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Original paper: HESSD-9-5355-2012: HESS Opinions - Should we apply Bias Correction to Global and 
Regional Climate Model Data?  

 
 
Author's response to reviewers and guest comments 
 
Please find below our point-to-point replies to the comments made by referees and guests. We 
highlight the comments in green, additions to the manuscript are indicated by page and line. The 
page/line indicators refer to the revised manuscript (attached). 
 
Comments by Referee #1, Stephane Vannitsem 
We thank Stephane Vannitsem for his well-reasoned comments. Please find our replies below. 
 
Specific comments 
• ' … the purpose of correction is to provide the best possible forecasts or simulation. This is per se 

a valuable approach in which postprocessing (e.g. bias correction) has a natural place, in 
particular for problems in which a tradeoff between computer time needed and model 
sophistication should be found. However the uncertainty of forecasts, projections or simulations 
should also reflect the presence of these system biases. I would suggest the authors to make this 
distinction in the paper.' As this comment points in the same direction as the general comment, 
we address them together: We agree with the referee that there is nothing to criticize about 
post-processing procedures per se. To clarify this, we added a section to chapter 3: Page 9, line 9-
31 and page 17 line 16-19. 

• At the end of Section 6, the authors indicate that information on the bias could help in 
identifying some model deficiencies. I think that this aspect deserves a slightly larger place in this 
paper (a subsection or at least a few paragraphs). We agree and enlarged the last paragraph in 
section 6 accordingly with the suggestions made by the referee. We left it at the end of section 6 
as we felt that this leaves the topic more prominent compared to incorporating it in either of the 
sections 6.1, 6.2 or 6.3: Page 21 line 9-16. 

• The authors indicate that the result of bias correction does not respect the balance between the 
different fields. This in turn could considerably affect the optimal use of hydrological models. 
Instead they propose to use multi-model ensemble averages in order to correct for biases 
(Section 6.2). I agree with the general statement on the problem introduced by bias corrections. 
However the proposed averaged solution does not fulfill the required balance (in nonlinear 
systems) and will give rise to “model outputs” much smoother than the original model runs that 
could not be produced by the model or nature itself. Moreover, the multi-model approach 
(weighted or un-weighted averages) is not free from biases that could depend on climate 
modifications (see the discussion of page 5377, lines 15 to 21). I suggest commenting on these 
problems. We thank the referee for this very legitimate and useful comment. He is perfectly right 
in stating that when calculating multi-model averages, one also compromises physical 
consistency among different fields. We changed the manuscript and now discuss multi-model 
ensembles either solely in terms of estimation of the output uncertainty. Page 9 line 6-7, page 19 
line 2-3, or state its limitations (page 19 line 16-23, page 19 line 25-26). 

• The authors propose in progressively improving the models in order to avoid the use of post-
processing (in particular bias correction), section 6.3. To my opinion this plan, although obviously 
suitable from a scientific point of view, is not realistic because the practical user requests will 
closely follow the model developments. For instance, the impact of floods or pollution in 
urbanized areas is now a major concern of our societies and models are developed at the scales 
of cities in order to provide practical answers (e.g. Koussis et al, 2003). Obviously these models 
cannot describe all the details needed in order to assume that the forecasting system is 
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sufficiently “good” (from the user’s point of view), and post-processing could be also very helpful 
at this scale. To my view, post-processing techniques are complementary approaches allowing 
for improving further the quality of forecasts or simulations, but it should be used appropriately 
and the corrections should be provided with information on the associated potential 
uncertainties in particular for climate projections or impact studies. This comment contains 
several aspects that we will address in the following: 
− As already discussed in the reply to the first comment, there is nothing to criticize about 

post-processing procedures per se, as long as they are consistent and add quality and/or 
value. We hope this is sufficiently clarified with the additions to the manuscript at Page 9, 
line 9-31 and page 17 line 16-19. 

− The referee is right in stating that user requests follow model development, in fact they 
often even take the lead. It is then up to the modeler/expert to communicate which answers 
can be given at which resolution/detailedness with which associated uncertainty. While 
public needs can and should have an impact on the focus of research, it should influence the 
answers that science will give. 

• Page 5371, lines 23 to 26, the authors advocate for having the same biases in the LSM and HM. I 
do not understand why, since once the output of the GCM/RCM is corrected, it is closer to reality 
and should therefore be better for its use in the HMs. Could the authors clarify their statement? 
Thank you for pointing us on this somewhat unclear formulation. We rethought and rewrote this 
section. What we want to say is the following: From the output of GCM/LSM systems, usually 
fields of direct interest and fields that are required as input for further models (such as HMs) are 
evaluated and bias corrected. These include rainfall, temperature, relative humidity, wind, 
radiation, etc., but rarely discharge (as the discharge simulations of LSMs are usually not 
realistic). Thus also the time invariance of the applied BC methods is usually not tested on 
discharge, the primary quantity of interest of terrestrial hydrology. It is imaginable that for the 
above mentioned meteorological fields, the time variance of the bias is small and their 
projections are therefore considered acceptable for CCIS. However, due to the strongly non-
linear nature of terrestrial hydrological processes (runoff formation etc.), it may well be that 
small time invariances of the bias in the meteorological forcing may be amplified to a large time 
invariance of the bias in terrestrial hydrological variables of interest (discharge). As this can, due 
to the usually simple representation of runoff-formation processes in LSM, not be evaluated in 
the GCM/LSM system, it must be done with the output of the HM. Alternatively, the more 
sophisticated representations of terrestrial hydrological processes should be included in the 
LSMs. We rewrote the manuscript at page 14, line 19 – page 15, line 7. 

• Page 5371, line 27. Would you please clarify what means “offset”? With offset we mean any 
difference (between model output and observation) of a characteristic in spatial or temporal 
position. A typical example is that rainfall maxima along mountain rims (e.g. the black forest in 
SW-Germany) produced by Cosmo-EU were placed too far on the windward side. We suggest 
leaving the text as it is. 

