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The topic discussed in this paper is interesting; thus, I would like to take
the opportunity offered by HESSD to share my personal opinion with the
Authors and possibly contribute to the discussion. As stated in the title, the
paper attempts to provide a critical (theoretical and practical) overview of
the concepts related to the joint return period (RP). Based on the previous
work by Vandenberghe et al [2011], the Authors are in good position to
accomplish the task rather well; however, the manuscript under review seems
to overlook to some extent the discussion reported Vandenberghe et al [2011],
thus looking less detailed and formally correct. In my opinion, some sources
of possible confusion are also introduced. In the following, I provide a few
remarks on the topic.
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1 Paying attention to data selection: physical

relationships or MAX-SUM outcomes?

My first remark concerns the data selection and processing. I agree with
the Authors when they stress the importance of a good copula fitting, but it
is also worth mentioning the importance of an overall accurate inference on
marginals along with a deep understanding of the theoretical and physical
objects that one is dealing with.

In the context of a multivariate frequency analysis, the choice of the
random variables used in the study is fundamental. Even though several
papers consider Qp, Vp and D as stochastically dependent variables, and,
therefore, suitable to be modelled by multivariate distributions and copulas,
actually the sampling procedure can introduce some subtle relationships that
must be taken into account before performing the inference. In particular, a
deterministic relationship emerges in Fig. 3 and 5 as a lower bound in the
relationship between Qp and Vp. Since Vp = (Q1+...+Qp+...+Qn)∆t (where
∆t is the time resolution properly scaled to obtain the required measure unit
for the volume), it follows that Vp = Qp∆t+Vn. As Vp cannot be smaller than
Qp∆t, this introduces a boundary condition that tends to be more prominent
when the duration is short andQp∆t is large compared to Vn. This aspect was
already mentioned by Grimaldi and Serinaldi [2006] in a different context.
Moreover, we can show that dependence structures similar to those shown
in figure 3 of the manuscript can be obtained by a suitable combination of
independent random variables with no relationships with physical processes.
The toy model algorithm is as follows:

1. simulate N samples from an exponential distribution mimicking the
hydrograph duration D. The values may be rounded to the first up-
per integer in order to obtain the discretization effect due to the time
resolution;

2. for each simulated value of Di, i = 1, ..., N , simulate a sample of length
Di from a skewed distribution defined in (0,∞), e.g., Weibull. These
values mimic the discharges Qt,i, with t = 1, ..., Di and i = 1, ..., N .
Note that any temporal structure is introduced in the resulting pseudo-
hydrographs and the parameters of the distributions were chosen to
obtain skewed distribution with no link with physical variables;
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3. select the maximum value for each pseudo-hydrographQp,i = max {Q1,i, ..., QDi,i},
for i = 1, ..., N ;

4. compute the sum of the elements of each pseudo-hydrograph Vp,i =
∑Di

t=1
Qt,i for i = 1, ..., N ;

5. compute the rescaled ranks of Qp,i, Di and Vp,i and draw the scatter
plots.

The R code below does the job:

set.seed(666)

d <- ceiling(rexp(500, 0.07))

vp <- numeric()

qp <- numeric()

for(i in 1 : 500) {

q <- rweibull(d[i], 0.3, 2)

vp[i] <- sum(q)

qp[i] <- max(q)

}

res <- cbind(rank(qp), rank(d), rank(vp)) / (500 + 1)

colnames(res) <- c("Qp", "D", "Vp")

pairs(res)

Figure 1 shows that the algorithm is able to reproduce the key features
of the scatter plots shown in figure 3 of the manuscript rather well, even
though the distributions and parameters were chosen with no reference to
the dataset analyzed by the Authors. Also the pairwise Kendall’s correlation
values are reproduced very well:

> cor(res,method="k")

Qp D Vp

Qp 1.0000000 0.4814406 0.8662124

D 0.4814406 1.0000000 0.5777254

Vp 0.8662124 0.5777254 1.0000000

Playing with the distributions and their parameters, one can see that
a variety of similar dependence structures can be obtained; however, the
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key point is that such structures only depend on SUM and MAX operators
applied to independent random variables with suitable distributions irrespec-
tive of the internal structure of the pseudo-hydrographs. In other words, the
driving process is the sum of random numbers

∑

Qt,i over random durations
Di irrespective of the meaning of Q. Therefore, every copula that does not
describe such a process as well as the emerging lower boundary of the (Qp, Vp)
relationships should be considered as just an approximation. In this sense,
the vine copulas are not so superior to meta-Gaussian or other more or less
exotic copulas that do not account for the generating mechanism. A brief
discussion on the topic will be available soon in Serinaldi [2012, in press].

