proportional to q, ( )q Hqξ = , ( )Y x  is interpreted to be a self-affine (additive, monofractal) random 55 

field (or process) with Hurst exponent H. When ξ(q) varies nonlinearly with q, ( )Y x  has traditionally 56 

been taken to represent multiplicative, multifractal random fields or processes (Neuman, 2010a; 57 

Guadagnini et al., 2012). Nonlinear power-law scaling is also exhibited by fractional Laplace motions 58 

(Meerschaert et al., 2004; Kozubowski et al., 2006) recently applied to sediment transport data by 59 

Ganti et al. (2009). 60 

Power-law scaling is typically assessed by employing the method of moments to analyze 61 

samples of measured variables. This entails inferring sample structure functions (1) for a set 1q , 2q , ..., 62 

nq  of q values at various lags. The structure function iq

N
S  is related to s by linear regression on a log-63 
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log scale, the power ξ(qi) (i = 1, 2, …, n) being set equal to the slope of the regression line. Linear or 64 

near-linear dependence of log iq

N
S  on log s is typically limited to intermediate ranges of separation 65 

scales, I II
s s s< < , outside of which power-law scaling breaks down. The lower and upper limits, I

s  66 

and II
s  respectively, which demarcate the range of power-law scaling are defined theoretically or, in 67 

most cases, empirically (Siena et al., 2012; Stumpf and Porter, 2012). Benzi et al. (1993a, 1993b) 68 

provided empirical evidence that a procedure they had termed Extended Self-Similarity (ESS) allows 69 

widening significantly the range of lags over which velocities in fully developed turbulence (where 
I

s  70 

is taken to be governed by the Kolmogorov's dissipation scale) scale in a manner consistent with (2). 71 

Writing (2) as ( ) ( )( )
nnS s C n s

ξ=  and ( ) ( )( )
mmS s C m s

ξ= , solving one of these equations for s and 72 

substituting into the other yields the ESS expression 73 

( ) ( )
( , )n mn m

S s S s
β

∝   (3) 74 

where ( , ) ( ) / ( )n m n mβ ξ ξ=  is a ratio of scaling powers. Although the literature does not explain how 75 

and why (3) should apply to lags I
s s<  and II

s s>  where power-law scaling (2) breaks down, it 76 

nevertheless includes numerous examples demonstrating this to be the case. In addition to the classic 77 

case of turbulent velocities (Chakraborty et al., 2010) these examples include geographical (e.g. Earth 78 

and Mars topographic profiles), hydraulic (e.g. river morphology and sediment dynamics), 79 

atmospheric, astrophysical, (e.g. solar quiescent prominence, low-energy cosmic rays, cosmic 80 

microwave background radiation, turbulent boundary layers of the Earth’s magnetosphere), biological 81 

(e.g. human heartbeat temporal dynamics), financial time series and ecological variables; see 82 

Guadagnini and Neuman (2011), Leonardis et al. (2012) and references therein. In virtually all these 83 

examples ESS yields improved estimates of ( )qξ  and shows it to vary in a nonlinear fashion with q, a 84 

finding commonly taken to imply that the variables are multifractal. Yet computational analyses by 85 
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Guadagnini and Neuman (2011) have shown that this need not be the case: they found signals 86 

constructed from sub-Gaussian processes subordinated to truncated (additive, self-affine, monofractal) 87 

fractional Brownian motion (tfBm) to display ESS scaling as well as typical symptoms of 88 

multifractality, such as nonlinear scaling and intermittency, even though the signals differ from 89 

multifractals in a fundamental way (Neuman, 2010a, 2010b, 2011; Guadagnini et al., 2012). 90 

Siena et al. (2012) have pointed out that since multifractals and fractional Laplace motions do 91 

not capture observed breakdowns in power-law scaling at small and large lags, they cannot explain how 92 

and why ESS does so. Instead, they have proven theoretically that ESS of data having a normal 93 

frequency distribution is theoretically consistent with tfBm. This allowed them to identify the 94 

functional form and estimate all parameters of the particular tfBm corresponding to log air permeability 95 

data collected by Tidwell and Wilson (1999) on the faces of a laboratory-scale block of Topopah 96 

Spring tuff. In this paper we employ ESS to analyze the scaling behaviors of two log permeability data 97 

sets showing heavy-tailed frequency distributions in three and two spatial dimensions, respectively. 98 

One set consists of 1-m scale pneumatic packer test data from six vertical and inclined boreholes 99 

spanning a decameters-scale block of unsaturated fractured tuffs near Superior, Arizona (Guzman et al., 100 

1996). Another set contains pneumatic minipermeameter data measured at a spacing of 15 cm along 101 

three horizontal transects on a 21 m long and 6 m high outcrop of the Upper Cretaceous Straight Cliffs 102 

Formation, including lower-shoreface bioturbated and cross-bedded sandstone near Escalante, Utah 103 

(Castle et al., 2004). Our analysis (a) demonstrates that the two data sets are statistically and 104 

theoretically consistent with sub-Gaussian random fields subordinated to tfBm or truncated fractional 105 

Gaussian noise (tfGn) and (b) provides maximum likelihood estimates of parameters characterizing the 106 

corresponding Lévy stable subordinators and tfBm or tfGn functions. 107 

THEORETICAL BACKGROUND 108 

 We start by recounting the theory that underlies our analysis of the data. 109 
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Sub-Gaussian processes subordinated to truncated fractional Brownian motion (tfBm) 110 

 Following Guadagnini et al. (2012) we limit (for simplicity) our theoretical exposé to a single 111 

space or time coordinate x, considering random functions ( )Y x  characterized by constant mean and 112 

sub-Gaussian fluctuations (Samorodnitsky and Taqqu, 1994; Adler et al., 2010) 113 