 
Technical and minor comments 
• The definition of bias is clearly a key aspect as stated by the authors. I agree with the authors 

that bias should be confined to differences between averages: No change required 
• Page 5357, line 6. The authors suggest that GCMs are the best tools to understand climate 

dynamics. I do not fully agree because observations provide (maybe even more) valuable 
information on climate dynamics. I therefore suggest to write “ Today, among the best tools. . .”. 
We agree and changed the manuscript text accordingly to ' Today, besides observations, among 
the best tools we have to understand Earth's climate dynamics and evolution are Global 
Circulation Models (GCMs).' (page 2, line 17-18). 

• Page 5367, line 7, Li et al (2009) should be Li et al (2010). Done 
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• Page 5369, line 6, replace “bias specific” as “model error source specific”. We changed the 
sentence to ' For the first, the main finding was that the quality of BC was specific to the system 
and the model error source, thus precluding the possibility to deduce universal evolution 
relations'. (page 12, line 29-30). 

 
Literature: 
Murphy, A. H. (1993): What is a good forecast - An essay on the nature of goodness in weather 
forecasting. Weather and Forecasting 8 (2), 281-293, 10.1175/1520-0434. 
 
Comments by Referee #2, Douglas Maraun 
We thank Douglas Maraun for his to-the-point comments. He generally states that our view on BC is 
too fundamentalistic and too strong. We would like to comment on this: 
• First, the motivation to write this discussion paper in the first place came from the experience, 

that in CCIS 'every-day practice', to put it in the words of the referee, ' BC is often used as an – 
possibly unjustified – ad hoc "correction" of climate model data'. From the experience of the 
main author, this is often not entirely transparent to the end user and it necessary to clearly 
communicate this. The article should serve as an overview for hydrologists and users of 
hydrological CCIS about the range of possible impacts of BC (that is the reason why we submitted 
it to a hydrological rather than a meteorological journal) and as such it has to focus on the 
potentially negative effects of it (at the risk of being provocative).  

 
Please find our replies to the referees point-to-point comments in the following. 
• The whole line of argument is based on a rather black and white painting of numerical models 

solidly grounded in the laws of physics vs. rather heuristic bias correction methods. But is this 
distinction actually true? I am not an expert in parameterization schemes, but following the 
discussion about the inherent problems of parameterization schemes (truncation of scales and 
violation of scaling laws, collapsing physical processes to their mean...) and the advantages of 
stochastic parameterization schemes compared to deterministic parameterisations (e.g., Palmer, 
QJRMS, 2001; Berner et al., Mon. Wea. Rev., 2011), I would be careful about such idealised views 
of numerical models. Also when considering regional climate models, one usually faces 
inconsistencies between large and regional scales (deviations in the circulation, or unphysical 
moisture budgets towards the boundaries), and in particular the local scales do in general not 
feed back into the large scales. Of course, bias correction methods are simple and purely 
empirical, but is the distinction so clear cut when, e.g., considering approaches such as the one 
by Themessl et al., (IJC, 2011) using pyhsically motivated predictors? I would therefore ask the 
question: where is bias correction valid, where is it invalid? A soon to appear publication by Eden 
et al. (J. Climate, 2012) about different types of model errors could guide the discussion. The 
referee is of course right by stating that physically based numerical models are not perfect. The 
referee gave a good overview on this and we incorporated his comments in the manuscript at 
page 2 line 17 and page 19 line 31 – page 20 line 5. We also agree that a distinction should be 
made between cases when post-processing (including bias-correction) is justified and when not 
(based on the principles of consistency, quality and value). Please see the section we added to 
chapter 3: Page 9, line 9-31 and page 17 line 16-19. We hope that this makes our reasoning more 
agreeable and balanced in the eyes of the referee. 

• Many shortcomings that might be caused by a naive bias correction actually might already exist 
in uncorrected model simulations - and could potentially be corrected by bias correction. For 
instance, a climate model might systematically underestimate spring temperatures in a mountain 
catchment because the model topography is too smooth - a bias that can arguably be corrected. 
Calculated runoff might be far too low, because the model might produce snow where in reality 
rain was falling. Would a hydrologist involved in planning a flood protection system really care 
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about the slight violation of the water budget between the corrected and the uncorrected 
climate model? The line of reasoning of the referee in this point is to discriminate between cases 
of justified and unjustified post processing/BC. We hope that this point has been sufficiently 
addressed in our answer to the previous comment. 

• This brings me to the question of relevance. Even though the author’s reasoning might be true in 
principle, what is the actual extent of the potential danger compared to the benefits of bias 
correction? The answer to this question depends most likely on the variable, on the region and 
on the investigated impact. The relation of potential danger and benefit of a BC is related to its 
consistency (see also discussion in the previous points). If the method is consistent, i.e. if we can 
be sure of its general applicability, its benefits clearly outweigh the risks involved. However, in 
the manner BC is currently often used, there is no sufficient proof of its consistency. Hence we 
can quantify its benefits, but can only guess its dangers. We argue that in such as case, it is a 
matter of prudence to avoid its use. 

• I find it slightly problematic to base the rejection of a whole set of methods on a list of 
assumptions that actually does not apply as a whole to many of the methods. The line of 
argument would only hold if any of these assumptions alone would justify the author’s 
conclusions. But is this really the case? In the manuscript, we clearly stated that the assumptions 
and implications on BC listed in section 5.1 not relate to all BC methods. Cited from section 5.1, 
first paragraph: 'Due to the variety of existing BC approaches, not all assumptions and 
implications listed below apply to all methods. Therefore the list should be seen as a general 
overview.' Also, we do not agree with the referee's statement that in order to make our 
reservations with current-day BC practice justified, all of the assumptions have to apply to all 
methods. In fact, already a  single assumption that cannot be sufficiently justified (such as the 
assumption of stationarity) may make the application of a method questionable. 