2 Intrinsic conditional sampling

This comment slightly extends a remark raised by a reviewer. For a multi-
variate frequency analysis focused on extreme events, a source of ambiguity
is related to the method of selection of the variables used to describe the
properties of a physical object, such as a hydrograph. The problem of select-
ing complex objects that are truly extreme is not of secondary importance.
The problem was already recognized by Kao and Govindaraju [2007] who
selected the extreme events as the events that exhibit the maximum joint
probability of three variables X, Y and Z for each year. Based on the data
selection method used by the Authors, only Qp are extreme values (annual
maxima), whereas the corresponding values of Vp and D are not extreme,
or, at last, it is not guaranteed that they are annual maxima. Therefore,
the good performance of the exponential distributions for Vp and D is rea-
sonable and expected because the data are not truly extreme. The choice
of the Weibull distribution for Qp is coherent as well for this family is the
penultimate approximation in the extreme value theory and often works well
for annual maxima. Thus, the statement “In first instance, the marginal dis-
tribution functions of Qp, Vp and D need to be estimated. As these variables
are annual extreme values selected from the 500-year discharge series, the fit
of several extreme value distributions is considered” is not strictly true from
a conceptual point of view. As the extracted hydrographs are truly extreme
only in terms of a single variable, Qp, introducing the univariate marginal
return period for the other quantities is computationally feasible, but the-
oretically questionable, because Vp and D are intrinsically conditioned on
Qp via the sample selection. This is the reason why Serinaldi and Grimaldi
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[2011] mentioned that the dataset selection must be focused on the annual
maxima of Vp (or D) when the focus of the analysis is on Vp (or D), thus
accepting implicitly that the corresponding values of Qp and D (Qp and Vp,
respectively), are not the most extreme values observed in the hydrograph
dataset. Obviously, the data can be selected in several alternative ways that
can be more or less elegant and effective; however, the chosen method must
be kept in mind in order to interpret the result correctly. Moreover, the final
aim of the project which one is working on must be the guide for choosing
the method of selection and the type of return period of interest. The lat-
ter point is further discussed in the following, whereas a brief discussion on
hydrograph sampling will be available soon in Strupczewski et al [2012, in
press] and Serinaldi [2012, in press].

3 Comparing different return periods: statis-

tics for engineering

Focusing on bivariate joint distributions and the corresponding RPs that can
be derived from them, the literature on this subject is not so extensive, but
Yue and Rasmussen [2002], Salvadori et al [2011] and Vandenberghe et al
[2011] provided a rather good picture to start with in order to shed some
light on the topic. In particular, Vandenberghe et al [2011] provided a com-
prehensive list of the state-of-the-art of the types of RP related to bivariate
joint distributions by using a suitable notation that helps understanding the
different meaning of each RP type. They also give an updated list of the
mutual relationships (inequalities) that link the different RPs to each other.

In this context, I think that the paper under review introduces some con-
fusion by merging concepts that were clearly distinguished in the previous
paper, using an ambiguous notation, and missing the interpretation of the
results in terms of theoretical relationships and engineering meaning, thus
leading to misleading statements. In more details, Vandenberghe et al [2011]
clearly recognized that, among the RPs derivable from a bivariate joint dis-
tribution, some of them are conditional return periods, whereas others are
properly joint return periods. This important distinction is missed in the
manuscript under review, which actually deals with only one type of condi-
tional RP (MAR type in Vandenberghe et al [2011]) and two types of joint
RPs (the OR type and the secondary RP, also known as Kendall’s RP after
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Salvadori et al [2011]). Therefore, the overview is partial, does not use the
correct notation and does not consider the theoretical relationships detailed
in Vandenberghe et al [2011], thus lacking a clear interpretation of the results.
Using T to denote every type of return period does not help as well.