( ) ( )1/2; , ; ,
l u l u

Y x W G xλ λ λ λ′ ′=  (4) 114 

about the mean. Here 
1/2

W  is an / 2α −stable random variable, totally skewed to the right of zero with 115 

width parameter ( )
2/

4
cos

W

απασ = , unit skewness 1β =  and zero shift, 0µ = ; for a precise definition 116 

of these parameters see (18) below. The variable W is independent of ( ); ,
l u

G x λ λ′ , which in turn is a 117 

zero-mean Gaussian random field (or process) described by truncated power variogram (TPV) 118 

( ) ( ) ( )2 2 2; , ; ;i l u i u i ls s s= −γ λ λ γ λ γ λ  (5) 119 

where, for ,m l u= , 120 

( ) ( ) ( )2 2; /
i m m i m

s sγ λ σ λ ρ λ=   121 

( )2 2 / 2H

m mA Hσ λ λ=   122 

( ) ( ) ( ) ( )
2

1 / 1 exp / / 1 2 , /
H

m m m ms s s H s = − − + Γ −
 

ρ λ λ λ λ                                     0 0.5H< <  123 

( ) ( )( ) ( )( ) ( )( )2 2 2

2 / 1 exp / / 4 / / 4 1 , / / 4
H

m m m m
s s s H s

 
= − − + Γ −  

ρ λ π λ π λ π λ        0 1H< <  124 

A being a constant and ( ),Γ ⋅ ⋅  the incomplete gamma function (other functional forms of ρ  being 125 

theoretically possible). For 
uλ < ∞ , the increments ( ), ; ,

l u
Y x s λ λ′∆  are stationary with zero-mean 126 

symmetric Lévy stable distribution characterized by 1 2α< ≤  and scale or width function (semi-127 

structure function when 2α = ; Samorodnitsky and Taqqu, 1994) 128 

( ) ( )
2

2; , ; ,
l u i l u

s s
αασ λ λ γ λ λ =   . (6) 129 
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In the limits 0lλ →  and uλ → ∞  the TPV ( )2 ; ,
i l u

sγ λ λ  converges to a power variogram (PV) 130 

( )2 2H

i is Asγ =  where ( )1 1 2 / 2A A H H= Γ −  and ( ) ( )
2 /2

2 / 4 1 2 / 2 / 2
H

A A H Hπ= Γ − . 131 

Correspondingly, ( ); ,
l u

s
ασ λ λ  converges to a power law ( ) H

i i
s A s

α αγ =  where ( )1 1 /A A H Hα α= Γ −  132 

and ( ) ( )
/ 2

2
/ 4 1 / 2 /

H
A A H H

α
π α α= Γ − . The resultant nonstationary field ( );0,G x′ ∞  thus constitutes 133 

fractional Brownian motion (fBm), its stationary increments ( ), ;0,G x s′∆ ∞  forming fractional 134 

Gaussian noise (fGn); the nonstationary field ( );0,Y x′ ∞  constructed from increments 135 

( ) ( )1/2;0, , ;0,Y s W G x s′∆ ∞ = ∆ ∞  constitutes fractional Lévy motion (fLm; fBm when 2α = ), the 136 

increments forming sub-Gaussian fractional Lévy noise (fLn or fsn for fractional stable noise, e.g. 137 

Samorodnitsky and Taqqu, 1994; Samorodnitsky, 2006). 138 

It is possible to select a subordinator 1/2 0W ≥  having a heavy-tailed distribution other than 139 

Lévy such as, for example, a log-normal 1/2 V
W e=  with 0V =  and ( )

22 2V α= − . Samples 140 

generated through subordination of truncated monofractal fBm in the above manner exhibit apparent 141 

multifractal scaling (Guadagnini et al., 2012). 142 

Extended power-law scaling of sub-Gaussian processes subordinated to tfBm 143 

It is important to note that whereas power-law scaling (2) implies ESS scaling (3), the reverse is 144 

not necessarily true because (3) follows from the more general relationship 145 

( ) ( ) ( )qq
S s f s

ξ
∝   (7) 146 

where ( )f s  is a (possibly nonlinear) function of s (Kozubowski and Molz, 2011; Siena et al., 2012). 147 

Following Neuman et al. (2012) we first consider subordinators 1/2 0W ≥  that have finite 148 

moments /2q
W  of all orders q, such as the log-normal form mentioned earlier. Then, in a manner 149 



8 

 

analogous to Siena et al. (2012), the central q
th

-order moments of absolute values of zero-mean 150 

stationary increments ( ) ( )1/2, ; , , ; ,
l u l u

Y x s W G x s′ ′∆ = ∆λ λ λ λ  can be expressed as 151 

( ) ( )

( ) ( )

/2

/2 2

; , ; ,

2

2 ; , 1 !!

1

q qq q

l u l u

q
q

i l u

S Y s W G s

if q is odd
W s q

if q is even

′ ′= ∆ = ∆


 = γ − π 



λ λ λ λ

λ λ

 

1,2,3...q =  (8) 152 

Here !! represents double factorial, i.e., q!! = q (q-2) (q-4)…2 if q is even and q!! = q (q-2) (q-4)…3 if 153 

q is odd, and ( )2 ; ,
i l u

s λ λγ  is the (truncated power) variogram (TPV) of ( ); ,l u' xG λ λ . The ratio 154 

between structure functions of order (q+1) and q is then 155 

( )
( )

( )

( )
( )

2

1

2

!!
; ,

1 !!