• The discussion of Maraun (Geophys. Res. Lett., 2012) should be corrected: We corrected the 
manuscript on page according to the referee's suggestion. Page 12, line 22-26. 

 
Comments by Jonathan Eden 
• We thank Jonathan Eden for his useful suggestion to make a better distinction between cases 

where post-processing/BC is justified and when not. This point is similar to the comments made 
by referee #1 and #2. We kindly ask the referee to refer to the comments we made to referees 
#1 and #2 and to Page 9, line 9-31 and page 17 line 16-19.. Also, the insight gained from such a 
detailed error analysis as presented in Eden et al. 2012 of course assists model improvement. We 
added reference on page 21 line 14. 

 
 
Yours sincerely, 
 
Uwe Ehret, Erwin Zehe, Volker Wulfmeyer, Kirsten Warrach-Sagi and Joachim Liebert 
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Abstract 14 

Despite considerable progress in recent years, output of both Global and Regional Circulation 15 

Models is still afflicted with biases to a degree that precludes its direct use, especially in 16 

climate change impact studies. This is well known, and to overcome this problem bias 17 

correction (BC), i.e. the correction of model output towards observations in a post processing 18 

step for its subsequent application in climate change impact studies has now become a 19 

standard procedure. In this paper we argue that BC is currently often used in an invalid way: 20 

It is added to the GCM/RCM model chain without sufficient proof that the consistency of the 21 

latter, i.e. the agreement between model dynamics/model output and our judgement as well as 22 

the generality of its applicability increases. BC methods often impair the advantages of 23 

Circulation Models by altering spatiotemporal field consistency, relations among variables 24 

and by violating conservation principles. Currently used BC methods largely neglect feedback 25 

mechanisms and it is unclear whether they are time-invariant under climate change 26 

conditions. Applying BC increases agreement of Climate Model output with observations in 27 

hind casts and hence narrows the uncertainty range of simulations and predictions without, 28 

however, providing a satisfactory physical justification. This is in most cases not transparent 29 
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to the end user. We argue that this hides rather than reduces uncertainty, which may lead to 1 

avoidable forejudging of end users and decision makers. 2 

We present here a brief overview of state-of-the-art bias correction methods, discuss the 3 

related assumptions and implications, draw conclusions on the validity of bias correction and 4 

propose ways to cope with biased output of Circulation Models in the short term and how to 5 

reduce the bias in the long term. The most promising strategy for improved future Global and 6 

Regional Circulation Model simulations is the increase in model resolution to the convection-7 

permitting scale in combination with ensemble predictions based on sophisticated approaches 8 

for ensemble perturbation. 9 

With this article, we advocate communicating the entire uncertainty range associated with 10 

climate change predictions openly and hope to stimulate a lively discussion on bias correction 11 

among the atmospheric and hydrological community and end users of climate change impact 12 

studies. 13 

1 Introduction 14 

Understanding and quantifying the causes and effects of climate change is currently one of the 15 

most challenging questions in science and of high relevance for society. Today, besides 16 

observations, among the best (but certainly not perfect) tools we have to understand Earth's 17 

climate dynamics and evolution are Global Circulation Models (GCMs). Confidence in the 18 

fidelity of predictions by such models comes from several sources (Randall et al., 2007): 19 

Firstly, model fundamentals are based on established physical laws, such as conservation of 20 

mass, energy and momentum and process insight comes from a wealth of observations. 21 

Secondly, the models are able to simulate important aspects of the current climate, among 22 

them many patterns of climate variability observed across a range of time scales such as the 23 

seasonal shifts of temperatures, storm tracks or rain belts. Further, the models have proven 24 

their ability to reproduce features of past climates and climate changes. Finally, on large 25 

spatial and temporal aggregation scales (global, multi-annual) and especially for projections 26 

of temperature changes, most models point into the same direction. 27 

However, for most hydrologically relevant variables, GCMs currently do not provide reliable 28 

information on scales below about 200 km (Maraun et al., 2010).  This is too coarse for a 29 

realistic representation of most hydrological processes that act over a large range and down to 30 

very fine scales (Blöschl and Sivapalan, 1995; Kundzewicz et al., 2007). This is especially 31 

true for the main driver of hydrological processes, precipitation. The resolution of GCMs 32 
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precludes the simulation of realistic circulation patterns that lead to extreme rainfall events 1 

(Kundzewicz et al., 2007), and for hydrological simulations and predictions to become 2 

reliable on relevant scales, precipitation input needs to be realistic, not only with respect to 3 

the mean but also with respect to intensity (especially extremes), intermittency (Ines and 4 

Hansen, 2006), temporal and spatial variability across regions and seasons (Maraun et al., 5 

2010). GCM output is thus currently an inadequate base for reliable hydrological predictions 6 

of climate change impact on scales relevant for decision-makers. The same applies to regional 7 

agricultural studies (Ines and Hansen, 2006). 8 

One avenue to close this scale gap is stochastic downscaling. Stochastic downscaling 9 

establishes a functional relationship between the most robust and reliable fields provided by 10 

GCMs such as geopotential height and temperature and locally observed meteorological 11 

variables such as precipitation or temperature in a region of interest (e.g. Wójcik and 12 

Buishand, 2003; Burger, 1996; Stehlik and Bárdossy, 2002). 13 

A physically more consistent approach to overcome this scale mismatch is dynamical 14 

downscaling: A high-resolution (typically 10-50 km) Regional Circulation Model (RCM) is 15 

nested into a GCM, which provides the forcing at the boundaries. Due to the higher resolution 16 

and a more complete representation of physical processes in RCMs, this can considerably 17 

improve simulations and projections of regional-scale climate (Maraun et al., 2010). Applying 18 

