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1. The paper of Ye et al. applies different models to simulate the regime curves of 197 

catchments located in CONUS. The model development process follows a top-down 

approach, where model complexity is introduced in response to model failures. The 

objective of the paper is to associate different model structures to different catchments, 

and investigate and interpret the regional patterns that may arise. 

 

We appreciate the reviewer’s comments and suggestions.  We have made our efforts to 

address these comments by cutting figures, shortening the manuscript, and adding the 

uncertainty estimation. We hope this will be adequate. 

 

2. I am favourable to this work and I think that the research topic is interesting. However, 

I have the feeling that the work could be much better structured and refined, and that the 

Authors should spend some more time to reorganize their material. The paper is lengthy, 

14 figures are too many for a scientific paper, and the presentation is at times chaotic. 

Reading this paper and browsing through the other 3 papers of the series, I recognize that 

the Authors have gone through an amazing body of work, which I fully respect. However, 

I had the feeling that the Authors did not want to discard anything of the work they had 

done, and that the process of synthesis and refinement has been overlooked. 

 

We thank the reviewer for their comments and have  removed figure 3 and figure 13a. 

Additionally, we have trimmed the manuscript (Sect. 2.2 and Sect. 3 have been merged) 

and hope the reviewer will find these changes satisfactory. 

 

3. Regarding the methodology of the paper, the Authors have used regime curves for 

model calibration. Regime curves synthesize some aspect of the catchment response, at 

the expense of a loss of information. The question is why using data aggregates that are 

less informative than the data themselves. Indeed the Authors themselves state in section 

4.6 that “a model focused on predicting the regime curves only cannot be expected to 

predict well the high and low flows”. In my opinion, the Authors should have used the 

data series as they are for model calibration, and then evaluated the models independently 

on regime curves and flow duration curves. 

 

We chose the regime curves in lieu of the raw data series for calibration based on our 

purpose for developing the model. The goal of this work is to explore runoff regime 

behavior, such as seasonal variation among 197 catchments across the continent. Instead 

of trying to predict the flow series by focusing on the detailed processes that define it, we 

are more interested in the holistic signatures of catchment response. We agree that 

calibrating on the data series would be the choice for most of the hydrological modeling 

exploring catchment characteristics as well as the flow response mechanisms in detail 

(which we term  the “bottom-up” approach in this paper); this analysis aspires to crack 

the problem from the other side, using the top-down approach. It is an exercise in 

comparative hydrology, aiming for general understanding of first order impacts of 

different processes on flow generation mechanisms along climatic or other gradients. The 



simulations of models with different combinations of processes were compared among all 

197 catchments to present regional patterns of dominant processes. Since our motivation 

is first order effects, regime curves can provide sufficient information for this study. To 

keep it simple and robust, we use the regime curves over the long records of data series 

for calibration. We hope the reviewer finds this explanation clear and solid. 

 

4. The mapping of model structure to catchments is unclear. How was this done? Which 

metrics have been used? I suspect the most complex model was fitting best all catchments. 

What made them prefer a lower complexity model for certain catchments? 

 

The mapping of model structure was carried out in two directions: forward and 

backward, based on the AIC value, following the statistical model selection steps. For the 

forward selection, we started from a base model, determined which single process helped 

reduce the AIC (or, improve the model performance) most by adding one process at a 

time.  The chosen process (which minimized the AIC) was regarded as the most dominant 

process. For the backward selection process, we started from the full model, removing 

processes one by one until the AIC value could not be reduced any further. The 

remaining processes were considered to represent the minimum complexity the model 

could endure.  

 

We agree with the reviewer that the most complex model provided the best fit over all 

catchments, but indeed, as we can see from the results, not all of the four processes are 

necessary for all catchments.  For example, the snow component was never invoked in 

the warm catchments and phenology displayed limited influence in southern catchments 

where temperature is always high. Therefore, we use the backward selection approach to 

eliminate unnecessary features from our simple model (minimize the complexity) .  These 

remaining features were then used for the process class mapping. 

 

5. Absence of validation. I think the Authors should split the data between calibration and 

validation, and see if results hold. 

 

We agree with the reviewer that separated datasets for calibration and validation to 

quantitatively evaluate the model performance is necessary for predictive models. 

