

1 **Quantifying the performance of automated GIS-based**
2 **geomorphological approaches for riparian zones delineation**
3 **using Digital Elevation Models**

4

5 **D. Fernández^{1,2}, J. Barquín¹, M. Álvarez-Cabria¹, and F. J. Peñas¹**

6

7¹: Environmental Hydraulics Institute "IH Cantabria", Universidad de Cantabria,
8 PCTCAN. C/ Isabel Torres 15, 39011 Santander, Spain

9

10² Present affiliation: Institute for Environmental Sciences, University Koblenz-
11 Landau. Fortstrasse 7, 76829 Landau in der Pfalz, Germany

12

13 Correspondence to: D. Fernández (diegofgrm@gmail.com)

14

15

1**Abstract**

2

3Riparian zone delineation is a central issue for managing rivers and adjacent areas,
4however, criteria used to delineate them are still under debate. The area inundated
5by a 50-yr flood has been indicated as an optimal hydrological descriptor for
6riparian areas. This detailed hydrological information is usually only available for
7populated areas at risk of flooding. In this work we created several floodplain
8surfaces by means of two different GIS-based geomorphological approaches using
9Digital Elevation Models in an attempt to find hydrologically-meaningful potential
10riparian zones for entire river networks. Objective quantification of the performance
11of the two geomorphologic models is provided by analysing coinciding and
12exceeding areas with respect to the 50-yr flood surface in different river
13geomorphological types.

14

15

11 Introduction

2

3Riparian areas are involved in different geomorphological, hydrological and
4ecological processes (Tabacchi et al., 1998; Naiman et al., 2005) and provide many
5services to society, such as reducing flood risk or improving the availability and
6quality of water (Staats and Holtzman, 2002; Hruby, 2009). Despite this, riparian
7zones are commonly under high pressure due to human activities and land-use
8transformation (for a review see Poff et al., 2011). The maintenance of riparian
9functions and values is of key importance and requires planning at catchment scale
10and to locate the optimal zones to conserve or restore riparian buffer strips.
11Additionally, the definition of riparian zone extent is an unavoidable issue when
12managing river corridors. There exist several different approaches to delineate
13riparian areas (e.g. McGlynn and Seiber, 2003; Dodov and Foufoula-Georgiou,
142006; Nardi et al., 2006), but the developing of a standard methodology for a
15geomorphologic tool for preliminary floodplain mapping is still an open research
16topic.

17

18The delineation of riparian zones is highly dependant on what is understood as
19"riparian". Existing definitions are quite heterogeneous with respect to the zones
20encompassed by this term. While most authors use definitions matching with river
21banks and floodplains, others also include river channels (Naiman et al., 1993;
22USDA FS, 1994) or extend these zones to the slopes adjacent to floodplains (Ilhardt
23et al., 2000; Verry et al., 2004). By focusing on land adjacent to watercourses,
24there is agreement about the following riparian zone characteristics: (i) they are
25transitional zones between aquatic and terrestrial ecosystems (Gregory et al.,
261991; NRC, 2002), (ii) their soil and vegetation characteristics are strongly
27influenced by free or unbound water in the soil that comes from elevated water
28tables and flooding by high waters (USDA NRCS, 1991; Naiman et al., 1993; USDA
29FS, 1994), (iii) they present gradients of environmental factors, ecological
30processes and biota (Gregory et al., 1991; NRC, 2002). Hence, the spatial and
31temporal distribution of vegetation in riparian areas is heavily influenced by flood
32regime (Gregory et al., 1991; Merrit et al., 2009; Naura et al., 2011) and responds
33to the array of hydrogeomorphic patches appearing along the fluvial network (Van
34Coller et al., 2000; Poole, 2002; Thorp et al., 2006). High flows (characterised by
35magnitude, duration and frequency) control the creation and destruction of
36landforms across the fluvial landscape, and limit the spread of non-riparian species
37(Merrit et al., 2009).

38

1As an ecotone, riparian zone limits are fuzzy and defining discrete boundaries can
2be a difficult task. In addition, the extent of the riparian zone is not constant within
3the longitudinal dimension of rivers, as reflected in several studies on floodplain
4extent and associated parameters as a function of the contributing area (Bhowmik,
51984; Dodov and Foufoula-Georgiou, 2004). Despite of this, establishing fixed
6distances from water edge has been a common approach in riparian delineation for
7regulatory purposes (e.g. best management practices, Australian Rivers and
8Foreshores Improvement Act, Canadian Streamside Protection Regulation), with
9buffer widths ranging habitually from 10 to less than 50 m. In this regard, about 40
10m is an averaged minimum buffer width necessary to maintain relevant riparian
11functions (Sutula et al., 2006, Clerici et al., 2011, 2013). However, fixed buffer
12approaches often result in oversized riparian areas in headwaters and confined
13valleys and undersized in lowlands and unconfined valleys (Holmes and Goebel,
142011). Some authors have dealt with this issue by establishing a buffer distance
15dependant on river order (e.g., Yang et al., 2007), although this approach is still
16not sensitive to local geomorphology as a river of a given order can show large
17valley morphology variability.

18

19Recent approaches are setting aside fixed buffers and moving forward to more-
20objective criteria. Some of these criteria are based on physical attributes, such as
21soil characteristics (Palik et al., 2004) or hydrology (Hupp and Osterkamp, 1996;
22Osterkamp and Hupp, 2010). Others are based on biota, such as vegetation
23(Amundsen, 2003; Mac Nally et al., 2008) or amphibians (Perkins and Hunter,
242006). Most of these criteria demand information that is not usually available over
25large areas, or not with enough spatial resolution to delineate riparian areas.
26Geographical Information Systems (GIS) could be used to overcome this problem.
27Hence, several GIS-based methods have been published in the last decade
28regarding floodplain/riparian zone delineation. Most of them rely on a Digital
29Elevation Model (DEM) and water level data. A common approach consist in using
30water level data observed at gauging stations or simulated in a hydraulic model at
31several locations and extended them over the floodplain by interpolating water
32levels at each DEM cell (Noman et al., 2001). Other GIS-based methods are based
33on algorithms which calculate inundation depth (Dodov and Foufoula-Georgiou,
342006; Nardi et al., 2006) or riparian width (MCGlynn and Seibert, 2003) for each
35stream cell. These algorithms are obtained by performing regression between
36catchment area (obtained by terrain analysis from a DEM) and water level or
37riparian width data at several locations. All these methods delineate linear
38boundaries; instead, Clerici et al. (2011, 2013) have developed a GIS-based

1 riparian zonation model which uses membership scores indicating the probability of
2 belonging to the riparian zone based on natural vegetation presence and water
3 influence. To sum up, a wide variety of DEM-based methods are available for
4 preliminary floodplain/riparian zone extraction. The quantification of their
5 performance is usually provided as a regression coefficient among catchment area
6 and inundation depth or riparian width. However, this is not enough to provide
7 complete clarification of the adjustment among modelled and real
8 floodplain/riparian zone (e.g. which of the two floodplain surfaces cover a larger
9 area? Where along the river network are located the better and worst
10 adjustments?)

11

12 The present study aims to: (i) delineate hydrologically-meaningful potential riparian
13 zones for entire river networks using GIS-based geomorphologic approaches relying
14 on DEMs and (ii) provide an objective quantification of the performance of the
15 proposed geomorphologic models. To that end we created several geomorphologic
16 floodplain surfaces using two different geomorphologic approaches and we
17 evaluated their adjustment with respect to a hydrologic floodplain surface
18 representing the real riparian zone. As the relationship between local
19 geomorphology and flood-prone area has been suggested to be river-type
20 dependant (Rosgen, 1996) we performed the analyses distinguishing between river
21 geomorphological types. We also compared the performance of two different
22 methods to evaluate adjustment between the surfaces derived from
23 geomorphological and hydrological criteria.

24

25

26 **2 Study area**

27

28 This study was developed in river catchments from the Cantabrian region, Northern
29 Spain (Fig. 1). Cantabrian rivers have their source in the Cantabrian Cordillera, a
30 mountain range which runs parallel to the Atlantic Ocean coast and reaches up to
31 2600m a.s.l. In the northern part of the region, rivers drain into the Atlantic Ocean.
32 These rivers are short, with high slopes and high erosive power. The largest basins
33 slightly exceed 1000 km² and 20 m³s⁻¹ of mean daily flow, with highly variable valley
34 widths that rarely exceed 1.5 km in most of the middle and upper courses. This
35 area has a humid oceanic temperate climate (Rivas-Martínez et al., 2004) with an
36 average annual temperature of 14°C and an average annual precipitation of 1200
37 mm. The southern part of Cantabria is dominated by a continental climate with an
38 average annual temperature of 10°C and an average annual precipitation of 700

1mm. In this part of the region, rivers belong to extensive and complex river
2systems which flow into the Mediterranean and the Atlantic, and they present more
3gentle relief and wider maximum valley widths than northern basins. In this area,
4rivers are generally long and with a gentle slope, draining into the Atlantic Ocean
5(Duero river basin) and into the Mediterranean Sea (Ebro river basin). The riparian
6vegetation is dominated by oceanic alder groves (*Alnus glutinosa*) in the Atlantic
7draining catchments from almost sea level up to 700m and by submediterranean
8alder groves (*Alnus glutinosa*) in the southern draining catchments (Lara et al.,
92004). Willow groves formed by *Salix atrocinerea* (Northern Cantabrian cordillera)
10and *Salix cantabrica* (Southern Cantabrian cordillera) replace alder groves when
11they deteriorate, soils are not deep enough or there are large flow fluctuations.
12Higher in altitude, ashes (*Fraxinus excelsior*) or hazelnuts (*Corylus avellana*) (R1-
13C8) might dominate riparian forest, while in steep valleys beech, oak and mixed
14Atlantic forest predominate. Finally, when riparian forests are impaired by human
15activities, the riparian vegetation is usually dominated by *Rubus sp.*, *Rosa sp.*,
16*Crataegus monogyna*, *Prunus spinosa* or even pasture formations. For a more
17detailed description of the study area see (Barquín et al., 2012).