RCMs has the greatest potential to improve rainfall simulations when the forcing is mainly 19 

regional. In the case of large-scale forcing (such as propagation of frontal systems), the 20 

quality achievable by the RCM will inevitably be limited by the quality of the boundary 21 

conditions provided by the GCM (Wulfmeyer et al., 2011). Often, the output of RCMs is then 22 

used in impact models such as Hydrological Models (HMs). 23 

However, despite considerable progress in recent years, reproduction of hydrologically 24 

relevant variables in current-day climate on appropriate scales based on GCM-RCM model 25 

chains are still afflicted with systematic errors (bias) to a degree that preclude their direct 26 

interpretation or application for simulation and prediction in HMs. This is well known and has 27 

been recognized by many authors, e.g. Wilby  et al. (2000), Wood et al. (2004), Randall et al. 28 

(2007), Piani et al. (2010), Hagemann et al. (2011), Chen et al. (2011), Rojas et al. (2011), 29 

Haddeland et al. (2012), Johnson and Sharma (2012). To overcome this problem, post 30 

processing of either GCM or RCM output by correcting with and towards observations has 31 

become a standard procedure in climate change impact studies (CCIS). This Bias Correction 32 
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(BC) procedure significantly alters the model output and therefore influences the results of all 1 

CCIS relying on bias corrected data. 2 

Based on this, the main question we pursue in this article is whether and when the application 3 

of BC methods, which often, unlike the other components of the modeling chain for CCIS 4 

(GCMs, RCMs and HMs) lack a sound physical base, is justified or not. To this end, we start 5 

with a definition of bias and present an overview of its causes and typical magnitudes in Sect. 6 

2. We continue in Sect. 3 by presenting approaches to deal with biased model output with a 7 

focus on BC and reflect why BC, despite its known deficits, is nevertheless routinely applied. 8 

In Sect. 4, we present a brief overview of state-of-the-art BC methods. Based on this, we 9 

discuss BC with respect to the assumptions made when applying it and reflect on its 10 

implications in Sect. 5. It is a matter of on-going scientific discussion whether these 11 

assumptions are really satisfied and thus whether and when the application of BC is justified 12 

or not. We complete Sect. 5 by presenting an overview of opinions from current literature and 13 

formulate our own reservations with BC. Finally, we propose ways to cope with biased model 14 

output from GCMs and RCMs in the short term and how to reduce the bias in the long term in 15 

Sect. 6 and draw final conclusions in Sect. 7. 16 

2 Model bias: Definition, causes and magnitude 17 

2.1 Definition 18 

When we say bias, what do we mean? The international definition of bias according to WMO 19 

(WWRP 2009-1) is the correspondence between a mean forecast and mean observation 20 

averaged over a certain domain and time. According to the recommendation of the Joint 21 

Working Group on Forecast Verification Research (JWGFVR), the comparison should be 22 

performed between gridded data sets (WWRP 2009-1), with the grid resolution of the models 23 

degraded by a factor of 3-4 to take into account numerical filter effects (see e.g. Bauer et al., 24 

2011). 25 

However, in the context of CCIS, the actual definition of bias is not as strict: It varies with the 26 

scope of the studies and is often used in a general sense for addressing any deviation of 27 

interest (e.g. with respect to the mean, variance, covariance, length of dry spells etc.) of the 28 

model from the corresponding 'true' value. Typically, biases are calculated for precipitation or 29 

temperature on continental, river basin or model grid scale for annual, seasonal, or monthly 30 

aggregations. Unlike weather forecast verification, where atmospheric variables are averaged 31 
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over short times scales and thus allow the analysis of individual events, climate models 1 

cannot be verified for single cases. Instead, their ability to reproduce climate variability is 2 

analyzed, and typically averaged over the order of ten years. Maraun et al. (2010) give an 3 

overview of metrics to validate GCM/RCM output. Chen et al. (2011) and Haerter et al. 4 

(2011) define bias as the time independent component of the model error, i.e. the portion of 5 

the error that occurs at all times. However, it should be kept in mind that as the bias is a result 6 

of a dynamic model error chain, it will always be a combination of time-variant errors. 7 

Throughout this text, we will stick to the broad definition of bias established in the CCIS 8 

community, i.e. we will use 'bias' for any discrepancy of interest between a model (GCM, 9 

RCM or HM) output characteristic and the 'truth'. However, for the future we strongly suggest 10 

that the use of 'bias' should be narrowed again to the WMO definition (see also Sect. 6.1). 11 

2.2 Causes 12 

The most obvious reasons for biased model output are imperfect model representations of 13 

atmospheric physics (Maraun, 2012), incorrect initialization of the model or errors in the 14 

parameterization chain: With respect to GCMs, it is currently subject of intense discussion 15 

whether better initialization of the state of the oceans and the land surface leads to an 16 

improvement of simulations beyond decades. The process chain leading to the model climate 17 

depends on the parameterization of various processes of all compartments in the Earth system 18 

including the cryosphere, the hydrosphere and the biosphere as well as the atmosphere with 19 

its high resolution complex turbulent and aerosol-cloud-precipitation microphysics. It is likely 20 

that strong deficiencies still exist with respect to the simulation of the cryosphere, the water 21 

cycle over the land surface which is controlled by soil and vegetation properties and the 22 

corresponding energy balance closure as well as the parameterization of aerosol-cloud-23 

precipitation microphysics (e.g. Doherty et al., 2009; WCRP, 2009). 24 

With respect to RCMs, errors can be introduced by incorrect boundaries provided by 25 

reanalyses or GCMs or inconsistencies between the physics of GCMs and RCM. Furthermore, 26 

in spite of the higher resolution of RCMs, several deficiencies remain with respect to the 27 

parameterizations. There are strong indications that the main errors in state-of-the-art RCMs 28 

are due to incorrect energy balance closure, its feedback to the convective and stable 29 

atmospheric boundary layer and the resulting formation of clouds and precipitation, which is 30 

strongly controlled by the choice of the microphysical scheme. Furthermore, it is important to 31 
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consider that the overall bias depends on the combination of forcing leading to precipitation 1 

events because different combinations of model physics are affected. 2 

Within the WWRP projects D-PHASE (Rotach et al., 2009) and COPS (Wulfmeyer et al., 3 