A separate remark must be devoted to the “joint RP based on regression
analysis” introduced in section 3.1. This type of analysis was introduced
by Serinaldi and Grimaldi [2011] and does not aim to provide any joint or
marginal return period. When Serinaldi and Grimaldi [2011] thought about
this methodology, the underlying idea was the following: as the selected
sample is extreme only in terms of Qp, it might be no strictly correct to
assign a marginal return period to Vp and D because, as already discussed,
they are not truly extreme (annual maximum) values and their values are
intrinsically conditioned to Qp (in light of the sampling procedure); there-
fore, the rationale was to provide a sound values of Vp and D by using simple
approaches. Note that the small sample size also prevented more refined
and possibly unreliable analyses. This derived values were denoted as the
expected values corresponding to the value of Qp for a given marginal re-
turn period of Qp,T . This also explains why Serinaldi and Grimaldi [2011]
referred to the derived variables as E[Vp|Qp,T ] instead of e.g., Vp,T , which
is incorrectly used in equation 6 of the manuscript. Moreover, it is worth
noting that the expectation operator used by Serinaldi and Grimaldi [2011]
must be interpreted in a broad sense; it refers to average values that can be
obtained by a number of different techniques that do not provide necessar-
ily the mathematical expectation. In the context of the copula framework,
E[Vp|Qp,T ] must be specialized as the expected value of the conditional dis-
tribution function described in section 3.2. Obviously, the comparison with
the results provided by the conditional MAR RP (introduced in section 3.2)
is rather trivial, as it is expected that the expectation of the conditional
distribution is smaller than every (more or less) extreme quantile used in
section 3.2. Thus, the results reported in table 3 can be promptly foreseen
based on (1) the above discussion and (2) the chain of theoretical inequal-
ities TOR ≤ minTX , TY ≤ maxTX , TY ≤ TAND ≤ TCOND1 reported by Yue
and Rasmussen [2002] and Vandenberghe et al [2011].

Once recognized that the results are expected in light of the above men-
tioned relationships, and that the marginal, conditional and joint RPs can
be always compared from numerical and statistical point of view, what really
matters in hydrological engineering is the meaning of these quantities, their
appropriate use and the related uncertainty. In my opinion, from a physi-
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cal perspective, the information conveyed by the marginal, conditional and
joint RPs cannot be compared because these distributions essentially provide
answers to rather different physical problems. An example can help better
understanding my point of view. In drought analyses, water managers are
interested to assess, for instance, the probability of exceedance (or the RP)
of the drought severity X given that an ongoing drought have been spanned
Y months; in this context, the managers are interested to P [X > x|Y ≥ y],
that is, the COND1 RP in Vandenberghe et al [2011]. It does not mat-
ter that TOR ≤ minTX , TY ≤ maxTX , TY ≤ TAND ≤ TCOND1 because the
other RPs, or better, the other marginal, conditional and joint distributions
do not provide the required information. Therefore, even though the above
inequalities are analytically justified and allow for foreseeing and checking
the correctness of the inference, I believe that from engineering perspective
the comparison is unfeasible and substantially ill-posed because the different
underlying probabilities refer to different physical conditions, design require-
ments and policies. A COND1 scenario can lead to an overestimation if the
design requirements match with the OR condition and vice versa. Is one
scenario more correct than the others? Say no. Which is the best one?
Say all. All values are correct an might be used according to nature of the
physical problem and the aim of the analysis. So, while I agree with the
final recommendation that the practitioner should avoid a blind use of just
one joint RP estimation method, on the other hand, I also think that the
subsequent statement “Based on the available literature and the case study
in this paper, the JRP method based on the Kendall distribution function
is probably the most valuable in a multivariate context, when applied cor-
rectly” is a bit contradictory, does not synthesize the complexity of the topic,
and gives a message that might be misleading: with no reference to a real
world problem, we do not know what type of probability we are interested
in (univariate, conditional or joint (and which type of conditional and joint
probabilities)).

Eventually, it is worth mentioning the work by Ganguli and Reddy [2012]
which shares several aspects with the paper under review; for instance, a
rather detailed description of the inference procedures for multivariate anal-
yses of the hydrograph properties (Qp, Vp, D), and a discussion on joint and
conditional multivariate joint return periods (OR, AND, Kendall, and joint-
conditional) but using an appropriate notation that allows distinguishing the
different cases. Unfortunately, also Ganguli and Reddy [2012] did not inter-
pret the results in light of the above mentioned theoretical inequalities and
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limited their discussion referring to generic engineering problems that require
multivariate approaches without specifying which RP type must be used for
which problems.

4 Ensemble simulation and uncertainty

Section 6.2 focuses on the simulations along the isolines of the bivariate joint
distribution related to the KC RP. The same approach might be used in
principle for the other joint RPs: for instance, simulating from the boundary
lines corresponding to TOR and TAND can provide rather different scenarios
that can be more extreme in terms of absolute values. The idea of considering
the most probable event along the isolines could be discussed in more detail,
as this choice contrasts to some extent with the rationale of the extreme
events, or better, of the rare events: in other words, the most dangerous
events should be the less probable among the less probable instead of the most
probable among the less probable (whose definition is not unique in light of
the different possibilities to define conditional and joint probabilities). The
first class of events lies on the boundary of the clouds of data. In this sense,
the concept of depth function that is behind diagnostic tools such as the
bag plot, can provide useful information to identify the actual rare events
and recognize the physical phenomena that generate them [e.g., Chebana
and Ouarda, 2011a]. Moreover, it might be worth to set the discussion on
the isolines in the context of the multivariate quantile curves discussed by
Chebana and Ouarda [2009, 2011b].