However, our goal is not to deliver precise predictions of the streamflow time series, but 

rather, to gain a general understanding of first order impacts of different processes on 

flow generation mechanisms along the climatic or other gradient. For this reason, a 

qualitative validation, also called “scientific validation” (Biondi et al, 2012) suits the 

goal of our work better.  

 

One goal of scientific validation is the assessment of model hypotheses: the identification 

of integral processes for which the model should account. This was proved in the model 

development section: we initially applied the base model to the nine selected catchments, 

assessed the model performance, and then added four processes one by one based on 

catchment characteristics to improve the model’s predictions. This systematic model 

development procedure itself helps to validate the importance of each remaining process. 

The other goal of scientific validation is to “provide the proof of model adequacy to the 



representation of real world”. As a model could produce good results with a wide range 

of specific parameter values, it is important to consider the parameter set as a combined 

set (Freer et al., 1996). The Bayesian framework we used is able to find optimum 

parameter sets by giving greater weight to the better simulations.  These parameter sets 

and predictions then can be chosen as more likely than others.  In addition to the 

assessment of model hypotheses and parameters, a multi-criteria approach can also be 

used to verify model performance. In this work, we calibrate the parameters to optimize 

both the fast flow and slow flow simultaneously. This multi-objective check helps provide 

information regarding whether individual subsystems or processes are performed in the 

catchments. For example, some processes may not affect the total discharge, but could 

influence the quantities of observed fast flow (Fig. 7 and 8). This multi-objective 

calibration enables us to detect those improvements in model performance that 

negatively affect the global discharge but are beneficial for characterizing the fast flow 

component and detecting the main control processes.   

 

6. No presentation of uncertainty estimates. As the Authors have used Bayesian methods, 

they could present uncertainty estimates of model parameters and predictions. 

 

We agree with the reviewer that uncertainty analysis is necessary and helpful - we have 

conducted it as follows: given the best fit parameter set for each catchment, the minimum, 

mean, maximum and standard deviation values for each parameter present the 

distribution across catchments (these best fit sets). The upper and lower bounds are 

defined from the plot of likelihood and parameter values. For each catchment, along the 

MCMC sampling, there is a chain of likelihood values which are added up from the value 

of smallest parameter value, the upper and bottom bounds are then defined when the sum 

of the likelihood values just exceeds 5% and 95% of the total. The relative error is 

calculated as half of the range between the upper and lower bounds as a percentage of 

the parameter with the maximum likelihood value. Median relative error is the median 

level of the uncertainty among the catchments. 

 

 S b1 

(mm) 

tw   

(days) 
 Se  

(mm) 

tu(days) S b2 

(mm) 

tc 

(days) 

Minimum 0.001 0.013 0.000 0.037 1.548 4.184 0.073 

Mean 0.069 0.189 0.274 49.756 187.987 326.358 1.538 

Maximum 1.013 0.533 0.300 339.181 1301.191 879.561 9.659 

SD 0.14 0.09 0.14 69.44 221.68 183.98 1.51 

Median Rel. 

Error (%) 

33.57 33.31 23.74 46.73 24.05 11.54 29.19 

 

7. Introduction: I think the authors should state clearly that the focus of this paper is not 

the flow duration curve, but the regime curve. The first sentence of the introduction is 

misleading. The FDC and regime curves are 2 different signatures, and cannot be 

transformed one in another. 

 



We are sorry about the confusion the first sentence caused.  This paper, indeed, focuses 

on regime curves rather than flow duration curves. We have revised the beginning as 

follows in the subsequent paragraph. We hope these alterations clarify the confusion: 

 

This paper is the second paper of a 4-part series (the others being Cheng et al., 2012; 

Coopersmith et al., 2012; and Yaeger et al., 2012) that attempt to understand the 

physical controls on regional patterns of variations within hydrological signatures of 

runoff variability. Instead of exploring the Flow Duration Curve (FDC, a key frequency-

based signature of daily runoff variability) like the first paper, we will approach the issue 

from a different perspective, focusing on another compact signature of runoff variability, 

namely, the regime curve, which denotes the mean seasonal variation of within-year 

runoff variability. 