2011), a forcing concept was developed resulting in the following understanding of model 4 

errors: If large-scale forcing is present, the main error is driven by GCM boundaries but the 5 

fine structure of errors down to the scale of catchments is still influenced by local forcing 6 

(land-surface heterogeneity and orography). The importance of local forcing increases from 7 

weakly forced conditions (no surface front but upper level instability) to local forcing where 8 

convection and precipitation is initiated by orography and/or land-surface heterogeneity. It is 9 

clear that the models must be able to simulate the statistics of precipitation depending on the 10 

combination of forcing conditions. 11 

Another source of bias that applies to both GCMs and RCMs is climate variability: Models 12 

are parameterized and evaluated on finite-length time series which may not cover the full 13 

range of atmospheric dynamics. This makes them subject to sampling uncertainty or bias. 14 

This applies even more to the parameterization of BC methods (Maraun, 2012).  15 

Further, apparent model biases can occur if the reference data sets (the 'truth') used for model 16 

parameterization and validation are inadequate. On smaller scales, high quality observation-17 

derived data sets such as E-OBS (Haylock et al., 2008) are available, which may be biased 18 

due to non-representativeness of the underlying observations. On larger scales, it is mainly 19 

only reanalysis data such as the WATCH data set (Weedon et al., 2011), NCEP/NCAR or 20 

ERA-interim (Dee et al., 2011) that are available. They are in turn subject to model biases and 21 

can significantly deviate from the true weather (Maraun et al., 2010). It is therefore important 22 

to develop and validate new high-resolution observation-based reference data sets by 23 

exploiting the full range of available observations. 24 

HMs using output from RCMs add other sources of bias: RCMs contain hydrological 25 

components to calculate land surface-atmosphere interaction. If the RCM output is used in a 26 

HM, an assumption is made on the interchangeability of the two hydrological schemes, i.e. 27 

comparability of their land-atmosphere feedback functioning. This is usually not fulfilled 28 

(Rojas et al., 2011), see also Sect. 5.1. Also, biases occur if the spatial or temporal resolution 29 

of the GCM/RCM input for the HMs is inadequate (Hay et al., 2002). HMs are usually 30 

calibrated on interpolated meteorological point observations and observed streamflow. Thus, 31 

the models are tuned to reproduce streamflow based on biased input (smooth fields based on 32 
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sparse data). When changing the input to gridded RCM fields, this model configuration will 1 

likely create a biased output, as it still compensates 'for the old bias'. 2 

For hydrological CCIS, perhaps the most troublesome systematic biases are those in 3 

precipitation: 'The biases ordinarily present in hydrological output from GCMs affect all 4 

aspects of the intensity spectrum. Simulated precipitation statistics are generally affected by a 5 

positive bias in the number of wet days, which is partly compensated by an excessive number 6 

of occurrences of drizzle, a bias in the mean, the standard deviation (variability), and the 7 

inability to reproduce extreme events' (Piani et al., 2010). This was also reported by many 8 

other, e.g. Stephens et al. (2010), Sun et al. (2006). Specifically for Europe, Christensen et al. 9 

(2008), and Dosio and Paruolo (2011) report that winter time precipitation is generally too 10 

abundant. A comprehensive overview of systematic errors in present-day RCMs can be found 11 

in Rojas et al. (2011). 12 

2.3 Magnitude 13 

In this section, we will illustrate the magnitude of biases (and with it the magnitude of BC 14 

impact by removing them) in the GCM/RCM/HM chain with examples reported in the 15 

literature and from own studies: Johnson and Sharma (2012) compared raw output from a 16 

GCM (CSIRO Mk3.5) and RCM (MIROC) with observations: In interior Australia, both 17 

models over-predicted annual rainfall by up to 200%, but under-predicted along the coasts. 18 

Rojas et al. (2011) found that averaged annual precipitation simulated by the HIRHAM 5 19 

RCM over Europe in the control period 1961-2000 almost doubled the observed 20 

measurements. Hagemann et al. (2011) reported from a study applying three GCMs, two 21 

emission scenarios and two global hydrological models (GHM) that 'for some regions, the 22 

impact of the bias correction on the climate change signal may be larger than the signal itself, 23 

thereby identifying another level of uncertainty that is comparable in magnitude to the 24 

uncertainty related to the choice of the GCM or GHM'. Sun et al. (2011) investigated the 25 

influence of BC on the mean and spread of a 39 model ensemble on gridded annual 26 

precipitation in the Murray-Darling basin (Australia): BC changed the ensemble mean by 27 

17.7% and the ensemble spread by 122% (relative to the observation). Sharma et al. (2007) 28 

compared mean monthly rainfall amounts from a GCM (ECHAM4) with spatially 29 

interpolated observations on model grid scale: BC changed the correlation between 30 

observations and raw GCM output from 0.32 to 0.66, i.e. it caused a relative change of 48%. 31 

Likewise, the Root Mean Square Error (RMSE) was changed by 56% (from 3.64 mm to 2.06 32 
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mm). This also had a noticeable impact on discharge simulations (Ping river basin, Thailand, 1 