18

193 Methods

20

21The methods used in the present work (Fig.2) were organized as follows. First we
22described how we obtained the hydrological (section 3.1) and geomorphological
23(section 3.2) floodplain surfaces. Then we introduced the framework used for
24evaluating the adjustment (section 3.3) and the two different adjustment methods
25(section 3.4). Finally, we explained how we accounted for the influence of DEM
26spatial resolution (section 3.5).

27

283.1 Hydrological floodplain surface

29

30The 50-yr flood has been indicated as an appropriate hydrological descriptor for
31riparian zones as it usually coincides with the first terrace or other upward sloping
32surface (Ilhardt et al., 2000). Moving outward this topographic boundary
33necessarily increases water table depth and the probability of finding vegetation
34species related to riparian ecosystems may rapidly decrease. Therefore, 50-yr flood
35was selected in the present study as the surface representing potential riparian
36zone.

37

1The area flooded by the 50-yr flood was available from a previous flood risk
2assessment study in the study area (IH Cantabria, 2008). In this study hydrological
3modelling with HEC MHS (US Army Corps of Engineers, 2000) was used to derive
4flow data. A high resolution DEM (5-m spatial resolution, 1-m vertical accuracy),
5long series of precipitation data (more than 30 years) and information about land-
6use and soil type (1:50 000 scale) were used as model inputs. For each river basin,
7flow was calculated at several points that were representative of homogeneous sub-
8basins. On the other hand, river hydraulics modelling was performed using HEC-
9RAS (US Army Corps of Engineers, 2005) and HEC-Geo RAS module, which allows
10use of a DEM to derive required cross-section data. This model required as input
11several parameters influencing flow behaviour: Manning's number (in this study the
12authors used 0.04 for the channel and 0.06 for floodplains, although variations
13were introduced where more detailed information was available), coefficients of
14expansion (0.3) and contraction (0.1) and boundary conditions (the water level at
15the river mouth cross-section was that of the highest equinoctial tide).

16

173.2 *Geomorphological floodplain surfaces*

18

19We used two different GIS-based geomorphologic approaches to generate
20geomorphological floodplain surfaces. We referred to the first one as bankfull depth
21(BFD) approach. BFD is the vertical distance from the deepest part of a channel to
22the bankfull elevation (Fig. 3), being the bankfull discharge the flow that fills a
23stream channel to the elevation of the active floodplain (Wolman and Leopold,
241957). Hence, BFD approach consists in generating a surface which intersects
25valley walls at a given number of BFD above the channel. We referred to the
26second method as the path distance (PD) approach. PD is the least accumulative
27cost distance to the river channel when accounting for slope and elevation change,
28indicating the relative costs of moving from the stream cells up into the stream
29valley. The PD approach uses a raster showing the PD value for each cell to
30generate a surface covering all the locations along a river network which are
31encompassed by a certain path distance to the river channel. Both BFD and PD
32approaches require a DEM and a stream line as inputs to generate the floodplain
33surfaces. Additionally, BFD approach also requires BFD values in each segment of
34the river network. Before describing BFD and PD approaches, we described how we
35obtained the river network and BFD values.

36

373.2.1 River network and BFD values

38

1The river network was derived using the analysis toolkit "NetMap"
2(<http://www.netmaptools.org>; Benda et al., 2007, 2009) following the procedure
3described by Benda et al. (2011). Hence, the network was delineated using flow
4directions inferred from a high-resolution DEM (5-m spatial resolution, 1-m vertical
5accuracy), using the algorithms described by Clarke et al. (2008). In flat areas,
6DEM usually contain cells that are completely surrounded by other cells at the
7same or higher elevation. These cells act as sinks to overland flow when deriving a
8river network using flow direction (Martz and Garbrecht, 1998). To solve this
9problem, we enforced drainage in low relief areas (slope less than 30%) by
10lowering two meters the elevation of stream cells in the DEM using GIS data on
11channel real locations. Then the channel network was divided into channel
12segments (500–1000 m) and split at confluences, as they are supposed to produce
13changes in channel and floodplain morphologies (Benda et al., 2004). This resulted
14in river reach longitudes ranging from 3 to 850 m (Fig. 4a).

15

16Bankfull depth (BFD) was estimated for each river segment using a regional
17regression of drainage area (A) and mean annual precipitation (P) to field measured
18depths over a range of channel sizes encompassing 195 river sites in the region of
19Cantabria (selected in areas with little to no engineered works). The results of this
20analysis yielded the following equation (Eq. 1):

21

$$22 BFD = 0.63A^{0.1731}P^{0.1516} \quad (1)$$

23

24This model has been used in other recent applications (Benda et al. 2011) and it
25was the only one available at the time of pursuing this study for the Cantabrian
26region. However, it should be noted that BFD estimates might present deviations
27from observed values ($p < 0,001$; $R^2=0,12$), as BFD is highly sensible to local
28channel morphology (REF) and the present model only includes catchment area and
29mean annual precipitation.

30

313.2.2 BFD approach

32

33The area bordering a stream that will be covered by water at a flood stage of twice
34the maximum BFD is called the floodprone area and corresponds on average to that
35which gets flooded by the 50-yr flood (Rosgen, 1996). However, floodprone height
36ranges from 1.3 times the BFD in rivers of Rosgen's type E (low-gradient
37meandering rivers) to 2.7 times the BFD in rivers of type A (highly-entrenched
38streams), and generally includes the active floodplain and the low terrace (Rosgen,

11996). Based on Rosgen's empirical data, valley width at a height of approximately
22 times the BFD must coincide with the surface flooded by 50-yr flood. However,
3this relationship may be different when modelling in a GIS environment. Hence, we
4derived several geomorphologic floodplain surfaces using different bankfull depth
5heights ranging from 0.25 to 3 using steps of 0.25 (Fig. 4b).

6

7To that end we used NetMap tools to transform the DEM (we used a 10-m DEM
8instead of the 5-m DEM due to computational limitations) into a raster where each
9cell was associated with the closest river segment (in Euclidean distance)
10presenting the fewest and smallest intervening high points. Cell values showed
11then the elevation difference (in terms of BFD) among the cell and its associated
12channel. Using this raster, it was possible to assess valley width at an elevation
13equivalent to a given number of BFDs for each river segment, and therefore
14generate geomorphological floodplain surfaces (polygon shapefile format) using the
15range of BFDs cited above. Hereafter we will refer to these surfaces as BFD-
16being X the factor multiplying bankfull depth (e.g. BFD-1.25).

17

183.2.3 PD approach

19

20A PD raster was derived using the PD tool in ArcGis software (ESRI, 2011). PD tool
21required the following inputs: the river network (polyline shapefile) to identify
22stream cells, a DEM (a 10-m DEM, in order to be comparable with the surfaces
23generated by the BFD approach) as a surface raster and a slope raster as a cost
24layer. Then we used the reclassify tool to derive several surfaces (polygon
25shapefiles) corresponding with path distance threshold values ranging from 50 to
26350 m using steps of 50 m (Fig. 4c). This range was determined by querying the
27values of several cells in the PD raster located at the edge of the 50-yr flood in
28different valley morphologies. Hereafter we will refer to the generated surfaces as
29PD- Y , being Y the threshold value used to generate that surface (e.g. PD-250).

30

313.3 *Framework for evaluating the adjustment*

32

33Previous to analyse the adjustment between geomorphologic floodplain surfaces
34and the hydrologic floodplain surface, we developed a framework for this analysis.
35First, we create a geomorphological typology for the river network in order to take
36into account valley morphology when evaluating the adjustment, as it is valley
37dependant (Rosgen, 1996; see section 3.2.2). Second, we discarded those river

1segments where 50-yr flood was not available or presenting significant flood
2restrictions.

3

43.3.1 River types

5

6The geomorphological attributes used to define river types were: channel and
7riverbank slope (considering as riverbank zone a buffer of 200m from the river
8channel), valley floor width and riverbank geological hardness. These four
9attributes are related with the flood height at a given location. Thus, channel slope
10is important to distinguish among high-energy straight rivers and low-energy
11meandering rivers. Both riverbank slope and valley floor width characterise cross-
12section topography for each river reach. And last, riverbank geological hardness
13differentiates those locations where river flows across alluvial easily-erodible
14material from those flowing across hard difficult-erodible geological substrate.
15Valley floor width is difficult to define for some valley morphologies, especially in V-
16shaped valleys. Generally, the edge of the valley floor is located in the first terrace
17or other major sloping surface, which usually corresponds with the 50-yr flood
18(Illhardt et al., 2000). At the same time and as cited above, 50-yr flood corresponds
19on average to a flood stage of twice the maximum BFD (Rosgen, 1996). Hence, we
20used valley width at a height of two times the BFD as an approximation of the real
21valley width.

22

23Channel slope and riverbank slope were calculated at the endpoint of each segment
24from the DEM. Valley floor width was obtained from BFD-2 surface, derived as
25described in section 3.2.2. Riverbank geological hardness was derived from the
26Spanish lithostratigraphic map (source: Geological and Mining Institute of Spain;
27spatial scale: 1:200 000). To that end we reclassified original geological classes into
28broader ones and then we assigned them a numerical value based on geological
29hardness (see Snelder et al., 2008 for details). This map was then converted into a
30raster layer. Finally we obtained riverbank hardness for each river reach using
31NetMap tools.

32

33The four geomorphological attributes were finally used to classify the river network
34in geomorphological types by using PAM (partition around medoids) clustering in R
35software (R Development Core Team, 2008), previous data standardization. PAM
36clustering was performed using different pre-established numbers of clusters (3, 4
37and 5). Then, we analysed the characteristics of each cluster (geomorphological
38type) with respect to the four geomorphological attributes using boxplots.

1

23.3.2 River network pruning

3

4The 50-yr flood was not available for headwaters (Strahler order 1 and 2). From the
5427 km where this information was available, we discarded those river segments
6presenting significant flood restrictions. We considered as significant restrictions all
7bank reinforcements or embankments longer than 100 m. We also excluded river
8reaches located downstream dams. The remaining river network comprised 321 km
9of rivers.