2 !!
; ,

1 !!

i l u
q

q

i l u

q
s if q is odd

qS
g q

qS
s if q is even

q

+


π γ −

= 
 γ
 −π

λ λ

λ λ

 1,2,3...q =  (9) 156 

where ( )g q  depends on the choice of subordinator but not on s. In the log-normal case where 157 

1/2 VW e=  with 0V =  and ( )
22 2V α= −  one obtains ( )

2/2 2exp 2 / 2qW q = − α
 

 and 158 

( ) ( )
2( 1)/2 /2/ exp (1 2 ) 2 / 2q qg q W W q+  = = + − α

 
. It then follows from (8) and (9) that 159 

( )
( ) ( )

( ) ( )

1

1
1

1

1

1
1

1 !!

2 2 1 !! 1 !!

2 1 !!

1 !! 1 !!

q
q q

q

q
q q

q
S if q is odd

q q
S g q

q
S if q is even

q q

+

+

+


 π π      − −  

= 
  
      π − − 

 1,2,3...q =   (10) 160 

showing that log 
1q

S
+

 is linear in log 
q

S , in accord with the ESS expression (3), regardless of the 161 

choice of subordinator or the model employed for ( )
2

; ,
l u

G s′∆ λ λ . On log-log plot, this line is 162 

characterized by a slope which tends to unity as q → ∞, being equal to 2 at q = 1. Equation (10) is a 163 
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consequence of the equivalence between (8) and ESS expression (7) in which now 164 

( )2( ) 2 ; ,
l u

f s s λ λ = γ
 

. It shows that extended power-law scaling, or ESS, at all lags is an intrinsic 165 

property of sub-Gaussian processes subordinated to tfBm (or tfGn) with subordinators, such as the log 166 

normal, which have finite moments of all orders. 167 

We noted earlier that, in the limits 0lλ →  and 
uλ → ∞ , the TPV ( )2 ; ,

i l u
sγ λ λ  converges to a 168 

PV ( )2 2H

i is Asγ = . It follows that (8) can be rewritten in terms of a power-law 169 

( )/2

2

1 !! 2

1

q
q q qH

i

if q is odd
S W q A s

if q is even


 = − π 



 1,2,3...q =   (11) 170 

where it is clear that a log-log plot of S
q
 versus s is linear at all lags and associated with a constant 171 

slope qH. 172 

Following Neuman et al. (2012) we now consider subordinators 1/2 0W ≥  that have divergent 173 

ensemble moments /2q
W  of all orders 2q ≥ α , as does the previously discussed Lévy subordinator 174 

with stability index α . In practical applications, ( ); ,
q

l u
Y s′∆ λ λ  is typically estimated through a 175 

sample structure function 176 

( )
( )

( )
( )

, ,
1 1

1
; , , ; ,

N sM
qq

l u m n l uY N M
m n

S s y x s
N s M

∆
= =

= ∆∑∑λ λ λ λ  1,2,3...q =   (12) 177 

where ( ), ; ,m n l uy x s∆ λ λ  denotes a collection of M < ∞  sets of ( )N s < ∞  sampled increments each; for 178 

simplicity, we ignore possible variations of ( )N s  and nx  with m. Writing 179 

( ) ( )1/2, ; , , ; ,
m n l u m m n l u

y x s w g x s∆ = ∆λ λ λ λ  where ( ), ; ,
m n l u

g x s∆ λ λ  represents samples of ( ); ,
l u

G s′∆ λ λ  180 

allows rewriting (12) as 181 
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( )
( )

( )
( )

/2

, ,
1 1

1 1
; , , ; ,

N sM
qq q

l u m m n l uY N M
m n

S s w g x s
M N s

∆
= =

= ∆∑ ∑λ λ λ λ . 1,2,3...q =   (13) 182 

Since order 2q ≥ α  moments of 1/2

m
w  diverge while all moments of ( ), ; ,m n l ug x s∆ λ λ  converge, one can 183 

approximate (13) for a sufficiently large sample size ( )N s  by 184 

( ) ( )

( ) ( )

/2

, ,
1

/2 2

1

1
; , ; ,

2
1

2 ; , 1 !!

1

M
qq q

l u m l uY N M
m

M q
q

m i l u

m

S s w G s
M

if q is odd
w s q

M
if q is even

∆
=

=

 
′∆ 

 


   = −      



∑

∑

�λ λ λ λ

γ λ λ π

  1,2,3...q =   (14) 185 

which, for finite M, is always finite. One can then write

 

186 

( )

( )

( )

( )
( )

( )
( )

21 /2
1

, , 1

/2 2, ,

1

!!
; ,

; , 1 !!

2 !!; ,
; ,

1 !!

M
q

i l uq m
l uY N M m

Mq
ql uY N M
m i l u

m

q
s if q is oddw

S s q

qS s
w s if q is even

q

+
+

∆ =

∆

=


π γλ λ −


λ λ  γ

 −π

∑

∑
�

λ λ

λ λ

      1,2,3...q =   (15) 187 

or, in analogy to (10), 188 

( )

( )

( ) ( )
( )

( ) ( )
( )

1
1

1

1 /2
, ,

1 1

, , 1
/2 1

1

1
, ,

1 !!
; ,

2 2 1 !! 1 !!
; ,

2 1 !!
; ,

1 !! 1 !!

q
M q qq

l uY N M
m

q m
l uY N M M

q
q

m q q
m l uY N M

q
S s if q is oddw q q

S s

w q
S s if q is even

q q

+
+

∆

+ =
∆

+

= ∆


 π π  λ λ   − −  

λ λ 
  
  λ λ    π − − 

∑

∑
�

 