34453 km²): The relative RMSE changed by 54% (from 172 to 93 m³/s). On the other hand, 2 

the influence of climatic variability seems to be less prominent: Chen et al. (2011) compared 3 

the relative contribution of GCM, emission scenario, period for bias correction and inter-4 

annual variability to the uncertainty of hydrological climate impact studies. They concluded 5 

that 'the choice of different decadal periods over which to derive the bias correction 6 

parameters is a source of comparatively minor uncertainty compared to the choice of GCM, 7 

SRES scenario and the natural inter-annual variability.' In the recently conducted study 'Flood 8 

hazards in a changing climate' (Schädler et al., 2012) climate change impact on flood 9 

magnitudes was analysed in a multi-model study including two GCMs, two RCMs, three 10 

HMs in three mesoscale catchments in Germany. The GCM/RCM/HM model chain was 11 

applied to the reference period 1971-2000 and monthly mean flood magnitudes were 12 

calculated. Here we discuss the results at the example of gauge Wetter/Ruhr (3908 km²). The 13 

flood magnitudes were afflicted with strong biases (for scenarios with the RCM 'CLM' on 14 

average 168% relative to the observations). To reduce them, BC was applied to precipitation 15 

and temperature of the RCM. The effect on the mean monthly flood magnitudes (i.e. the 16 

difference in the flood magnitudes with and without bias correction relative to the observed 17 

ones) was in the range of 23-181%, again evaluated in the observation period.  18 

The main point we want to make in this section is that just as model biases can be in an order 19 

of magnitude that precludes the direct use of model output in CCIS, the impact of any BC 20 

method that corrects for this bias is of equal magnitude. Hence BC will have a large influence 21 

on the GCM/RCM/HM output in absolute terms and likely also on climate change signals (i.e. 22 

the relative change between a control and prediction period). However, this impact of BC is 23 

only very rarely explicitly quantified and made transparent in CCIS, as well as the crucial 24 

assumption – stationarity of the BC method under non stationary conditions – is often not 25 

critically discussed. 26 

3 Hiding model bias through Bias Correction  27 

As discussed in the introduction, the problem of biased GCM/RCM output is well known and 28 

considerable efforts have been made to tackle this problem. We broadly classify them into 29 

three approaches: 30 

The first is to reduce the bias by improving the models, addressing the deficiencies as 31 

outlined in Sect. 2.2. This is the most difficult but in the long term the most promising and 32 
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potentially reliable approach as it ties directly to the physical model base. This approach will 1 

be discussed in detail in Sect. 6.3. 2 

As a complete removal of bias is likely not possible by a single deterministic model, this step 3 

needs to be combined with the development of multi-model ensembles for GCMs, RCMs as 4 

well as HMs. The ensemble spread is essential to quantify the uncertainty associated with 5 

CCIS results. while averaging over the ensemble will reduce the bias compared to single 6 

model approaches. This approach is currently subject to intense research and promises 7 

considerable improvement in the mid-term. We discuss this in more detail in Sect. 6.2. 8 

Our focus in this section is on the third approach, namely the correction of model output in a 9 

post-processing step. Post-processing can reduce GCM/RCM bias and can be regarded as a 10 

valid part of the model chain when it meets the requirements we impose on the incorporation 11 

of any model component (including the process descriptions inside the models): They should 12 

increase consistency (correspondence between model dynamics/output and our judgement), 13 

quality (correspondence between model output and observations) and value (benefit of model 14 

output to users) of the model, see Murphy (1993). Consistency relates to the agreement of the 15 

model component with our understanding of the functioning of the system under 16 

consideration. For a model component to increase consistency we should be sure that it is 17 

generally applicable, i.e. it should work under the full range of possible boundary conditions 18 

and model states. An example: Let us assume a thermometer (our model) that we know has a 19 

constant bias of -3K. Adding a bias-correction (add +3K to the thermometer reading) in a 20 

post-processing step would be in full agreement with the 3 requirements. However, if we had 21 

only one pair of model output (the thermometer reading) and the corresponding true value, 22 

e.g. 3°C and 6°C, we could not be sure whether the correction should be 'reading +3K' or 23 

'reading *2'. Applying either of the corrections on the single set of reading and true value 24 

would increase quality and value. However, we could not be sure whether this would still 25 

hold for other value pairs. The correction would thus not increase consistency and possibly 26 

hide (overestimate) the true quality and value of the model. The latter case, in our view, often 27 

applies to the way BC methods are currently applied in CCIS, which hide biases of the 28 

GCM/RCM output from subsequent users. BC methods in this context are usually either done 29 

in combination with a downscaling procedure or on the scale of the model output and are also 30 

referred to as Model Output Statistics (MOS). In this paper, we will, in line with the broad 31 

definition of 'bias' in Sect. 2.1, refer to it as statistical bias correction or simply bias correction 32 
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(BC). For a good overview and also classification of different approaches, see e.g. Maraun et 1 

al. (2010) or Themeßl et al. (2011). Note that in this paper, we exclude the field of empirical-2 

statistical downscaling (Wilby and Wigley, 1997) as used in Perfect Prognosis approaches as 3 

there the intention is to downscale large-scale data rather than correcting model errors. 4 

A typical modeling chain for hydrological CCIS thus comprises GCM output used in an 5 

RCM, whose output is then bias-corrected and applied to a HM. Unlike the other components, 6 

most BC methods lack a sound physical base; they usually do not satisfy conservation laws 7 

and are not a model of the physical world in itself (Haerter et al., 2011). This makes their  8 

application more questionable than the other components. Why is it used then or has been 9 

introduced in the first place? Essentially it is a quick fix that was 'born under the pressure to 10 

get answers on the potential impact of climate changes on our society' (Vannitsem, 2011) and 11 

as a consequence, from the necessity to make biased GCM-RCM output usable for 12 

interpretation or further use in HMs. 13 

Compared to the other approaches to tackle the problem of biased model output as described 14 

at the beginning of this section, BC has, from the user perspective, several advantages: As BC 15 

methods act on model output, they can be developed and applied by any potential user 16 

without the need for full insight into the generating model, tailored to the variable and 17 

application of interest with manageable effort (compared to the efforts to advance GCMs or 18 