10

113.4 *Adjustment methods*

12

13First, each geomorphological surface was divided based on river types using ArcGis
14software (ESRI, 2011), and the total area in each type was calculated. Then we
15evaluated the adjustment of each surface with respect to the 50-yr flood using two
16different methods:

17

18(i) Minimum exceeding score (Eq. 2). This method combines the two possible
19exceeding surfaces: geomorphological surface exceeding area (GSEA) and 50-yr
20flood exceeding area (T50EA; Fig. 5). GSEA is the area of the geomorphological
21surface exceeding the 50-yr flood, while the T50EA is the area of the 50-yr flood
22not covered by the geomorphological surface. This latter parameter results from
23subtracting the coinciding area (CA; Fig. 5) from the 50-yr flood. The optimal
24geomorphological surface is that achieving the lowest minimum exceeding score.

25

$$26 \text{Minimum exceeding score} = T50EA + GSEA \quad (2)$$

27

28(ii) Total area (Eq. 3). This method does not look at coinciding or exceeding areas,
29but only considers the deviance between the value of the area occupied by the
30geomorphological surface and the value of the area covered by the 50-yr flood.
31Total area optimum value is 100, and values above or below are considered as
32deviations. This condition may not reflect an "optimum adjustment", but as all
33geomorphological surfaces and the 50-yr flood are supposed to be sensitive to
34geomorphology, we considered exploring this possibility.

35

$$36 \text{Total area} = \frac{\text{geomorphological surface total area}}{\text{area covered by the 50 - yr flood}} \times 100 \quad (3)$$

37

383.5 *Influence of DEM spatial resolution*

1

2As the DEM is the main input in our geomorphological approaches we wanted to
3test the influence of DEM spatial resolution in the performance of the present
4methodology. To that end, we have derived again all the geomorphologic floodplain
5surfaces under the BFD and PD approaches using a 30-m DEM, and compared their
6adjustment with the 50-yr flood as described in section 3.4.

7

84 Results

9

10Cluster analysis showed that increasing the number of clusters (from 3 to 5) didn't
11produce an increase in classification strength (not shown). Hence, we chose three
12groups (clusters) to gain in simplicity and because the resulting groups highly
13reflect valley morphologies in our study area (see Fig. 1). The first of these groups
14included 1782 cases and corresponded with open valleys, as it presented the widest
15valleys (average >200 m), the lowest geological hardness and the lowest channel
16and stream bank slopes (average of 6 degrees and 13%, respectively; Fig. 6). The
17second one encompassed 1953 cases and corresponded with shallow-vee valleys
18presenting intermediate characteristics between the other two groups. Finally, the
19third group included 1908 cases and corresponded with deep-vee valleys and
20gorges, as it showed narrower valley widths (average <50 m), high geological
21hardness and the steepest channel and stream bank slopes (average of 22 degrees
22and 50%, respectively).

23

24All geomorphological floodplain surfaces (despite of DEM spatial resolution) were
25sensitive to valley morphology, being narrower in constrained valleys due to closer
26and steeper slopes. By incrementing the factor multiplying BFD or the PD threshold
27value, geomorphological surfaces became wider and filled those gaps that lower
28threshold values can not fill (corresponding with low hills located in the valley
29bottom). The PD approach produced wider surfaces than BFD in unconstrained
30valleys, while the opposite trend was found in constrained valleys.

31

32When using the 10-m DEM the adjustment between geomorphological and
33hydrological floodplain surfaces, in terms of coinciding and exceeding areas,
34showed the same general trend for all river types and the two geomorphological
35approaches (Fig. 7). As it was expected, increasing the geomorphological surface
36(by increasing the factor multiplying BFD or increasing the PD threshold value)
37increased CA, and therefore decreased T50EA. However, increasing the
38geomorphological surface also increased GSEA. Besides, the rate of increase of

1GSEA was greater than that of CA, except in deep-vee valleys, where they
2presented almost the same rate. Intersection between T50EA and GSEA graphically
3indicates the optimal geomorphological surface. This intersection occurred at larger
4geomorphological surfaces when moving from open valleys to more entrenched
5ones, although there were no differences between open and shallow vee valleys.
6Despite the homogeneity in the above cited trends, the BFDAC reaches higher CA
7values than path distance. Consequently, PD reached higher T50EA values than
8BFD approach. However, both approaches showed similar values for GSEA. All these
9general trends cited above also occurred in open and shallow-vee valleys when
10using a 30-m DEM (Fig. 8). Coinciding and exceeding areas were also similar
11(except for PD approach when using low PD values), although the intersection of
12T50EA and GSEA occurred at lower threshold values (except for BFD approach in
13open valleys). Regarding deep-vee valleys, 30-m DEM produced almost the similar
14surface for all the range of thresholds used in both approaches (so CA, GSEA and
15T50EA follow a nearly horizontal line in Fig. 8). Besides, for PD approach GSEA was
16always higher than CA.

17

18Total area method for evaluating the adjustment between the hydrological and
19geomorphological floodplain surfaces pointed out the same optimum threshold as
20the graphical intersection of GSEA and T50EA for both BFD and PD approaches (Fig.
219; only 10-m DEM adjustment is presented, as similar patterns are found for open
22and shallow vee valleys when working with a 30-m DEM). When using minimum
23exceeding score, only BFD complied with this statement. The total area method
24showed a positive linear relationship between the value defining the
25geomorphological surface and its total area. The slope of this relationship became
26steeper when moving from deep vee to open valleys. The BFD value that best
27matched the 50-yr flood was BFD-0.5 in open and shallow vee valleys an 1.25 in
28deep vee valleys. For PD approach, optimal adjustment occurred at PD-200 in open
29and shallow vee valleys and PD-350 in deep vee valleys. The adjustment of optimal
30geomorphological surfaces with respect to the 50-yr flood is shown in Fig. 10.

31

325 **Discussion and conclusion**

33

34In this work we showed how automated GIS-based geomorphologic approaches can
35be used to obtain a 50-yr-flood-matching riparian zone. Both methods did not
36produce a complete adjustment among hydrological and geomorphological
37floodplain surfaces, however, the geomorphological derived surfaces present the
38following advantages: (i) sensitivity to topography, (ii) few inputs required and (iii)

1 possibility of covering large areas. Hence, they constitute a remarkable
2 improvement with respect to fixed buffer approaches and provide useful
3 information for management in areas lacking hydrological data. They are, however,
4 still not suitable for purposes requiring highly accurate data, such as flood damage
5 prevention. Our methodology were strengthened by taking into account the
6 influence of the following parameters: geomorphological approach, valley type,
7 adjustment method and DEM spatial resolution. All of these parameters are
8 discussed below.

9

10 Regarding geomorphological approach performance, both BFD and PD showed
11 sensitivity to floodplain morphology and seemed valid to delineate riparian areas.
12 BFD approach performance is better as the resulting geomorphological floodplain
13 surfaces correspond with higher CA (10–19% depending on valley type) and lower
14 GSEA (12–24 %) and T50EA (10–19 %) than those for PD when using a 10-m DEM.
15 (larger differences among performance correspond with deep vee valleys). These
16 differences among both approaches are reduced by two thirds when using a 30-m
17 DEM, although BFD approach performed better than PD also at this resolution. On
18 the other hand, PD approach does not require BFD values for each river reach in
19 the network and it can be rapidly calculated in GIS. Moreover, the quality of the
20 BFD regional model is important when there are not hydrological surfaces that
21 could be used to match with the BFD estimated surfaces. In our model, BFD values
22 were oversized, so we obtained optimal adjustment with the hydrological floodplain
23 at lower values than those obtained by Rosgen (1996). To sum up, the choice of
24 the proper geomorphological method depends on the resources and accuracy
25 required. Besides, both BFD and PD approaches present the advantage of being
26 suitable to account for the gradients present in riparian zones by assigning
27 "membership to riparian zones" scores to each band defined by a different
28 threshold value (the lesser is the threshold value, the higher must be the
29 membership score as the river influence is also higher).

30

31 Despite of differing in characteristics as streamside slope or valley width, there is
32 no need of distinguishing between open and shallow vee valleys (as defined in this
33 study) when using our geomorphologic approaches to delineate riparian areas, as
34 the same optimal geomorphological floodplain surface is obtained for both valley
35 types. However, deep vee valley and gorges (constrained river reaches) require
36 higher BFD values than unconstrained rivers to match with the 50-yr flood, as
37 described also by Rosgen (1996). Hence, at least this two categories (constrained-
38 unconstrained) should be taken into account. Beside, the less is the degree of

1constraint, the worst is the adjustment in terms of GSEA. Similar results were
2obtained by Sutula et al. (2006). This may be due to the fact that unconstrained
3valleys present more complex fluvial landscapes than constrained ones. We have
4also considered that tributary confluences may also partly explain the
5disarrangement between geomorphological surfaces and the 50-yr flood, as they
6have not been considered in defining river types. In general terms they result in
7lower channel gradients and wider channel and floodplains (Benda et al., 2004; Fig.
811a). However, topographic constrains such as steep riverbank slopes or hardly-
9erodible riverbank materials seemed to be more determinant of floodplain width
10than confluence effects at some large channel confluences in our study area (e.g.,
11Fig. 11b, where the main channel is the Deva River and Quiviesa and Bullón are
12large tributaries). Hence, it does not seem appropriate to include a variable
13accounting for confluence effects when classifying valley type, at least in
14mountainous study areas such as in here. In addition, we do find larger fluvial
15landscapes immediately above and below valley constrictions (Fig. 11c), as
16commented in Benda et al. (2001).

17

18Minimum exceeding score and total area, the two methods used to determine the
19geomorphological floodplain surface that best matches the 50-yr flood, pointed out
20the same threshold value for BFD but not for PD approach. Despite the fact that
21total area is more subjective than minimum exceeding score, it seems to be more
22reliable as it always matches with the graphical intersection of T50EA and GSEA.
23Moreover, attention should be paid when using the minimum exceeding score in
24deep vee valleys. This method could suggest that any geomorphological surface is
25valid in these valleys, as the scores they produce with the different surfaces are all
26close to the optimum. By looking at total area it can be seen that this is not true, as
27moving backward or forward the optimum value significantly causes rapid deviation
28from 100% of total area, and this is reflected in exceeding and coinciding area
29combinations away from the optimum.