As far as the uncertainty is of concern, it must be mentioned that the
ensemble simulation proposed by the Authors does not allow taking into
account the uncertainty, which can be classified as uncertainty related to
data, inherent (or structural) uncertainty, and epistemic uncertainty [e.g.,
Montanari, 2011], the latter being the model and parameter uncertainty of
marginals and copula. Loosely speaking, the uncertainty of the copula pa-
rameters leads commonly to stronger and weaker structures of dependence
around the point estimates. In a bivariate case, this results in changes of
the shape and curvature of the isolines. On the other hand, the marginal
uncertainty commonly entails a shift of the isolines along the two axes. Both
the sources of uncertainty must be carefully considered. In light of the high
uncertainty that usually affects the univariate analysis of extreme values,
it is likely even more prominent in a multivariate framework, and can be
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considered the main obstacle to the practical (effective and reliable) use of
the quantiles resulting from a multivariate (extreme value) frequency anal-
ysis. In this context, the simulation of large samples via e.g. rainfall-runoff
models can help only marginally because every model synthesizes the infor-
mation contained in the original data, and the synthesis implies some loose
of information, especially if one does not use a priori (general) knowledge but
only the specific knowledge [Christakos, 2011] contained in the data, as in the
present copula modelling. It follows that the simulations cannot contain more
information than the original data as the inherent uncertainty is irreducible
from an epistemological point of view [e.g., Popper, 1932]. The suggested
ensemble scenarios do not describe any of the above mentioned types of un-
certainty but only bivariate equi-probable quantiles that are similar to the
point estimates in the univariate case: as the confidence intervals are one-
dimensional objects that describe the uncertainty of the zero-dimensional
univariate point estimates, the uncertainty of a one-dimensional object, such
as the isolines of a bivariate distribution, is described by a two-dimensional
object i.e., areas around the isolines (the same dimensionality ratio holds for
higher dimensional distributions). In other words, exploring the isolines do
not enable to incorporate any uncertainty, but only the (joint) equi-probable
point estimates of an higher dimensional probability distribution. Without
an appropriate evaluation of the epistemic uncertainty (at least), it is not
possible to infer about the significance of the difference of two (multivariate)
point estimates.

I think that the Authors should carefully reconsider the content of the manuscript.
As several theoretical results on RPs are already provided by mathematicians
and statisticians, a critical overview in hydrologic perspective cannot over-
look the physical meaning of the variables and their accurate choice and in-
terpretation as well as a thorough understanding, a detailed description, and
a correct interpretation of the statistical tools in light of different real-world
engineering problems in an integrative problem solving context [Christakos,
2011].

Editing note: Perhaps, sections 4.2 and 5.1 can be shortened and properly
referenced or moved in an Appendix as they refer to already published ma-
terials that do not support the discussion on the RPs, which in turn must be
extended. The inference procedure for copulas could be also shortened since
quite a standard procedure is applied and vine copulas are already known

9



and applied in hydrology [e.g., Gyasi-Agyei, 2011]. Some typos must be fixed
throughout the text.

5 Some additional remarks on the concept of

return period and its use: A (not so) sub-

jective point of view

The ambiguity of definition and notation of T reported in the manuscript sug-
gests to give the basic assumptions of the concept of RP careful consideration.
This appears to be more and more important as multivariate/nonstationary
frequency analyses become more and more widespread. The return period
is usually preferred to the underlying values of the probability of exceedance
as it seems to be (apparently) more friendly than the concept of probability.
However, the experience tells us that this feeling is generally ill-posed and
often leads to misleading statements. The policy makers are commonly the
first victims of the tricky nature of the return period when they experience
that extreme events with mid-high return periods, say e.g. 100-200 years,
can occur (not) surprisingly more often that they think during their term.
To avoid misleading statements some basic definitions must be kept in mind.
Let we assume that a phenomenon is synthesized by a random variableX and
we observe a realization of the phenomenon at fixed time intervals, say daily
or annual time scales. Under the hypotheses that the phenomenon is sta-
tionary (the distribution function of X, FX(X < x), is independent of time)
and each realization is independent from the previous ones (i.e., the realiza-
tions represent the outcomes of a series of independent experiments under the
same (controlled) conditions), the return period T is defined as the expected
value of the number of realizations (observed at fixed time steps) that one
has to wait before observing an event whose magnitude exceeds a fixed value
xT . In spite of this rather simple definition, the analytical derivation relies
on the summation of the power series expansion involving the probability of
exceedance P = 1− F (X ≤ x) [Chow et al, 1988, p. 382]:
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E[τ ] =
∞
∑

τ=1

τ(1− P )τ−1P

= P [1 + 2(1− P ) + 3(1− P )2 + 4(1− P )3 + ...]