189 

 1,2,3...q =   (16) 190 

This indicates that ( )1

, ,
; ,q

l uY N M
S s+

∆
λ λ  is approximately linear in ( ), ,

; ,q

l uY N M
S s

∆
λ λ  on log-log scale, in 191 

accord with ESS expression (3), regardless of the functional form ( )
2

; ,
l u

G s′∆ λ λ  takes. The slope of 192 

this line is characterized by the same asymptotic behavior as that observed before. The approximate 193 

equivalence between (14) and the ESS expression (7), where ( )2( ) 2 ; ,
i l u

f s s λ λ = γ
 

, is the basis for 194 
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(16) and its asymptotic tendency. It follows that extended power-law scaling, or ESS, at all lags is an 195 

intrinsic property of samples from sub-Gaussian processes subordinated to tfBm (or tfGn) with 196 

subordinators, such as Lévy, which have divergent ensemble moments of orders 2q ≥ α . 197 

Note that in the limits 0lλ →  and 
uλ → ∞ , (14) becomes a power-law 198 

( )/2

1

2
1

1 !! 2

1

M q
q q qH

m i

m

if q is odd
S w q A s

M
if q is even

=


   − π     



∑�  1,2,3...q =   (17) 199 

rendering log S
q
 linear in log s with constant slope qH. 200 

ANALYSIS OF LOG AIR PERMEABILITIES FROM BOREHOLE TESTS IN 201 

UNSATURATED FRACTURED TUFF NEAR SUPERIOR, ARIZONA 202 

We analyze (natural) log air permeability (Y = log k, k being permeability) data from 203 

unsaturated fractured tuff at a former University of Arizona research site near Superior, Arizona. Our 204 

analysis focuses on log k values obtained by Guzman et al. (1996) from steady state interpretations of 205 

184 pneumatic injection tests in 1-m long intervals along 6 boreholes at the site (Fig. 1). Five of the 206 

boreholes (V2, W2a, X2, Y2, Z2) are 30 m long and one (Y3) has a length of 45 m; five (W2a, X2, Y2, 207 

Y3, Z2) are inclined at 45o and one (V2) is vertical. The boreholes cover a horizontal area of 25.83 × 208 

21.43 m
2
. 209 

Riva et al. (2012) hypothesized that the data derive from a Lévy stable distribution, estimated 210 

the parameters of this distribution by three different methods and examined the degree to which each 211 

distribution estimate fits the data. We focus here on parameter estimates obtained by them using a 212 

maximum likelihood (ML) approach applied to a log characteristic function 213 

( ) ( ) ( )
tan if 1

2
ln 1 sign , ,

2
ln if 1

i Xe i i
αφ α

πα
α

µφ σ φ β φ ω φ α ω φ α

φ α
π


− ≠

= − + =   
 =


 (18) 214 
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of an α-stable variable, X; φ  is a real-valued parameter; ( )sign φ  = 1, 0, −1 if φ  > 0, = 0, < 0, 215 

respectively; α ∈ (0, 2] is stability or Lévy index; β∈[-1, 1] is skewness parameter; σ  > 0 is scale or 216 

width parameter; and µ is shift or location parameter. The authors found ' log log= −Y k k  to fit (18) 217 

with parameter estimates ˆ = 2.0 0.00α ± , ˆ = 1.42 0.15σ ±  and ˆ = 0.00 0.29µ ± . Note that it is difficult 218 

to estimate β  reliably when ˆ 2α ≈  because, at 2α = , the distribution is insensitive to β . 219 

Figure 2a compares the frequency distribution of the data with their ML estimated probability 220 

density function and Fig. 2b depicts a corresponding Q-Q plot. The fits are ambiguous enough to 221 

suggest that their near-Gaussian appearance could in fact indicate a Lévy stable distribution with α just 222 

slightly smaller than 2. That this is likely the case follows from the tendency of α̂ , fitted to the 223 

distributions of log k increments, to increase from 1.46±0.21 at 1 m lag through 1.84±0.16 at lag 2 m 224 

and 1.91±0.12 at lag 3 m to 2 at lags equal to or exceeding 4 m. Increments corresponding to lags 225 

smaller than 4 m are thus clearly heavy tailed (and hence non-Gaussian) as evidenced further by Fig. 3, 226 

which compares frequency distributions and ML estimated probability density functions of 227 

' log log= −Y k k  data and log k increments at lags 1 m, 2 m and 5 m. Had the original log k data 228 

been genuinely Gaussian, the same would have to be true for their increments. 229 

Figure 4 depicts omnidirectional structure functions, 
q

N
S , of orders q = 1, 2, 3, 4, 5 computed for 230 

the same data according to (12). To compute them we ascribe each measurement to the midpoint of the 231 

corresponding 1-m scale borehole test interval. We then associate (as is common in geostatistical 232 

practice) data pairs separated by distances of 1.5 – 2.5 m with a lag of 1 m, those separated by distances 233 

of 2.5 – 3.5 m with a lag of 2 m, and so on up to the largest separation distances of 29.5 – 30.5 m, 234 

which we associate with a lag of 30 m. Figure 5 shows that the number of data pairs associated in this 235 

manner with each lag is largest at intermediate lags, causing log k increments to be comparatively 236 
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undersampled at small and large lags. Such undersampling may explain in part why the structure 237 

functions in Fig. 4 scale differently with separation scale at small, intermediate and large lags. Standard 238 

moment analysis would entail fitting straight lines to these functions at intermediate lags by regression 239 

and considering their slopes to represent power-law exponents ( )qξ  in (2). However, deciding what 240 

constitutes an appropriate range of intermediate lags for such analysis would, in the case of Fig. 4, be 241 

fraught with ambiguity. 242 

We avoid this ambiguity by plotting in Fig. 6 
q

N
S  versus 

1q

N
S

−
 for 2 ≤ q ≤ 5 on log-log scale for 243 

the entire range of available lags. Also shown in Fig. 6 are linear regression fits to each of these 244 

relationships, the corresponding regression equations and coefficients of determination, 2
R . As the 245 

latter exceed 0.99 in all cases, we conclude with a high degree of confidence that 
q