 

8. Methodology: the Authors distinguish between “satisfactory” and “non-satisfactory” 

models based on an acceptance threshold, which is MSE=0.53. Catchments with 

performance < .53 where left out of the analysis. Clearly this threshold is quite important 

in determining the outcomes of this study. How was it determined? Similarly, in 

motivating model improvements, the Authors refer to “non satisfactory” model 

performance. How was this assessed? Where similar threshold adopted? More generally, 

I think these types of “absolute” thresholds are quite dangerous, because model 

performance can be affected by many aspects other than model structure, such as data 

uncertainty. The Authors should think of a better way of motivating model improvement. 

Perhaps the performance relative to the most complex model could be a better alternative. 

 

We agree with the reviewer that it is sudden to give 0.53 without an explanation; we have 

now described how we arrived at it as follows. We hope the reviewer find it adequate.   

 

The initial screening of the model’s simulations suggested that even the complete model 

was insufficient in certain catchments, for example, those in the Midwest, where human 

impacts cannot be ignored. In some catchments, the flow regime curves were bimodal 

while the model can only capture one of the flow peaks. As a simple model, we  would not 

expect that it could accommodate the anthropogenic activities; therefore, we need to 

eliminate these catchments where the model performs poorly.  To ensure that the model 

captures the dynamics as well as the volume of the flow, we use MSE as our criterion. 

The decomposition of the MSE (or Nash-Sutcliffe efficiency) shows that the MSE consists 

of three components: mean, variance and correlation coefficient (Gupta et al., 2009). 

However, as the error is scaled by the standard deviation, it could cause trouble in 

comparisons among catchments. To avoid this, we standardized the flow before the MSE 

calculation. We selected the 90% of the catchments with lowest MSE in fast flow, slow 

flow and total flow separately and then obtained the intersection of these three sets to 

determine those catchments that had the lowest MSE in fast flow, slow flow and total flow 

simulation. These catchments were then considered as satisfactory catchments. The 0.53 

value was then turned out as all these satisfactory catchments had MSE less than 0.53.      

 

9. Model description: note that equations 5, 8 and, line 7 of page 7044 are dimensionally 

wrong (they equal storages to fluxes). 



 

We appreciate the reviewer’s correction, and have fixed it: 

Equation 5: all the fluxes and storages are normalized by the area, the units are L/T and 

L respectively; we think this one is correct. 

Equation 8: 
t
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Line 7 of page 7044: Q1f = (S1 – Sb1)/∆t 

 

10. Model description: please mention the numerical methods used to solve model 

equations (e.g. explicit Euler?) 

 

Yes, explicit Euler is the method we used. Thank you for helping us clarify this, we have 

now added it to the methodology section in the revised manuscript. 

 

11. Parameter calibration: I did not fully understand why the Bayesian approach was used 

if no uncertainty estimates of model parameters and model predictions are shown. The 

purpose of MCMC method is the evaluation of uncertainties, not calibration, for which 

much more efficient methods can be used. To my understanding, only optimal values of 

model parameters and predictions were used. 

 

We agree with the reviewer on the purpose of MCMC method. The Bayesian framework 

provides easy estimation of the parameter uncertainty, as well as the MCMC method.  As  

we explained in comment 6, we have now included the uncertainty estimation in the 

manuscript. The minimum, mean, maximum and standard deviation values present the 

distribution across catchments. The upper and lower bounds are defined from the plot of 

likelihood and parameter values. For each catchment, the likelihood values of each 

MCMC simulation are added up from the smallest parameter value, the upper and 

bottom bounds are defined when the sum of the likelihoods values just exceeds 5% and 95% 

of the total. The relative error is calculated as the half range between the upper and 

lower bounds as a percentage of the parameter with maximum likelihood value. Median 

relative error is the median level of the uncertainty among the sites. 

 

 S b1 

(mm) 

tw   

(days) 
 Se  

(mm) 

tu(days) S b2 

(mm) 

tc 

(days) 

Minimum 0.001 0.013 0.000 0.037 1.548 4.184 0.073 

Mean 0.069 0.189 0.274 49.756 187.987 326.358 1.538 

Maximum 1.013 0.533 0.300 339.181 1301.191 879.561 9.659 

SD 0.14 0.09 0.14 69.44 221.68 183.98 1.51 

Median Rel. 