30

31Results were dependant on DEM spatial resolution, as suggested in other studies
32dealing with riparian delineation (Nardi et al., 2006; Sutula et al., 2006; Abood and
33Maclean, 2011). In our study area, 10 and 30-m DEM resulted in similar
34adjustment in open and shallow vee valleys, regardless of the geomorphological
35approach used. 30-m DEM, however, proved to be an unsuitable input for
36delineating riparian zones in deep vee valleys as they occur in upper reaches,
37where rivers are narrow. Accordingly, the minimum DEM spatial resolution to be
38used depends on river and valley dimensions. Based on the differences between 10

1and 30-m DEM performance, significant improvement is expected when using
2higher spatial resolutions (e.g. 5 m), especially when using PD-approach.

3

4In conclusion, our results suggest that using GIS to delineate sensitive-to-
5geomorphology hydrologically-meaningful riparian zones is feasible and relatively
6easy and fast. However, this task does require local calibration in order to find an
7optimal threshold value for the geomorphological approach which maximizes the
8coinciding and minimizes the exceeding with respect to the hydrological surface.
9Our results also suggest that this optimal threshold value depends on: valley
10morphology (constrained valleys require higher values unconstrained ones) and
11DEM spatial resolution.

12

13

14**Acknowledgements.** We would like to thank to Lee Benda and Daniel Miller (Earth
15Systems Institute, CA, USA) for their collaboration and support at different stages
16of this research. We also thank Fernando Nardi and two anonymous referees for
17their valuable comments to the manuscript. Finally, We thank Ben P. Gouldby for
18the linguistic revision of the manuscript. This study was partly funded by the
19Spanish Ministry of Science and Innovation as part of the project MARCE (Ref: CTM-
202009-07447) and by the Program of Postdoctoral Fellowships for Research Activities
21of the University of Cantabria (published by resolution on 17 January 2011).

22

1 REFERENCES

2

3Abood, S. and Maclean, A.: Modeling riparian zones utilizing DEMs, flood height
4 data, digital soil data and wetland inventory via GIS, in: American Society of
5 Photogrammetry and RemoteSensing (ASPRS) 2011 Annual Conference,
6 edited by: ASPRS, Milwaukee, Wisconsin, 1–5 May 2011, 2011.

7Amundsen, K. J.: Mapping Riparian Vegetation in the Lower Colorado River Using
8 Low Resolution Satellite Imagery, Cleveland State University, USA, 2003.

9Barquín, J., Ondiviela, B., Recio, M., Álvarez-Cabria, M., Peñas, F. J., Fernández,
10 D.,

11 Gómez, A., Álvarez C., and Juanes, J. A.: Assessing the conservation status of
12 alder-ash alluvial forest and Atlantic salmon in the Natura 2000 river network
13 of Cantabria, Northern Spain, in: River Conservation and Management: 20
14 years on, edited by: Boon, P. J. and Raven, d. P. J., Wiley-Blackwell,
15 Chichester, West Sussex, UK, 2012.

16Benda, L., Poff, N. L., Miller, D., Dunne, T., Reeves, G., Pess, G., and Pollock, M.:
17 The network dynamics hypothesis: how channel networks structure riverine
18 habitats, *Bioscience*, 54, 413–427, 2004.

19Benda, L., Miller, D., Andras, K., Bigelow, P., Reeves, G., and Michael, D.: NetMap:
20 a new tool in support of watershed science and resource management, *Forest
21 Sci.*, 53, 206–219, 2007.

22Benda, L., Miller, D., Lanigan, S., and Reeves, G.: Future of applied watershed
23 science at regional scales, *Eos Transactions AGU*, 90, p. 156,
24 doi:10.1029/2009EO180005, 2009.

25Benda, L., Miller, D., and Barquín, J.: Creating a catchment scale perspective for
26 river restoration, *Hydrol. Earth Syst. Sci.*, 15, 2995–3015, doi:10.5194/hess-
27 15-2995-2011, 2011.

28Bhowmik, N. G.: Hydraulic geometry of floodplains, *J. Hydrol.*, 68, 369– 374, 1984.

29Clarke, S. E., Burnett, K. M., and Miller, D. J.: Modeling streams and
30 hydrogeomorphic attributes in Oregon from digital and field data, *J. Am.
31 Water Resour. As.*, 44, 459–477, 2008.

32Clerici, N., Weisseiner, C. J., Paracchini, M. L., and Strobl, P.: Riparian zones:
33 where green and blue networks meet. Pan-European zonation modelling based
34 on remote sensing and GIS, Joint Research Centre of the European Comission,
35 Luxembourg, Technical Report, 60 pp., 2011.

36Clerici, N., Weisseiner, C. J., Paracchini, M. L., Boschetti, L., Baraldi, A., and
37 Strobl, P.: Pan-European distribution modelling of stream riparian zones based
38 on multi-source Earth Observation data, *Ecol. Ind.*, 24, 211–223, 2013.

1 Dodov, B., and Foufoula-Georgiou, E.: Generalized hydraulic geometry: Derivation
2 based on multiscaling formalism, *Water Resour. Res.*, 40, W06302,
3 doi:10.1029/2003WR002082, 2004.

4 Dodov, B. and E. Foufoula-Georgiou, E.: Floodplain Morphometry Extraction From a
5 High-Resolution Digital Elevation Model: A Simple Algorithm for Regional
6 Analysis Studies, *IEEE Geosci. Remote Sens. Lett.*, 3, 2006.

7 Environmental Systems Research Institute (ESRI): ArcGIS Desktop: Release 10,
8 Environmental Systems Research Institute, Redlands, CA, USA, 2011.

9 Gregory, S. V., Swanson, F. J., McKee, W. A., and Cummins, K. W.: An ecosystem
10 perspective of riparian zones, *Bioscience*, 41, 540–551, 1991.

11 Hawes, E. and Smith, M.: Riparian Buffer Zones: Functions and Recommended
12 Widths, Eightmile River Wild and Scenic Study Committee, 15, Yale School of
13 Forestry and Environmental Studies, April 2005.

14 Holmes, K. L. and Goebel, P. C.: A functional approach to riparian area delineation
15 using geospatial methods, *J. Forest.*, 109, 233–241, 2011.

16 Hruby, T.: Developing rapid methods for analyzing upland riparian functions and
17 values, *Environ. Manage.*, 43, 1219–1243, 2009.

18 IH Cantabria: Desarrollo de la documentación técnica y cartográfica para la
19 redacción del plan de protección civil ante el riesgo de inundaciones de la
20 Comunidad Autónoma de Cantabria, Dirección General de Protección Civil,
21 Consejería de Presidencia, Gobierno de Cantabria, Santander, Spain, Technical
22 Report, 12 pp., 2008.

23 Hupp, C. R. and Osterkamp, W. R.: Riparian vegetation and fluvial geomorphic
24 processes, *Geomorphology*, 14, 277–295, 1996.

25 Ilhardt, B. L., Verry, E. S., and Palik, P. J.: Defining riparian areas, in: *Riparian
Management in Forests of the Continental Eastern United States*, edited by:
26 Verry, E. S., Hornbeck, J. W., and Dolloff, C. A., Lewis Publishers, Boca Raton,
27 Florida, USA, 2000.

28 Lara, F., Garilleti, R., and Calleja, J. A.: La vegetación de ribera de la mitad norte
29 Española, *Monografias*, 81, 536, 2004.

30 Mac Nally, R., Molyneux, G., Thomson, J. R., Lake, P. S., and Read, J.: Variation in
31 widths of riparian-zone vegetation of higher-elevation streams and
32 implications for conservation management, *Plant Ecol.*, 198, 89–100, 2008.

33 Martz, L. W. and Garbrecht, J.: The treatment of flat areas and depressions in
34 automated drainage analysis of raster digital elevation models, *Hydrol.
Process.*, 12, 843–855, 1998.

1 McGlynn, B. L., and Seibert, J.: Distributed assessment of contributing area and
2 riparian buffering along stream networks, *Water Resour. Res.*, 39, 1082,
3 doi:10.1029/2002WR001521, 2003.

4 Merritt, D. M., Scott, M. L., Poff, N. L., Auble, G. T., and Lytle, D. A.: Theory,
5 methods and tools for determining environmental flows for riparian
6 vegetation: riparian vegetation-flow response guilds, *Freshwater Biol.*, 55,
7 206–225, 2009.

8 Naiman, R. J., Décamps, H., and Pollock, M.: The role of riparian corridors in
9 maintaining regional biodiversity, *Ecol. Appl.*, 3, 209–212, 1993.

10 Naiman, R. J., Décamps, H., and McClain, M.: *Riparia: Ecology, Conservation, and
11 Management of Streamside Communities*, Elsevier Academic Press, 430, San
12 Diego, California, USA, 2005.

13 Nardi, F., Vivoni, E. R. and Grimaldi, S.: Investigating a floodplain scaling relation
14 using a hydrogeomorphic delineation method, *Water Resour. Res.*, 42,
15 W09409, doi:10.1029/2005WR004155, 2006.

16 National Research Council (NRC), Committee on Riparian Zone Functioning and
17 Strategies for Management: *Riparian areas: functions and strategies for
18 management*, National Academy Press, Washington, DC, USA, 444, 2002.

19 Naura, M., Sear, D., Álvarez-Cabria, M., Peñas, F. J., Fernández, D., and Barquín,
20 J.: Integrating monitoring, expert knowledge and habitat management within
21 conservation organisations for the delivery of the water framework directive: a
22 proposed approach, *Limnetica*, 30, 427–446, 2011.

23 Noman, N. S., Nelson, E. J. and Zundel, A. K.: Review of automated floodplain
24 delineation from digital terrain models, *J. Water Res. Pl.*, 127, 394–402, 2001.

25 Osterkamp, W. R. and Hupp, C. R.: Fluvial processes and vegetation – glimpses of
26 the past, the present, and perhaps the future, *Geomorphology*, 116, 274–285,
27 2010.

28 Palik, B. J., Tang, S. M., and Chavez, Q.: Estimating riparian area extent and land
29 use in the Midwest, *Gen. Tech. Rep. NC-248.*, Department of Agriculture,
30 Forest Service, North Central Research Station, St. Paul, MN, 28, 2004.