N
S  is a power 246 

( , 1)q qβ −  of 
1q

NS
−

 for 2 ≤ q ≤ 5 at all lags, in accord with ESS expression (3). This power, given by 247 

the slopes of the regression lines in Fig. 6, decreases from 1.66 at q = 2 through 1.29 at q = 3 and 1.17 248 

at q = 4 to 1.12 to q = 5, appearing to tend asymptotically toward 1 with increasing q. Considering 
q

NS  249 

to vary as a power ( )qξ  of s according to (2) at intermediate lags, as suggested by Fig. 4, allows 250 

expressing the power of 
q

NS  in (3) as ( , 1) ( ) / ( 1)q q q qβ ξ ξ− = − . Asymptotic tendency of ( , 1)q qβ −  251 

toward 1 then implies asymptotic tendency of ( )qξ  toward a straight line. This commonly observed 252 

tendency, which the multifractal literature attributes to divergence of higher-order moments, is 253 

according to our theory (Neuman, 2010a; Guadagnini and Neuman, 2011) unrelated to such 254 

divergence, arising instead from the presence of an upper cutoff scale, uλ . 255 

Figure 4 includes two vertical broken lines demarcating a midrange of lags within which 1log
N

S  256 

appears to be quite unambiguously linear in log s . Fitting a straight line to the corresponding data by 257 
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regression yields ( )1 0.56ξ =  with a high coefficient of determination, R2 = 0.97. This, together with 258 

values of ( , 1) ( ) / ( 1)q q q qβ ξ ξ− = −  corresponding to 2 ≤ q ≤ 5 in Fig. 6, allows us to compute ξ(q) 259 

for this entire range of q values, as depicted in Fig. 7. Figure 7 also includes for reference one straight 260 

line having slope ( )1 0.56ξ =  and another having slope H = 0.33, estimated for the same data by Riva 261 

et al. (2012). Their estimate follows from a treatment of the data as a sample from a sub-Gaussian 262 

random field subordinated to tfBm via a Lévy stable subordinator. It is evident that ( )qξ  in Fig. 7 is 263 

nonlinear concave in q in the range 2 ≤ q ≤ 5. Though such nonlinear scaling is typical of multifractals 264 

or fractional Laplace motions, we have demonstrated theoretically earlier that it is in fact consistent 265 

with a random field subordinated to tfBm via a heavy-tailed subordinator. 266 

 267 

ANALYSIS OF NITROGEN MINIPERMEAMETER DATA FROM SANDSTONE NEAR 268 

ESCALANTE, UTAH 269 

Castle et al. (2004) describe nitrogen minipermeameter measurements conducted on a flat, 270 

nearly vertical outcrop of Straight Cliffs Formation sandstones about 10 km northwest of Escalante, 271 

Utah. The outcrop, measuring approximately 21 m across and 6 m high, includes a lower bioturbated 272 

facies and an upper cross-bedded facies (Fig. 8). A total of 515 permeability measurements were taken 273 

in triplicate at a sample spacing of 15 cm along three horizontal transects (380 measurements) and four 274 

vertical profiles (135 measurements). Castle et al. (2004) found that whereas sample statistics of 275 

(natural) log permeability, log k, vary depending on which facies are considered, the frequency 276 

distributions of horizontal log k increments in the two facies are similar. Lu et al. (2002) used a fBm 277 

model to generate log k increments within a mix of distinct facies. They showed that, when data from 278 

different facies are analyzed jointly, the simulated log k increments exhibit an apparent non-Gaussian 279 

distribution. They concluded that observed Lévy-like behavior of sample probability distributions of 280 
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permeability data can in some cases be an artifact of mixing data from disparate facies. Accordingly, 281 

Moltz et al. (2007) focused their analysis on increments along horizontal transects D and H (Fig. 8) 282 

within the lower bioturbated facies. They found the horizontal log k increments to be well represented 283 

by a fractional Laplace noise model. We note however that this same model would not have allowed 284 

them to characterize statistically the log k data themselves. 285 

In this paper we analyze the frequency distributions and scaling of log k values and their 286 

horizontal increments (a) along transects D and H within the lower bioturbated facies and (b) jointly 287 

along transects D, H and X (Fig. 8) in the two facies. We also attempted to perform a similar analysis 288 

of log k values and their increments along the four vertical transects at the site but found the 289 

corresponding samples too small to yield meaningful statistics. 290 

Transect H contains 133 data points, transect D 136 points and transect X 111 points. In a 291 

manner consistent with Riva et al. (2012), we analyze the frequency distribution of ' log logY k k= −  292 

and use the computer code STABLE (Nolan 1997, 2001) to obtain reliable ML estimates of stable 293 

densities. Fig. 9a compares the frequency distribution of 'Y  data from transects D and H on semi-294 

logarithmic scale with a probability density function (pdf) fitted to it via ML. Treating the data as if 295 

they were Lévy stable yields ML parameter estimates α̂  = 1.99 ± 0.05, σ̂  = 0.28 ± 0.02, β  = 0 and µ̂  296 

= 0.00 ± 0.05. As ˆ 2α ≈ , the distribution appears to be Gaussian. Yet Kolmogorov – Smirnov and 297 

Shapiro – Wilk tests reject the Gaussianity hypothesis at a 0.1% significance level. The frequency 298 

distribution of 'Y  data from all three horizontal transects D, H and X in Fig. 9b is positively skewed 299 

with ML parameter estimates α̂  = 1.20 ± 0.12, β̂  = 1, σ̂  = 0.39 ± 0.04 and µ̂  = 0.726 ± 0.07. We 300 

conclude that the two facies contain distinctly different log permeability populations Y'. 301 

Figure 10 compares frequency distributions and ML estimated probability density functions of 302 

log k increments along transects D and H, and jointly along transects D, H and X, at horizontal lags of 303 
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0.15 m, 0.45 m, 1.5 m and 4.5 m. Whereas at small lags the two distributions are similar (Figs. 10a, 304 