=
1

P
= T

(1)

where τ denotes the duration of the recurrence intervals between to ex-
ceedances. The measure unit of the final value of T can be easily set up
by multiplying the numerator by the average number of occurrences in the
desired time scale (e.g. the mean number of exceedances per year). As the
recurrence intervals τ and their expectation T can be always expressed in
years, the return period is deemed a rather friendly measure of the degree of
rarity of an event, which, however, leads to statements such as “This event
is expected to occur on average once each T years”. This statement is for-
mally correct but also possibly misleading because the underlying probability
P actually provides another type of information: it tells us that there is a
probability P to observe the so called T -year event “each year”. A toy ex-
ample can help clarify the point. Let us suppose that a gambler named Mr.
Cat(astrophe) tosses an unbalanced coin each year (without reminding what
he did the previous years), and the coin has a probability P for the tail (e.g.,
we are flooded... and lost!) and a probability 1−P for the head (i.e., we are
not flooded... and safe!): when a structure/plan is designed with a T -year
return period for X, engineers, decision makers and politicians accept to play
the game N times, where N is the design life of the structure expressed in
years, hoping that Mr. Cat is forgetful and regular in its habits (and the
human activities do not change the environmental conditions). To account
for this game, Chow et al [1988, p. 382] introduced the probability PN to
observe a T -year event at least once in N years:

PN = 1− (1− P )N = 1−

(

1−
1

T

)N

; (2)

such a probability can be rather high and is ≈ 65% when N = T . Thus,
there is a rather high probability for a city major to be criticized more than
once during his term, for instance, for the failures of a sewer system that has
been designed with 5-, 10-year RP pipe diameters.
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It is worth noting that the above remarks can be overlooked in other
fields of research and industry. For example, in the insurance and reinsurance
industry, the design life of a contract is usually one year, meaning that the
insurers play with Mr. Cat only once (if they bet on annual maxima), then
they reassess the fairness of the game and decide to play again or not (each
year).

Therefore, even though the probability P seems to be less friendly than
T , it provides a clearer picture of the phenomena under study (i.e., the
occurrence of extreme values) and its iterative nature (i.e., the repetition of
independent experiments along the time axis). On the other hand, the return
period provides a derived variable that (1) does not add much information
with respect to P , (2) does not allow for a direct computation of derived vari-
ables such as PN (which has to be expressed again in terms of probabilities),
and (3) can hide the actual meaning of the underlying (marginal, conditional
or joint) probabilities when an ambiguous “T” symbol is used, thus leading
to misleading comparisons of alternative design scenarios. The concept of
return period shows definitely its nature and possible shortcomings when we
move from stationary to nonstationary conditions and from a univariate to
a multivariate framework. In a nonstationary context, Equations 1 and 2
become [Olsen et al, 1998; Sivapalan and Samuel, 2009]:

Et[τ ] =
∞
∑

τ=1

{

τ

(

τ+t−2
∏

i=t

[FX,i(x)]

)

[1− FX,τ+1(x)]

}

t = 1, 2, ... (3)

where t denotes the start time, and

PN = 1−
N
∏

i=1

[1− Pi]; (4)

where Pi is the probability that the annual maximum X is greater than
or equal to x in any given year, under given climate/environmental state
i. Equations 3 and 4 highlight that the return period results from a com-
bination of locally stationary probabilities, thus introducing additional and
unnecessary complexity in the representation of the probability of occurrence.
The above remarks along with the possible confusion resulting from merging
marginal, conditional and joint RPs should lead to reflect on the suitability
of reasoning (and communicating results) in terms of probabilities instead of
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(easily misleading) RPs. In this direction, Theiling and Burant [2012] used
for instance a better communication strategy by reporting both RPs and
“annual” exceedance probabilities.
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Figure 1: Pairwise scatter plots of the standardized rank for the three pairs
of variables (Qp, D), (Qp, Vp) and (D, Vp)
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