31 Perkins, D. W. and Hunter, M. L.: Use of amphibians to define riparian zones along
32 headwater streams in Maine, *Can. J. Forest. Res.*, 36, 2124–2130, 2006.

33 Poff, B., Koestner, K. A., Neary, D. G., and Henderson, V.: Threats to riparian
34 ecosystems in Western North America: an analysis of existing literature, *J.
35 Am. Water Resour. As.*, 47, 1241–1254, 2011.

36 Poole, G. C.: Fluvial landscape ecology: addressing uniqueness within the river
37 discontinuum, *Freshwater Biol.*, 47, 641–660, 2002.

1R Development Core Team: R: A language and environment for statistical
2 computing, Vienna, Austria, software 3-900051-07-0, 2008.

3Rivas-Martínez, S., Penas, A., and Díaz, T. E.: Bioclimatic Map of Europe, in:
4 Bioclimates, León University, Cartographic Service, León, Spain, 2004.

5Rosgen, D. L.: Applied river morphology, Wildland Hydrology, Pagosa Springs, CO,
6 USA, 1996.

7Snelder, T., Pella, H., Wasson, J.-G., and Lamouroux, N.: Definition procedures
8 have little effect on performance of environmental classifications of streams
9 and rivers, *Environ. Manage.*, 42, 771–788, 2008.

10Staats, J. and Holtzman, S.: Keeping water on the land longer – Healthy streams
11 through bringing people together, University of California Water Resources
12 Center, Stevenson, WA, USA, 2002.

13Sutula, M., Stein, E. D., and Inlander, E.: Evaluation of a method to cost-effectively
14 map riparian areas in Southern California coastal watersheds, Technical
15 Report 480, Southern California Coastal Water Research Project (SCCWRP),
16 2006.

17Tabacchi, E., Correll, D. L., Hauer, R., Pinay, G., Planty-Tabacchi, A. M., and
18 Wissmar, R. C.: Development, maintenance and role of riparian vegetation in
19 the river landscape, *Freshwater Biol.*, 40, 497–516, 1998.

20Thorp, J. H., Thoms, M. C., and Delong, M. D.: The riverine ecosystem synthesis:
21 biocomplexity in river networks across space and time, *River. Res. Appl.*, 22,
22 123–147, 2006.

23US Army Corps of Engineers: Hydrologic Modeling System HEC-HMS, Technical
24 Reference Manual, Hydrologic Engineering Center, Davis, CA, USA, 155 pp.,
25 2000.

26US Army Corps of Engineers: HEC-RAS river analysis system, Hydraulic Reference
27 Manual ver. 3.1.3, 262 pp., Hydrologic Engineering Center, Davis, CA, USA,
28 2005.

29US Department of Agriculture Forest Service (USDA FS): Watershed Protection and
30 Management, Forest Service Manual Chapter 2520, 26, 1994.

31US Department of Agriculture Natural Resource Conservation Service (USDA
32 NRCS): General Manual, 190-GM, part 411, US Department of Agriculture
33 Natural Resource Conservation Service (USDA NRCS), Washington DC, USA,
34 1991.

35Van Coller, A. L., Rogers, K. H., and Heritage, G. L.: Riparian vegetation -
36 environment relationships: complimentarity of gradients versus patch
37 hierarchy approaches, *J. Veg. Sci.*, 11, 337–350, 2000.

1 Verry, E. S., Dolloff, C. A., and Manning, M. E.: Riparian ecotone: a functional
2 definition and delineation for resource assessment, *Water Air Soil Poll.*, 4, 67–
3 94, 2004.

4 Wolman, M. G. and Leopold, L. B.: River flood plains: some observations on their
5 formation, *US Geol. Surv. Prof. Pap.*, 282-C, 86–109, 1957.

6 Yang, Q., Mc Vicar, T., Van Niel, T., Hutchinson, M., Li, L., and Zhang, X.:
7 Improving a digital elevation model by reducing source data errors and
8 optimising interpolation algorithm parameters: an example in the Loess
9 Plateau, China, *Int. J. Appl. Earth Obs.*, 9, 235–246, 2007.

10

1FIGURE CAPTATIONS

2

3Figure 1. River network of the Cantabrian region, northern Spain, and spatial
4distribution of the three considered valley types over the study area.

5

6Figure 2. Flowchart illustrating the methods used to delineate the hydrological and
7geomorphological floodplain surfaces and the GIS processes used to obtain
8coinciding and exceeding areas.

9

10Figure 3. Floodplain cross-section defining the geomorphological parameters in
11which the BFD approach relies on.

12

13Figure 4. Illustration of river centre-lines over the digital elevation model at a
14confluence (A) and bankfull depth floodplain surfaces (B; at 1, 2 and 3 bankfull
15depth heights) and path distance floodplain surfaces (C; at 100, 200 and 300
16threshold values) at the same location.

17

18Figure 5. Delineation of coinciding area (CA), 50-year flood exceeding area (T50EA)
19and geomorphological surface exceeding area (GSEA) to evaluate the adjustment
20between geomorphological (BFD-2) and hydrological criteria (50-yr flood) derived
21surfaces.

22

23Figure 6. Boxplots of the four variables involved in the river reach classification for
24the three geomorphological valley types.

25

26Figure 7. Adjustment parameters when using a 10-m DEM: coinciding area (CA),
2750-year flood exceeding area (T50EA) and geomorphological surface exceeding
28area (GSEA) for bankfull depth (1, 3 and 5) and path distance (2, 4 and 6)
29approaches in open valleys (A), shallow vee valleys (B) and deep vee valleys (C).

30

31Figure 8. Adjustment parameters when using a 30-m DEM: coinciding area (CA),
3250-year flood exceeding area (T50EA) and geomorphological surface exceeding
33area (GSEA) for bankfull depth (1, 3 and 5) and path distance (2, 4 and 6)
34approaches in open valleys (A), shallow vee valleys (B) and deep vee valleys (C).

35

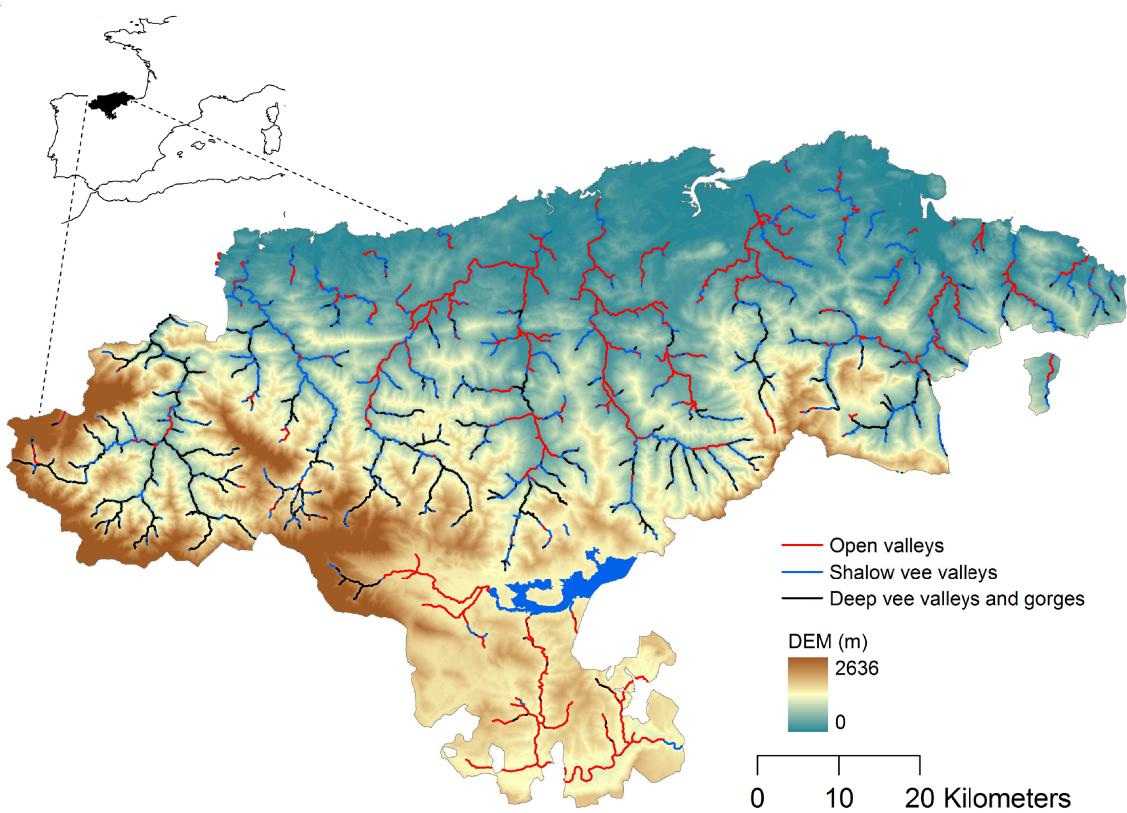
36Figure 9. Values obtained for the two different methods used to evaluate the
37adjustment between geomorphological surfaces and the 50-year flood when using a

110-m DEM. Arrows indicate optimal threshold values (best adjustment) for each
2geomorphological approach and valley type.

3

4Figure 10. Adjustment between the 50-yr flood and the optimal geomorphological
5floodplain surfaces in unconstrained (A and B) and constrained (C and D) valleys
6when using the BFD (A and C) and the PD (B and D) approaches.