10b), at larger lags the joint set from both facies exhibits heavier tails. Kolmogorov – Smirnov and 305 

Shapiro – Wilk tests generally reject the hypothesis that the increments, at any lag, are Gaussian at a 306 

0.1% significance level. A 2χ  test applied to horizontal increments along transects D and H at a lag of 307 

0.15 m by Castle et al. (2004) has shown them to be Gaussian only at a 51% confidence level. 308 

As shown in Fig. 11, ML estimates α̂  of the Lévy index of log permeability increments along 309 

transects D and H vary from 1.89 ± 0.13 at horizontal lag 0.15 m through 1.86 ± 0.14 at lag 0.3 m, 1.66 310 

± 0.18 at lag 0.45 m, 1.86 ± 0.14 at lag 0.6 m, 1.82 ± 0.16 at lag 0.75 m, 1.99 at lag 0.9 m to 2.00 at 311 

larger lags. Hence the distributions of the increments have heavier tails at small than at larger lags. ML 312 

estimates α̂  obtained from all three horizontal transects oscillate around 1.75 without any identifiable 313 

trend. ML estimates σ̂  of the scale parameter in Fig. 11 increase monotonically with lag toward a 314 

constant asymptote of 0.32 for data along transects D and H and 0.44 for data along transects D, H and 315 

X. Both phenomena are consistent with the observation of Lu et al (2002) that mixing data from the 316 

two facies may cause the tails of incremental frequency distributions to increase. 317 

Results based on data sampled along transects D and H in the bioturbated sandstone facies are 318 

consistent with a sub-Gaussian random field subordinated to tfBm via a Lévy stable subordinator. The 319 

observed increase in α̂  with lag is consistent with a version of such a field considered by Riva et al. 320 

(2012). Following their approach, (6) allows us to estimate the associated Hurst coefficient from the 321 

log-log slope of σ̂ (s) in Fig. 11 at lags small enough to avoid the asymptote. This slope yields an 322 

estimate H = 0.13. From (6) it follows that, asymptotically, 2 2ˆ ˆ2
G

σ σ=  where ( ); ,
l u

G s λ λ′  is our tfBm. 323 

This, coupled with our ML estimates of σ̂  for the log logk k−  data, yields 2 2ˆ 2 (0.28) 0.16
G

σ = × = . 324 

Having thus estimated H and 2

G
σ  we are now in a position to estimate the remaining parameters of the 325 
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TPV ( )2 ; ,
G l u

sγ λ λ  of ( ); ,
l u

G s λ λ′  defined in (5). Setting 1i =  in (5) we obtain the following ML 326 

estimates of the cutoff scales, λl ≈ 0.0 m and λu = 16.97 m (with 95% confidence limits 3.45 m and 327 

30.47 m; setting i = 2 yields a less satisfactory fit, suggesting that i = 1 is a better choice). Our estimate 328 

of λl is consistent with the small support scale of the minipermeameter. Our estimate of λu is slightly 329 

smaller than the lengths of the D and H transects (on the order of 20 m), as expected from theory 330 

(Guadagnini et al., 2012). Figure 12 depicts experimental scale parameters and their theoretical 331 

equivalents based on the above ML estimates of 2σ̂
G

, H, λl and λu. Dashed curves in the figure 332 

represent 95% confidence limits of corresponding λu estimates. 333 

Results based on data sampled jointly along transects D, H and X in the bioturbated and cross-334 

bedded sandstone facies are not fully consistent with our theory, which considers both Y' and its 335 

increments to have symmetric distributions. As the distributions of the corresponding increments are in 336 

fact symmetric, it is possible to treat these increments as random field subordinated to truncated 337 

fractional Gaussian noise (tfGn) forming truncated sub-Gaussian fractional Lévy noise (tfLn) as 338 

discussed by Riva et al. (2012). Such processes are characterized by Lévy indices α  that are 339 

independent of lag. Repeating the above procedure we obtain estimates H = 0.21, 2ˆ 0.34
G

σ ≈ , λl ≈ 0.0 m 340 

and λu = 29.04 m (with 95% confidence limits 16.23 m and 41.85 m). Though this estimate of H 341 

exceeds that obtained previously on the basis of data from transects D and H alone, both are small and 342 

indicative of strong anti-persistence typical of log permeabilities in fractured and porous rocks 343 

worldwide (Neuman, 1990). 344 

Figure 13 depicts sample structure functions of order q = 1, 2, 3, 4, 5, 6 for the data collected 345 

along transects D and H. Vertical lines demarcate the midrange of lags within which a regression line, 346 

the slope of which was taken to represent ( )1ξ , had been fitted to 1

N
S . The latter was found to be ξ(1) = 347 

0.12 with coefficient of determination R2 = 0.93. This value is only slightly smaller than that obtained 348 
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earlier from the log-log slope of σ̂ (s) in Fig. 11. Figure 14 shows log-log plots of 
q

NS  versus 
1q

NS
−

 for 2 349 

≤ q ≤ 6 and corresponding linear regression fits. The fits are characterized by coefficients of 350 

determination, 2
R , two of which exceed 0.98 and three 0.99. The slope of the fitted lines decreases 351 

from 1.86 at q = 2 through 1.40 at q = 3, 1.25 at q = 4, and 1.19 at q = 5 to 1.15 at q = 6, appearing to 352 

tend asymptotically toward 1 as expected. Adopting the above value of ξ(1) = 0.12 allows computing 353 

ξ(q) for 2 ≤ q ≤ 6 using the ESS relationship ( , 1) ( ) / ( 1)q q q qβ ξ ξ− = − . The results are plotted in Fig. 354 