Error (%) 

33.57 33.31 23.74 46.73 24.05 11.54 29.19 

 

12. Equation 14: the Authors should specify what N denotes. If N(z|mean,var) is the pdf 

of a Gaussian deviate z, the equation should be corrected accordingly. 

 

We appreciate the reviewer’s correction; N here represents pdf of a normal distribution. 

 



13. Page 7050. It is not necessary to explain how the MCMC works. 

 

We agree with the reviewer that MCMC is a widely used algorithm, not much description 

needed. For the sake of integrity, we still include a brief explanation about the MCMC 

we used, but have made our efforts to trim it, hope the reviewer found it satisfactory: 

 

We then employ the Metropolis algorithm (Metropolis et al., 1953; Kuczera and Parent, 

1998) adapted from Harman et al. (2011) to sample the parameter space towards 

constructing the posterior distribution. The algorithm, a Markov Chain Monte Carlo 

(MCMC) technique, is able to sample the parameters efficiently in the vicinity of the 

maximum likelihood. Starting with an optimum based on previous model development, we 

calculate the maximum likelihood value for each randomly selected set of parameters (i+1) 

near the current parameter (i). The new parameter set is accepted if it has a larger 

likelihood value (L(X|θi+1)>L(X|θi)), i.e., it helps predict the runoff regime better than the 

previous set, and then a new search starts from a new set (i+1). However, there is the 

possibility that this set can lead to another local optimum. To reach the globally optimal 

parameter set, we accept the inadequate parameter set if the ratio of the likelihood values 

L(X|θi+1)/L(X|θi) is larger than a uniform random value between zero and one. We run 

this algorithm to search the next available parameter set that improves upon the largest 

likelihood and save the 500 samples in a chain. This algorithm is run twice to 

generate1000 samples in total for each site. The parameter set with largest likelihood 

was selected as optimal for the full model. 

 

14. Progression of model development. Considering the results presented by the Authors, 

I found that the only model modification that made a significant difference was the 

inclusion of snowmelt. The inclusion of other processes did not provide a considerable 

improvement. Is this a correct interpretation, and if yes, how can these model 

improvements be justified? 

 

The reason that the snowmelt component improvement is more significant is that 1) 

snowmelt is only dominant influence in the runoff generation mechanism in the Idaho 

mountainous catchment; 2) snowmelt could transform both the timing and magnitude 

from rainfall to runoff. Therefore, we cannot get anywhere close to the observation if we 

do not include the snowmelt component.  

 

Nonetheless, this significant improvement is not common; it cannot be seen for other 

processes, i.e. in the Georgia catchment. The reason is 1) in this Georgia catchment, 

interception, subsurface-influenced fast flow and phenology are all important for runoff 

generation and as a result, none of them are the only dominant process like snowmelt in 

Idaho; 2) in reality, the influence of these three processes in timing and magnitude of 

runoff regime curves is not as significant as the snowmelt, they are mostly adjustments to 

the estimated runoff; 3) in Georgia, the runoff regime curves follow the trends of 

precipitation regime curves, and the regime curves simulated by the base model already 

captures the trend and the timing, but misses the magnitude of peak flow. Thus, we don’t 

expect to observe drastic improvements with the inclusion of these three components like 

the snowmelt component.  



 

Yet, this does not mean they are unimportant, as can be seen in Fig.7-9, where the 

inclusion of these features helps improve the prediction of fast flow or slow flow. 

Moreover, with the combination of all three processes, the simulated regime curves 

improved considerably and approach the observed regime curves in terms of both timing 

and magnitude (Fig. 9).  

 

15. Regional distribution of model parameters. Can the Authors show uncertainty 

estimates of model parameters? Where model parameters reasonably constrained through 

their calibration on regime curves? 

 

We have updated Tab. 1 to present the minimum and maximum values, standard 

deviations (SD) and the relative errors (median rel. error (%)) of the parameters. The 

upper and lower bounds are defined from the plot of likelihood and parameter values. 

For each catchment, the likelihood values of each MCMC simulation are added up from 

the smallest parameter value, the upper and bottom bounds are defined when the sum of 

the likelihoods values just exceeds 5% and 95% of the total. The relative error is defined 

as the half range between the upper and lower bounds as a percentage of the parameter 

with maximum likelihood value. Median relative error is the median level among the sites. 