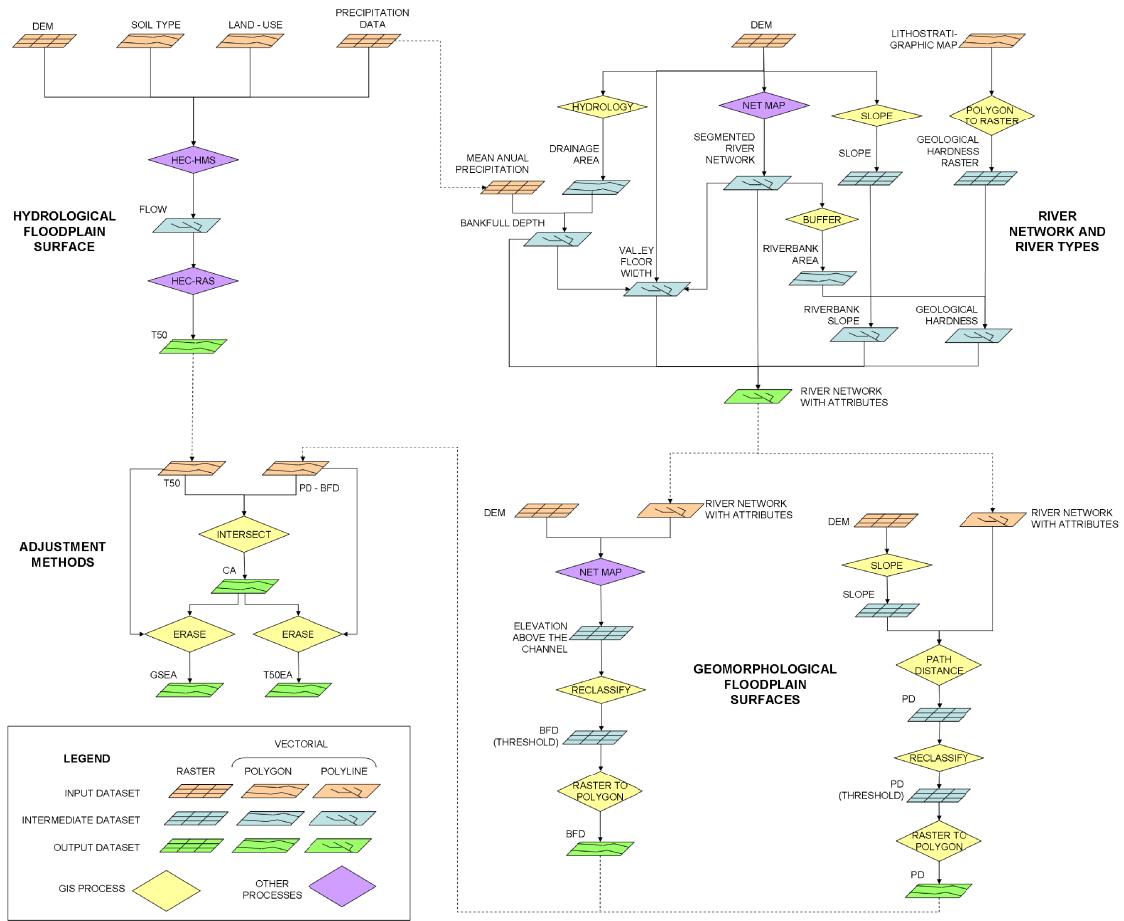
7


8Figure 11. Illustration of the floodprone area at 1.25-BFD over the digital elevation
9model: at a river confluence deriving in wider floodprone areas (A), at a river
10confluence not deriving in wider floodprone areas (B) and at an unconstrained-
11constrained-unconstrained valley transition (C).