15 together with straight lines having slopes ( )1 0.12ξ =  and H = 0.13. It is clear that ( )qξ  is nonlinear 355 

concave in q within the range 2 ≤ q ≤ 6. Though such nonlinear scaling is typical of multifractals or 356 

fractional Laplace motions, we have demonstrated theoretically earlier that it is in fact consistent with a 357 

random field subordinated to tfBm via a heavy-tailed subordinator. 358 

Qualitatively similar results (details not given) are obtained from structure functions of order q 359 

computed jointly for horizontal increments along transects D, H and X in the two facies. Following the 360 

above procedure we obtain ξ(1) = 0.26, consistent with an analysis of σ̂ (s) which yields H = 0.21. 361 

Applying ESS yields a nonlinear concave functional form for ( )qξ  in Fig. 16, which also depicts for 362 

reference straight lines having slopes ( )1 0.26ξ =  and H = 0.21. 363 

CONCLUSIONS  364 

Our analyses lead to the following major conclusions: 365 

1. Extended power-law scaling, commonly known as extended self similarity or ESS, is an 366 

intrinsic property of sub-Gaussian random fields or processes subordinated to truncated 367 

fractional Brownian motion (tfBm) or truncated fractional Gaussian noise (tfGn). Such fields 368 

and processes are theoretically consistent with standard power-law scaling at intermediate lags 369 

and with ESS at all lags, including small and large lags at which power-law scaling breaks 370 

down. 371 
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2. Multifractals and fractional Laplace motions are theoretically consistent with standard power-372 

law scaling at all lags. As such, they neither reproduce observed breakdown in power-law 373 

scaling at small and large lags nor explain how ESS extends power-law scaling to such lags. 374 

3. 1-m scale pneumatic packer test data from unsaturated fractured tuffs near Superior, Arizona, 375 

and nitrogen minipermeameter data from bioturbated and cross-bedded sandstones near 376 

Escalante, Utah, and their increments, show heavy-tailed frequency distributions that can be 377 

fitted with a high level of confidence to Lévy stable distributions. 378 

4. Order q sample structure functions of each data set scale as a power ( )qξ  of separation scale or 379 

lag, s, over limited ranges of s. ESS extends this range to all lags and yields a nonlinear concave 380 

functional relationship between ( )qξ  and q. 381 

5. The data sets we analyze are consistent with sub-Gaussian random fields subordinated to tfBm 382 

or to tfGn via Lévy stable subordinators. 383 

6. This consistency allows estimating all tfBm or tfGn parameters (most notably the Hurst 384 

exponent and upper/lower cutoff scales) solely on the basis of the corresponding truncated 385 

power variograms. 386 

7. The consistency further implies that nonlinear scaling of both data sets, manifested in a 387 

nonlinear concave relationship between their power-law exponents ( )qξ  and q, is not an 388 

indication of multifractality but an artifact of sampling as explained theoretically by Neuman 389 

(2010a) and Guadagnini et al. (2012). 390 
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Figures Captions 470 

Fig. 1. Spatial locations along each borehole of Arizona data. Modified after Guzman et al. (1996). 471 

Fig. 2. (a) Frequency distribution (symbols) and ML estimated probability density function (solid 472 

curve) of Arizona data; (b) Q-Q plot of empirical data versus theoretical estimate of stable 473 

distribution. 474 

Fig. 3. Frequency distributions (symbols) and ML estimated probability density functions (curves) of 475 

Arizona ' log log= −Y k k  data (red) and log k increments at lags s = 1 m (black), 2 m (green), 476 

and 5 m (blue). 477 

Fig. 4. Sample structure functions of orders q = 1, 2, 3, 4, 5 of Arizona data versus lag. Light vertical 478 

broken lines demarcate midrange of lags within which heavy inclined broken line, with slope 479 

taken to represent ( )1ξ , was fitted to 1

N
S . 480 

Fig. 5. Number of Arizona data pairs associated with each lag. 481 

Fig. 6. Log-log variations of 
q

NS  of Arizona data with 
1q

NS
−

 for 2 ≤ q ≤ 5. Solid lines represent indicated 482 

regression fits. 483 

Fig. 7. ξ(q) as a function of q (symbols) obtained via ESS based on ( )1 0.56ξ =  computed for Arizona 484 

data by method of moments. Solid line has slope ( )1 0.56ξ =  and dashed line slope H = 0.33 485 

estimated for these data based on our theory, using maximum likelihood, by Riva et al. (2012). 486 

Fig. 8. Locations of nitrogen minipermeameter measurements along sandstone outcrop near Escalante, 487 

Utah. Modified after Castle et al. (2004). 488 

Fig. 9. Frequency distribution (symbols) and ML estimated probability density function (curves) of 489 

Utah ' log log= −Y k k  data on horizontal (a) transects D and H (bioturbated sandstone) and 490 

(b) transects D, H and X (bioturbated sandstone and cross-bedded sandstone). 491 
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Fig. 10. Frequency distributions (symbols) and ML estimated probability density functions (curves) of 492 

Utah log k increments for transects D and H (bioturbated sandstone) and transects D, H and X 493 

(bioturbated sandstone and cross-bedded sandstone) at horizontal lags (a) 0.15 m, (b) 0.45 m, 494 

(c) 1.5 m, and (d) 4.5 m. 495 

Fig. 11. Variations of ML Lévy index estimates α̂  and scale parameter estimates σ̂  of Utah log 496 

permeability increments with horizontal lag for transects D and H (bioturbated sandstone) and 497 

transects D, H and X (bioturbated sandstone and cross-bedded sandstone). 498 

Fig. 12. Experimental scale parameter (diamonds) and their theoretical equivalents based on ML fit 499 