RCMs). In line with this, Johnson and Sharma (2012) list a number of reasons that make BC 19 

attractive: ease of application, ability to allow future changes in variability (unlike scaling 20 

methods), and flexibility to correct the GCM simulations for the parameters of interest. As 21 

another advantage, Li et al. (2010) mention the lower computational requirements compared 22 

to dynamical model–based alternatives. 23 

In that sense, the range of existing BC methods (see Sect. 4) reflects the range of GCM/RCM 24 

model deficiencies in reproducing present-day climate from the user perspective. Many BC 25 

methods have therefore been developed more from the perspective of necessity rather than 26 

validity. 27 

4 Bias Correction methods 28 

BC methods have been developed and applied by many users of GCM/RCM output for 29 

various purposes. The following list of BC methods is far from being complete and should 30 

rather be understood as to give the reader a taste of the range and approaches of BC (a more 31 

complete overview can be found e.g. in Themeßl et al., 2011): Monthly mean correction 32 
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(Fowler and Kilsby, 2007), delta change method (Hay et al., 2000), multiple linear regression 1 

(Hay and Clark, 2003), analog methods (Moron et al., 2008), local intensity scaling (Schmidli 2 

et al., 2006), quantile mapping (Wood et al., 2004, Sun et al., 2011), fitted histogram 3 

equalization (Piani et al., 2010), gamma-gamma transformation (Sharma et al., 2007). 4 

In recent years, BC methods have evolved from time-averaged corrections of mean 5 

precipitation and temperature towards more advanced methods that correct higher distribution 6 

moments (Piani et al., 2010), include further variables such as radiation, humidity and wind 7 

(Haddeland et al., 2012), allow for time-dependent model biases (Buser et al., 2009; Li et al., 8 

2010) or correct model output hierarchically on several nested timescales (Haerter et al., 9 

2011; Johnson and Sharma, 2012). 10 

Most BC correction methods consist of comparable steps which we will briefly present here 11 

with the example of the fitted histogram equalization approach as proposed by Piani et al. 12 

(2010): After matching the resolution of the model and the reference, outliers are excluded 13 

and the remaining values of both the GCM and baseline fields are ordered by magnitude. The 14 

obtained probability density function of the model data is then mapped onto that of the 15 

observations. This empirical transfer function constitutes the BC and acts on all moments of 16 

the distribution. The transfer functions are determined separately for each calendar month, 17 

grid point and variable. 18 

The important point here is that BC is carried out separately across time, space and variable, a 19 

characteristic that most of the current BC approaches share. Doing so implies several strong 20 

assumptions which affect the applicability of BC. 21 

5 Applicability of Bias Correction 22 

Here we will discuss which assumptions are taken when applying BC methods and what the 23 

related implications are. After this, we will review current literature for statements about the 24 

applicability of BC and finally draw our own conclusions. 25 

5.1 Assumptions and implications of Bias Correction 26 

Due to the variety of existing BC approaches, not all assumptions and implications listed 27 

below apply to all methods. Therefore the list should be seen as a general overview.  28 
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Reliability: The assumption is, plainly spoken, that a GCM/RCM with such obvious 1 

deficiencies that BC is required is nevertheless suitable to predict the (sometimes subtle) 2 

effects of climate change (see also discussion in Sect. 1). 3 

Effectiveness: The assumption is that the chosen BC method is effective, i.e. that it 4 

sufficiently corrects all biases of interest without introducing unwanted side effects (other 5 

biases). However, Chen et al. (2011) report that the choice of the BC method may be another 6 

source of uncertainty. Along the same line, Haerter et al. (2011) found that 'the consequences 7 

of choosing a certain bias-correction method are much more dramatic in the case of 8 

precipitation than in the case of temperature'. In one of the few studies applying multiple BC 9 

techniques, Teutschbein et al. (2011) found that 'the choice of downscaled precipitation 10 

(authors note: from different BC techniques) time series had a major impact on the 11 

streamflow simulations'. 12 

Time invariance: The assumption is that the selected BC method, parameterized on a finite 13 

period of time for a finite size region, also holds under varying forcing and extreme climate 14 

conditions.  15 

However, this is likely not generally valid: Christensen et al. (2008) reports on possible 16 

nonlinear characteristics of model biases as a function of increasing temperatures or 17 

precipitation amounts. Hagemann et al. (2011) showed that BC can alter the climate change 18 

signal for specific locations and months and that BC will lead to changes in the climate 19 

change signals if low precipitation amounts (or temperatures) are differently corrected as high 20 

amounts or if the distribution between low and high amounts changes in a future climate'. 21 

Maraun (2012) investigated possible bias non-stationarity in a pseudo-reality approach. He 22 

defined different types of biases non-stationarities and distinguished between apparent and 23 

real non-stationarities. He could not identify any non-stationarities due to changing relative 24 

occurrences of weather types, but only found considerable bias changes due to different 25 

climate sensitivities, and apparent bias changes due to sampling variability. Similarly, 26 

Vannitsem (2011) used artificial reality approaches (scalar systems and a low-order model of 27 

moist general circulation) to examine BC properties under transient conditions. For the first, 28 

the main finding was that the quality of BC was specific to the system and the model error 29 

source, thus precluding the possibility to deduce universal evolution relations. For the latter, 30 

the main finding was that 'systematic correction associated with the presence of model errors 31 

cannot be straightforwardly transposed from one climate condition to another'. Buser et al. 32 
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(2009), upon developing a BC method that explicitly allows for the bias to vary with time, 1 

stated that 'the problem remains to make assumptions on the nature of the change' and that 2 