 

 

 

 

  S b1 

(mm) 

tw   

(days) 
 Se  

(mm) 

tu(days) S b2 

(mm) 

tc 

(days) 

East Mean 0.065 0.218 0.306 36.846 120.260 281.858 1.469 

SD 0.158 0.078 0.128 49.540 64.644 163.704 1.268 

Median Rel. 

Error (%) 

31.47 30.35 13.87 42.65 21.10 9.49 24.26 

Center Mean 0.068 0.140 0.221 78.007 323.567 350.640 1.763 

SD 0.098 0.084 0.147 101.615 282.408 160.895 2.049 

Median Rel. 

Error (%) 

11.32 17.50 20.93 32.46 16.78 9.34 14.39 

West Mean 0.062 0.159 0.225 56.099 189.287 394.281 1.447 

SD 0.094 0.100 0.132 81.326 351.256 262.644 1.826 

Median Rel. 

Error (%) 

29.19 23.86 20.34 51.94 29.30 7.71 27.28 

 

 

16. Figures 1 and 2. It strikes that the pattern of PET is always so smooth. How was this 

calculated? 

 

The PET is given from MOPEX website; it was calculated based on NOAA Pan 

Evaporation Atlas (NOAA, 1982). They calculated the PET by using Penman (1948)’s 



method, the solar radiation required in the calculation was estimated from percent 

sunshine (Hamon et al, 1954). 

 

17. Most figures could be improved. Figure 3 and 4: maybe use some more specific 

software for making these figures, represent reservoirs as reservoirs, and have different 

colour codes for model parameters, states and fluxes? 

 

Thank you for the suggestion about these two figures. As Fig. 4 contains all the 

information in Fig.3, to shorten the manuscript, we cut Fig. 3 and re-sketched Fig. 4, 

hoping the reviewer finds this one appropriate: 

 

Reservoirs are represented in solid green boxes; green is used for states, blue for fluxes 

and brown for model parameters. Red boxes show the four added processes and dashed 

lines denote the fluxes from these added processes. 

 
 

18. Figures 7 and 8: model improvements are not apparent. Maybe use different metrics, 

and also show model improvements in other catchments. A different way of summarizing 

results is probably necessary. 

 

Although the improvement in the total discharge is not apparent, the improvement in fast 

flow is obvious. As mentioned in the manuscript, we performed a multi-objective 

calibration procedure. We not only aimed to predict the total flow, but also to predict the 



separation between fast flow and slow flow. It could be possible that a given process 

influences  the fast flow or slow flow generation mechanism, but due to the small 

contribution of fast flow to the total flow, this influence could be overwhelmed when we 

view the total flow. Since our stated goal is not to predict the flow perfectly, but to detect 

the dominant processes, we should consider all the processes that could impact either the 

fast flow or the slow flow.  

 

19. Figures 11 and 12: the attribution of model structures to different catchments is not 

clear to me. It seems a bit speculative if not properly justified. 

 

The attribution of model structures to different catchments was based on the AIC value, 

following the statistical model selection steps in two directions: forward selection and 

backward selection.  

 

For the forward selection, we started from a base model, compared the AIC value for the 

base model with the AIC values for the base model plus one of the four processes, and 

recorded which process helped reduce the AIC (or, improve model performance) most. 

That process was then regarded as the most dominant process.  This is shown in Fig. 11. 

For the backward selection process, we started from the full model, removed processes 

one by one until the AIC value could not be further reduced. The remaining processes 

were considered as the minimum acceptable complexity for the model.  

 

The reason we did this is that not all of the four processes are necessary for all the 

catchments, certain process may be dominant in some catchments but may never occur in 

others..  For example, the snowmelt process was apparently dominant in those 

mountainous catchments, but was never invoked in the warm catchments; and phenology, 

which is indispensable in the northeastern cold catchments,  could have limit influence in 

southern catchments where temperature is always high. The backward selection 

approach was therefore used to eliminate unnecessary features from our simple model 

(minimize the complexity) to reveal and concentrate on the most necessary processes in 

those catchments. 
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