12

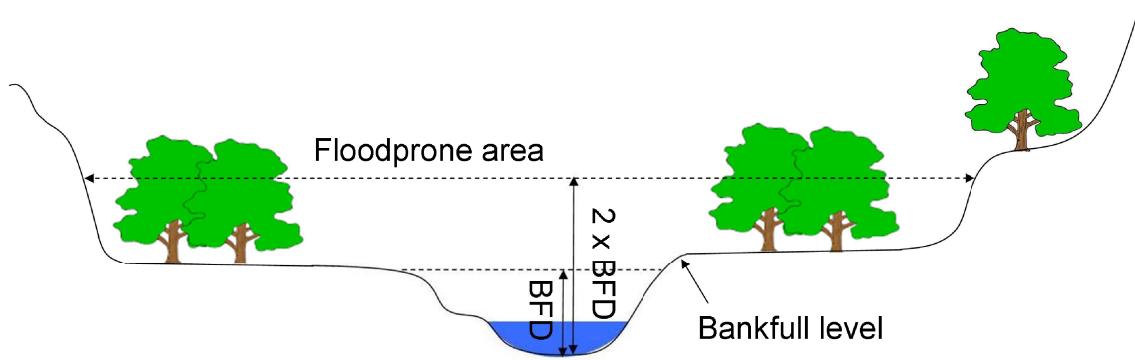
13

1FIG 1

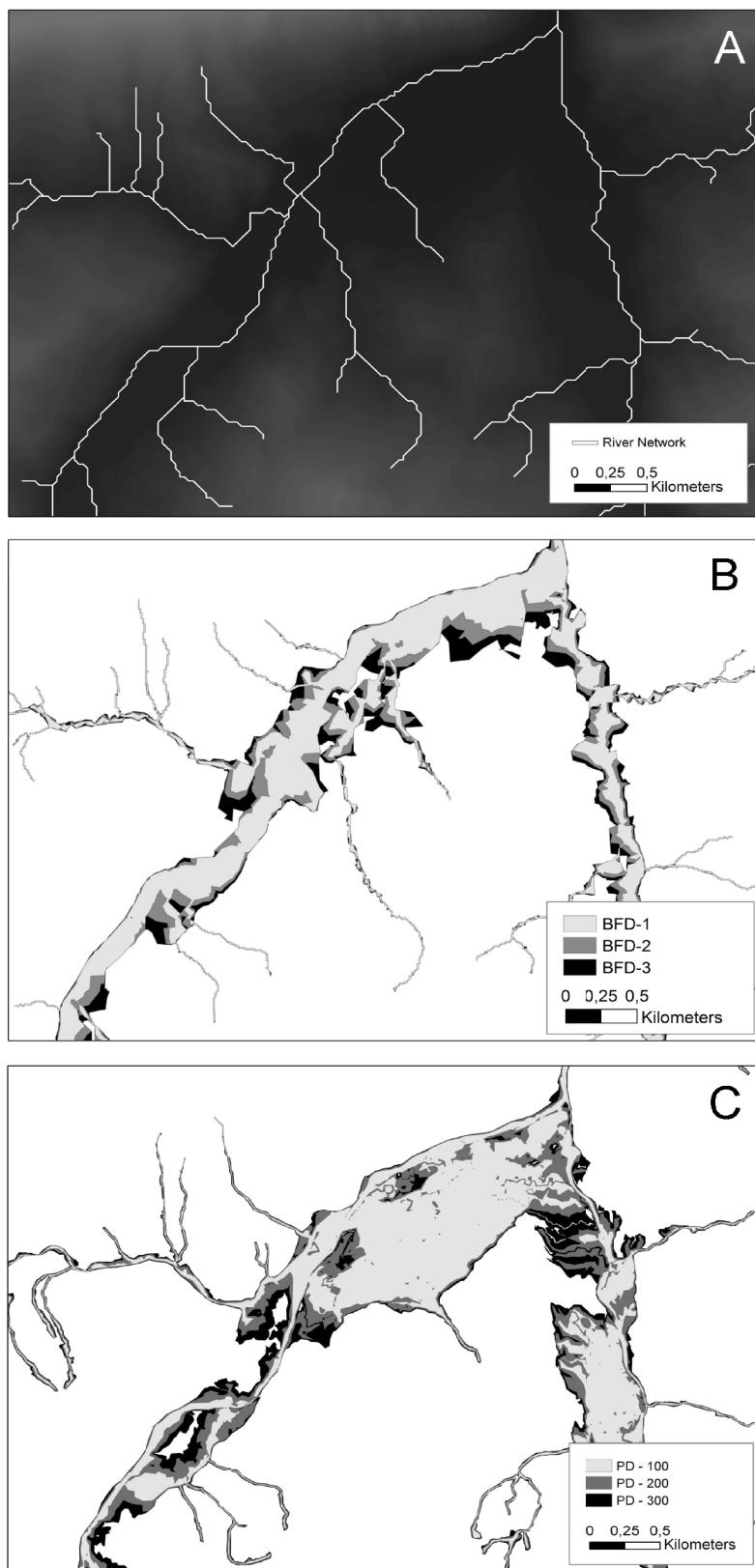

2

3

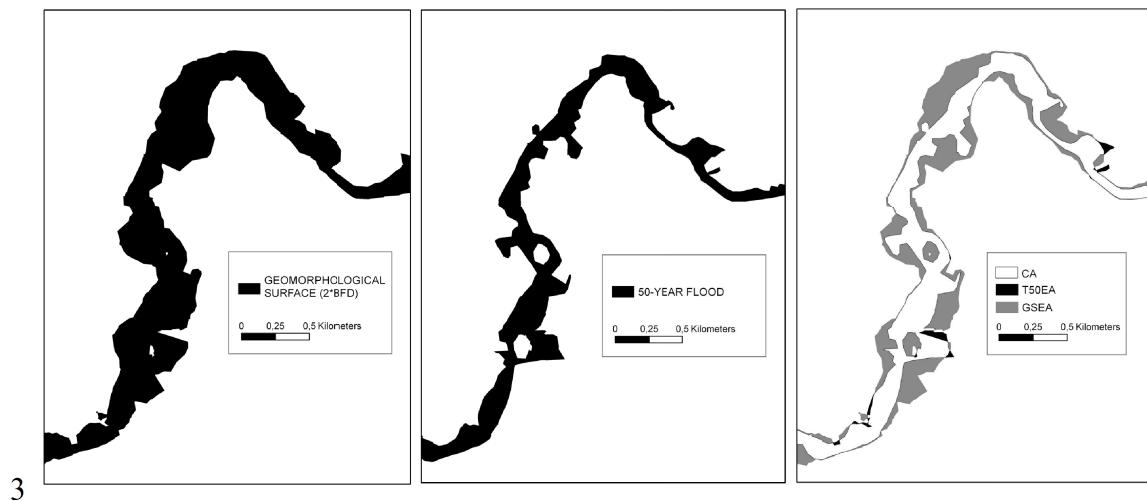
1FIG 2


2

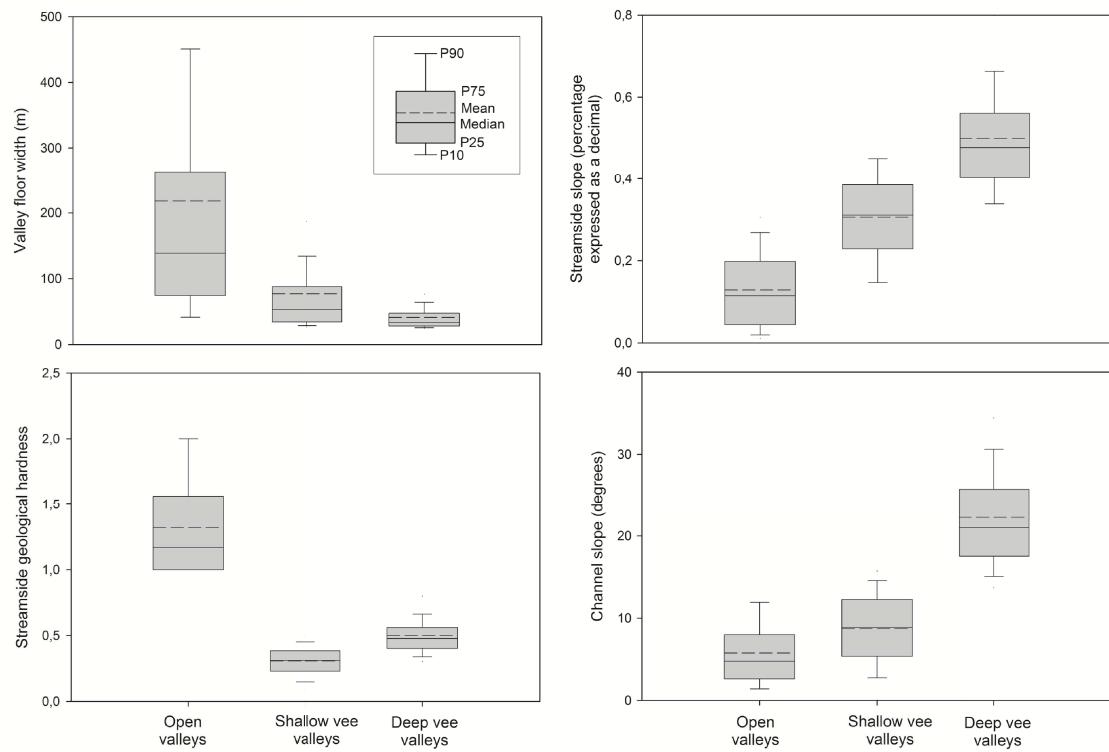
3


1FIG 3

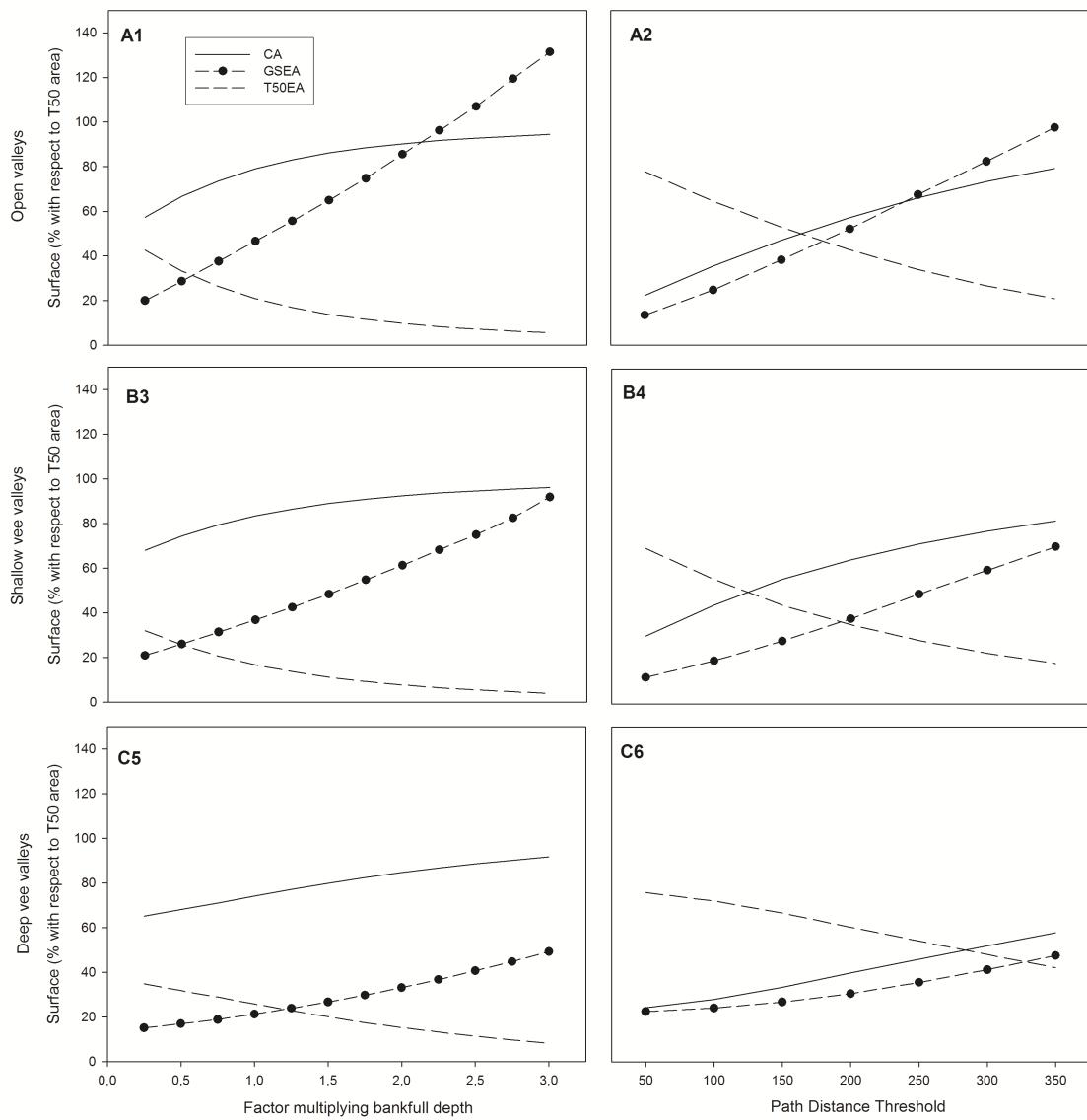
2


3