(solid curve) of TPV (6) based on data from transects D and H (bioturbated sandstone). Dashed 500 

curves represent 95% confidence limits of corresponding λu estimates. 501 

Fig. 13. Sample structure functions of order q = 1, 2, 3, 4, 5, 6 of Utah data from transects D and H 502 

(bioturbated sandstone). Light vertical broken lines demarcate midrange of lags within which 503 

heavy inclined broken line, with slope taken to represent ( )1ξ , was fitted to 1

N
S . 504 

Fig. 14. Log-log variations of 
q

NS  of Utah data from transects D and H (bioturbated sandstone) with 505 

1q

NS
−

 for 2 ≤ q ≤ 6. Solid lines represent indicated regression fits. Linear regression equations 506 

and related regression coefficients (R
2
) are also reported. 507 

Fig. 15. ξ(q) as a function of q (symbols) obtained via ESS based on ( )1 0.12ξ =  computed for Utah 508 

data from transects D and H (bioturbated sandstone) by method of moments. Solid line has 509 

slope ( )1 0.12ξ =  and broken line has slope H = 0.13. 510 

Fig. 16. ξ(q) as a function of q (symbols) obtained via ESS based on ( )1 0.26ξ =  computed for Utah 511 

data from transects D, H, and X (bioturbated sandstone and cross-bedded sandstone) by method 512 

of moments. Solid line has slope ( )1 0.26ξ =  and broken line has slope H = 0.21. 513 

514 
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 515 

Fig. 1. Spatial locations along each borehole of Arizona data. Modified after Guzman et al. (1996). 516 
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 518 

Fig. 2. (a) Frequency distribution (symbols) and ML estimated probability density function (solid 519 

curve) of Arizona data; (b) Q-Q plot of empirical data versus theoretical estimate of stable distribution. 520 
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 522 

Fig. 3. Frequency distributions (symbols) and ML estimated probability density functions (curves) of 523 

Arizona ' log log= −Y k k  data (red) and log k increments at lags s = 1 m (black), 2 m (green), and 5 524 

m (blue). 525 
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 527 

Fig. 4. Sample structure functions of orders q = 1, 2, 3, 4, 5 of Arizona data versus lag. Light vertical 528 

broken lines demarcate midrange of lags within which heavy inclined broken line, with slope taken to 529 

represent ( )1ξ , was fitted to 1

N
S . 530 
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 532 

Fig. 5. Number of Arizona data pairs associated with each lag. 533 
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 535 

Fig. 6. Log-log variations of 
q

NS  of Arizona data with 
1q

NS
−

 for 2 ≤ q ≤ 5. Solid lines represent indicated 536 

regression fits. 537 
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 539 

Fig. 7. ξ(q) as a function of q (symbols) obtained via ESS based on ( )1 0.56ξ =  computed for Arizona 540 

data by method of moments. Solid line has slope ( )1 0.56ξ =  and dashed line slope H = 0.33 estimated 541 

for these data based on our theory, using maximum likelihood, by Riva et al. (2012). 542 
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 544 

Fig. 8. Locations of nitrogen minipermeameter measurements along sandstone outcrop near Escalante, 545 

Utah. Modified after Castle et al. (2004). 546 
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 548 

Fig. 9. Frequency distribution (symbols) and ML estimated probability density function (curves) of 549 

Utah ' log log= −Y k k  data on horizontal (a) transects D and H (bioturbated sandstone) and (b) 550 

transects D, H and X (bioturbated sandstone and cross-bedded sandstone).  551 
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 553 

Fig. 10. Frequency distributions (symbols) and ML estimated probability density functions (curves) of 554 

Utah log k increments for transects D and H (bioturbated sandstone) and transects D, H and X 555 

(bioturbated sandstone and cross-bedded sandstone) at horizontal lags (a) 0.15 m, (b) 0.45 m, (c) 556 

1.5 m, and (d) 4.5 m. 557 
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 559 

Fig. 11. Variations of ML Lévy index estimates α̂  and scale parameter estimates σ̂  of Utah log 560 

permeability increments with horizontal lag for transects D and H (bioturbated sandstone) and transects 561 

D, H and X (bioturbated sandstone and cross-bedded sandstone). 562 
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 564 

Fig. 12. Experimental scale parameter (diamonds) and their theoretical equivalents based on ML fit 565 

(solid curve) of TPV (6) based on data from transects D and H (bioturbated sandstone). Dashed curves 566 

represent 95% confidence limits of corresponding λu estimates. 567 
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 569 

Fig. 13. Sample structure functions of order q = 1, 2, 3, 4, 5, 6 of Utah data from transects D 570 

and H (bioturbated sandstone). Light vertical broken lines demarcate midrange of lags within which 571 

heavy inclined broken line, with slope taken to represent ( )1ξ , was fitted to 1

N
S . 572 
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 574 

 575 

Fig. 14. Log-log variations of 
q

NS  of Utah data from transects D and H (bioturbated sandstone) 576 

with 
1q

NS
−

 for 2 ≤ q ≤ 6. Solid lines represent indicated regression fits. Linear regression equations and 577 

related regression coefficients (R
2
) are also reported. 578 
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 580 

Fig. 15. ξ(q) as a function of q (symbols) obtained via ESS based on ( )1 0.12ξ =  computed for Utah 581 

data from transects D and H (bioturbated sandstone) by method of moments. Solid line has slope 582 

( )1 0.12ξ =  and broken line has slope H = 0.13. 583 
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 585 

 586 

Fig. 16. ξ(q) as a function of q (symbols) obtained via ESS based on ( )1 0.26ξ =  computed for Utah 587 

data from transects D, H, and X (bioturbated sandstone and cross-bedded sandstone) by method of 588 

moments. Solid line has slope ( )1 0.26ξ =  and broken line has slope H = 0.21. 589 
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