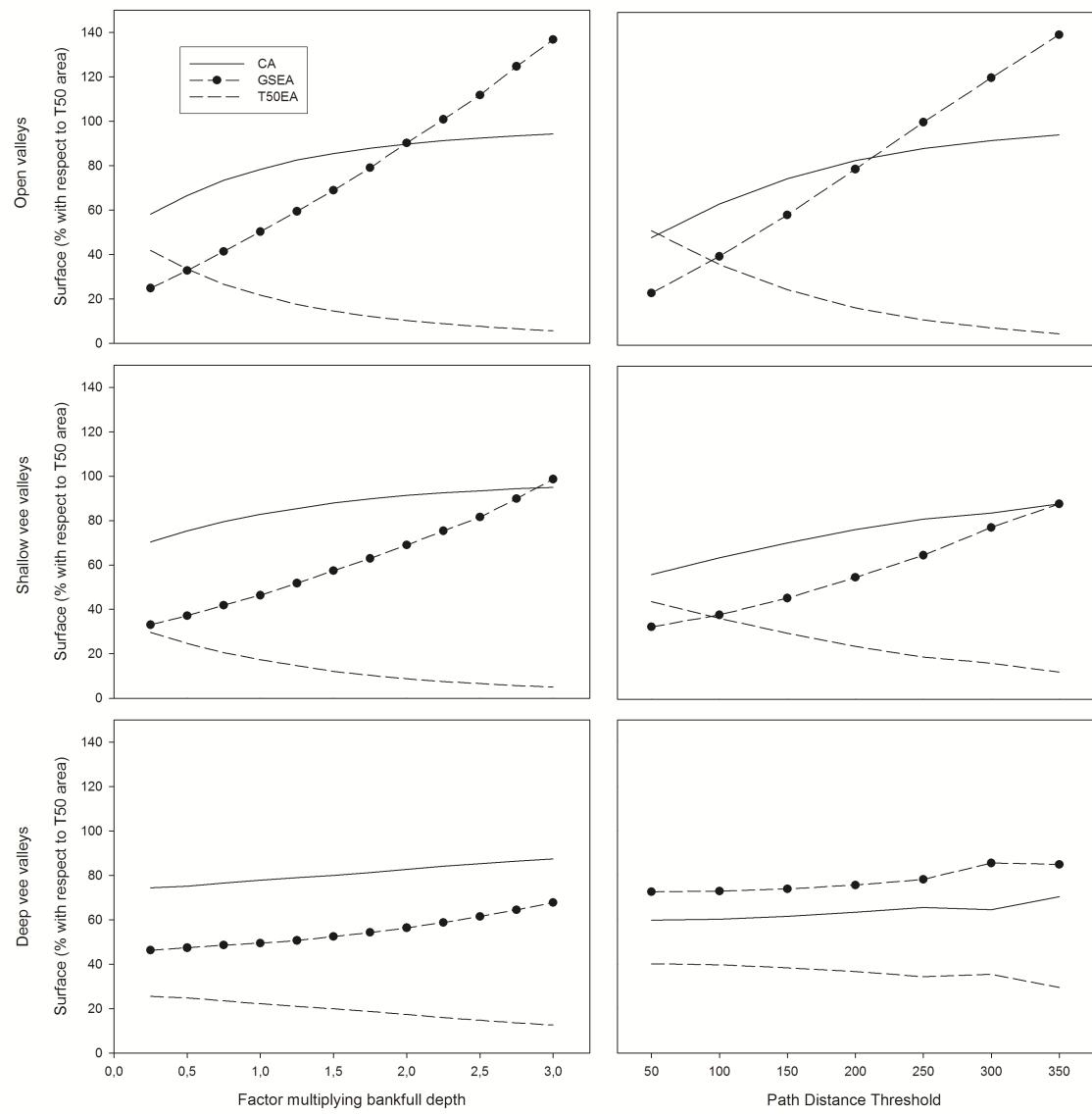
1FIG 4


1 FIG 5

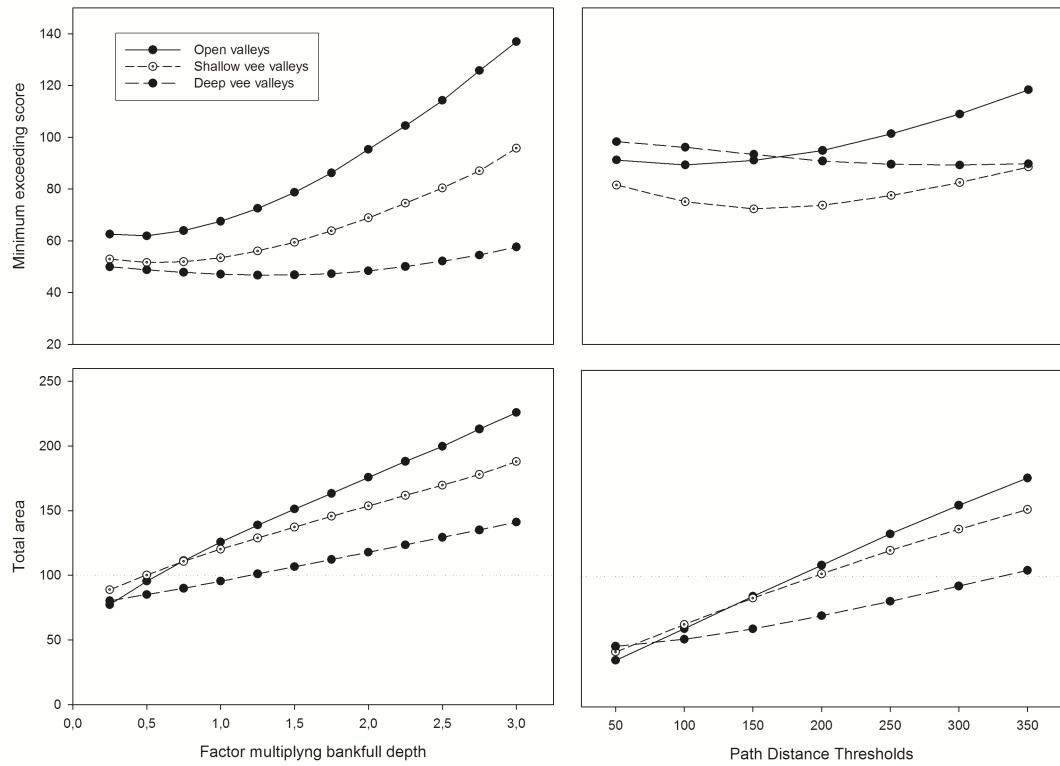
2


1FIG 6

2

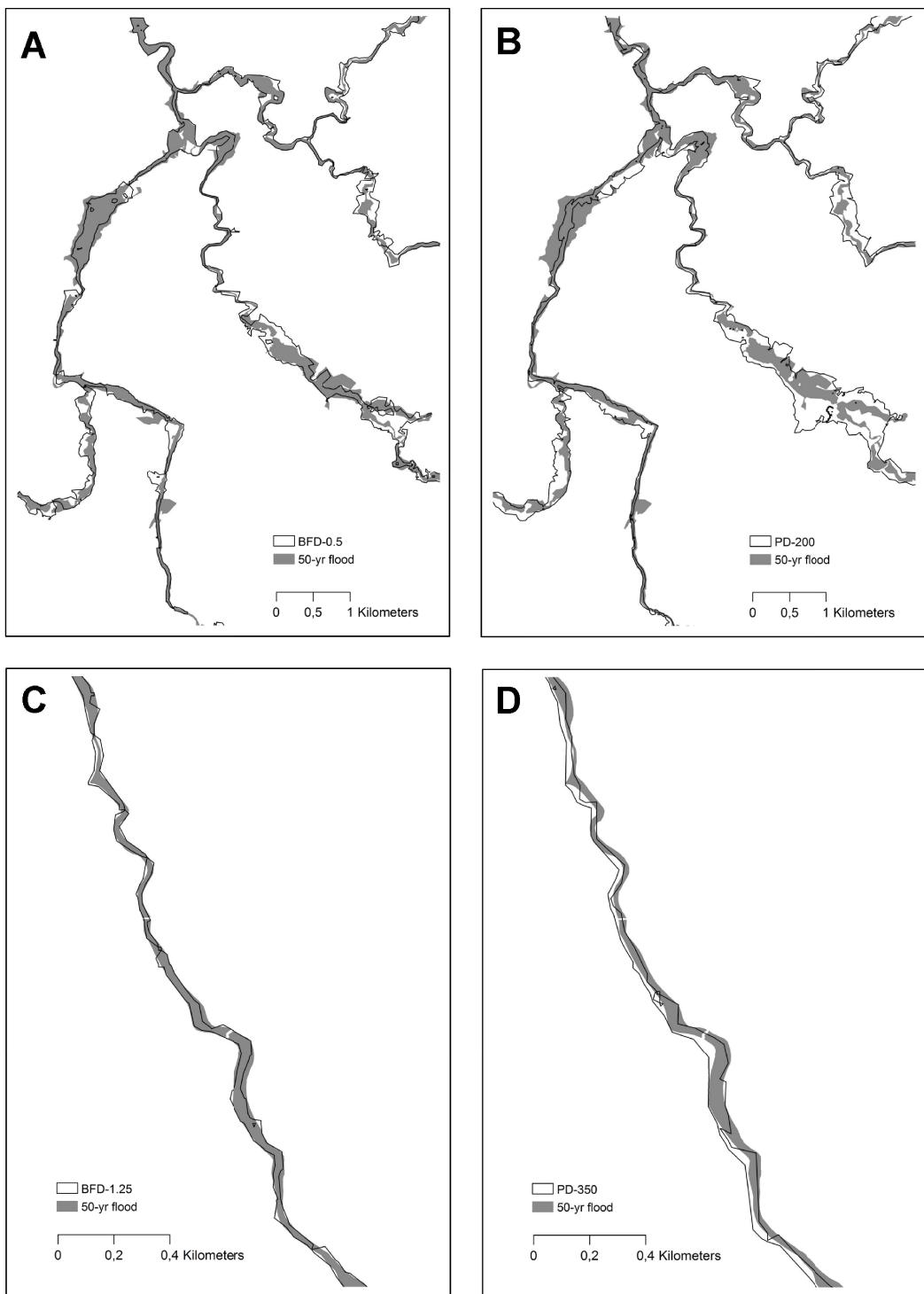

3

1 FIG 7

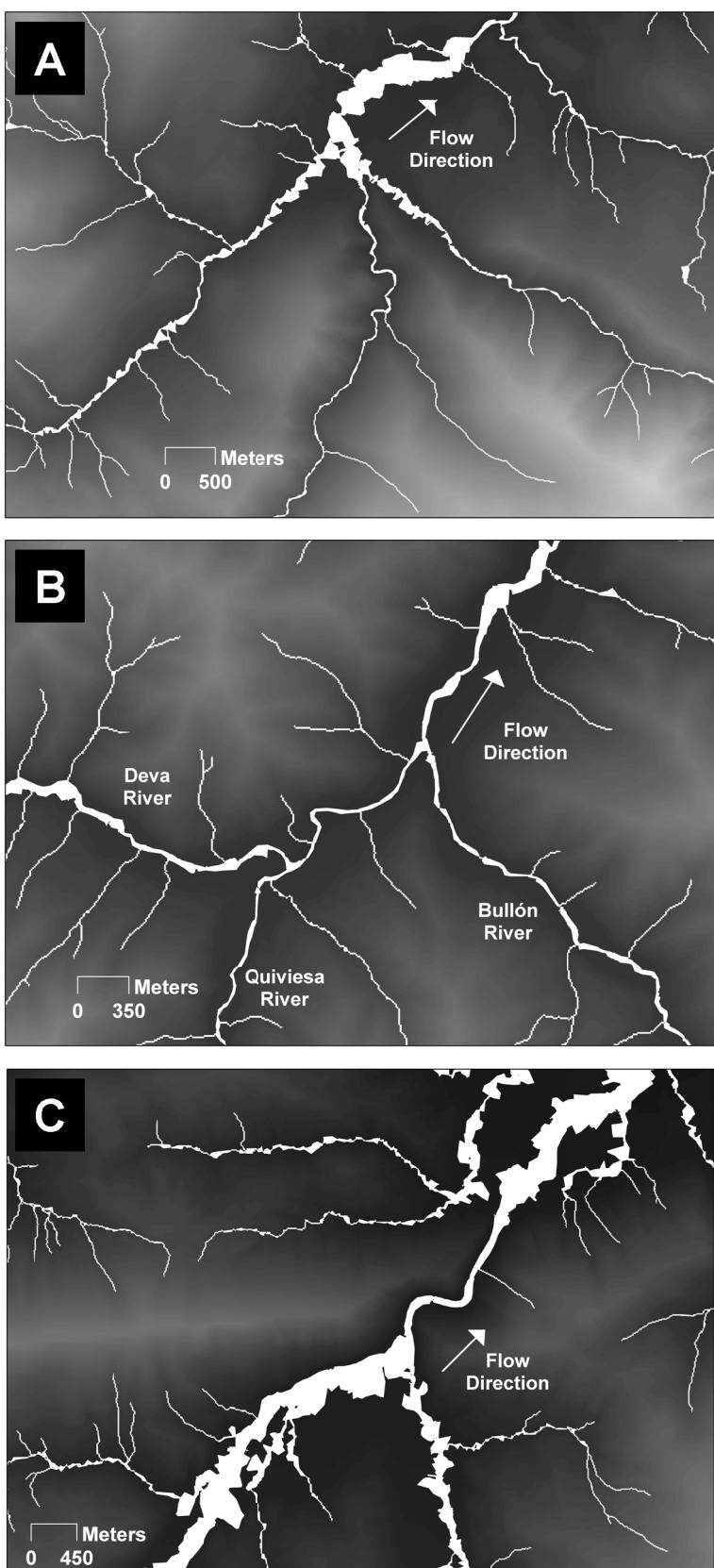

2

1FIG 8

1


2FIG 9

3


1 FIG 10

2

3

1FIG 11