'depending on the assumptions made, the climate change signal may differ considerably'. The 3 

authors conclude that 'the aforementioned result is of general interest, as it questions an 4 

important implicit assumption of current scenario models, namely that the model bias will not 5 

significantly depend upon the climate state'. Finally, Terink et al. (2010) applied reanalysis 6 

data to 134 sub basins of the Rhine River and evaluated BC in a split sampling approach. For 7 

the validation period, they found that while temperature was corrected very well, results for 8 

precipitation with BC were worse than without.  9 

Completeness: Closely connected with the assumption of time invariance as discussed above 10 

is the assumption that the finite length control period used to derive BC parameters (e.g. 11 

transfer functions) covers the entire spectrum of the variable of interest. However, especially 12 

for short control periods, this is not fulfilled. This implies that applying the BC method to 13 

predicted values outside the observed range requires an extrapolation of the transfer function 14 

beyond the observed range and may lead to bias-correction of GCM/RCM output beyond 15 

physical limits. Maraun et al. (2010) present a brief overview on approaches to address this 16 

problem. 17 

Minor role of spatiotemporal field covariance: BC is in most approaches parameterized 18 

and applied individually for finite size regions (e.g. grid cells) of the domain of interest. In 19 

general, this alters the spatiotemporal covariance structure of the respective GCM/RCM field 20 

and thus impairs the main advantage of dynamic models, which is to create thermodynamic 21 

fields with covariance structures that are consistent with atmospheric physics. From a 22 

hydrological point of view, changes in the covariance structure may strongly affect 23 

hydrological functioning whenever non-linear processes are involved, e.g. surface runoff 24 

generation or macropore flow initiation. Applying BC methods assumes that the effect of 25 

spatiotemporal field covariance (e.g. the direction and magnitude of temperature gradients or 26 

the length of dry spells) is either not significantly affected by BC or of minor importance, 27 

which may not always hold (Johnson and Sharma, 2012).  28 

Minor role of feedbacks among variables: The assumption is that the links and feedbacks 29 

between the meteorological states and fluxes (temperature, humidity, precipitations, 30 

evapotranspiration etc.) are not of key importance, i.e. the resulting fields can be corrected 31 

after, not during modeling the related processes. On this topic, Seneviratne et al. (2006) 32 
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conclude from a climate change study in Europe that 'the most striking result of our analysis is 1 

that land–atmosphere coupling is significantly affected by global warming and is itself a key 2 

player for climate change'. Further, they summarize that their 'investigation reveals how 3 

profoundly greenhouse gas forcing may affect the functioning of the regional climate system 4 

and the role of land-surface processes'. Berg et al. (2009) showed that daily precipitation 5 

exhibits some scaling with temperature. Piani et al. (2010) pointed out that 'any bias 6 

correction involving multiple fields induces changes in the correlation of such fields and that 7 

the relationship between precipitation and temperature depends on the geographical region 8 

and the time period and area over which precipitation is averaged'. Furthermore, they 9 

conclude that 'the question is not settled whether the statistical relationship can be applied to 10 

future changes in global surface temperature'. Along this line, Johnson and Sharma (2012) 11 

report from a study conducted in Australia that 'there are clearly significant correlations 12 

between temperature and precipitation, particularly at (…) longer time scales'. According to 13 

Wood et al. (2004), this may have noticeable impact on processes like evapotranspiration or 14 

snowmelt. Haddeland et al. (2012) shed light on the (in addition to precipitation and 15 

temperature) significant role of radiation, humidity and wind when simulating the terrestrial 16 

water balance especially in energy-limited areas. These variables are all dynamically coupled 17 

by various feedback processes. 18 

Comparable bias behaviour of GCM/RCM output and output of hydrological models:  19 

From the output of GCM/RCM systems, usually fields of direct interest and fields required as 20 

input for further models (such as HMs) are evaluated and bias corrected. This includes 21 

rainfall, temperature, relative humidity, wind, radiation, etc., but rarely fields of terrestrial 22 

hydrology, although any GCM/RCM contains Land Surface Models (LSMs) that include 23 

terrestrial hydrological processes such as surface and subsurface runoff production. The 24 

reason is the usually very simple representation of these processes, resulting in poor 25 

agreement with observations (Rojas et al., 2011). This can partly be explained by the fact that 26 

the main focus of LSMs in GCMs/RCMs is on the influence of the water balance on surface 27 

heat fluxes (and not discharge calculation, van den Hurk, 2005), while the focus of HMs is 28 

terrestrial water availability and use. LSMs typically solve the water and energy balance while 29 

HMs typically only solve the water balance (Haddeland et al., 2011). 30 

Thus, if the stationarity of BC methods is tested, is usually done for meteorological fields, but 31 

not so often on discharge, the primary quantity of interest of terrestrial hydrology. It is now 32 
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imaginable that for meteorological fields, the bias may be found sufficiently stationary to 1 

make them acceptable for CCIS and that this is extrapolated to fields of terrestrial hydrology. 2 

However, due to the strongly non-linear nature of terrestrial hydrological processes, it may 3 

well be that small bias instationarities in the meteorological forcing may be amplified to large 4 

bias intstationarities of terrestrial hydrological variables. This can due to the usually simple 5 

representation of runoff-formation processes not be evaluated in the GCM/LSM system itself, 6 

but must be done with the output of the HM. 7 

No bias due to offsets: Many existing BC methods identify bias by comparing model output 8 

and observations for identical regions in space and identical points of time during a reference 9 

period. This implies that any model deficiency that manifests as spatial or temporal offset is 10 

falsely recognized as a value bias (Haerter et al., 2011). 11 

Bias can be associated with typical timescales: Many existing BC methods determine and 12 

correct bias at one (or a few) aggregation times of interest (season, month), thus assuming that 13 

bias occurs mainly and can be attributed to effects at this selected time scale. However, 14 

Haerter et al. (2011) argue that 'fluctuations on different scales (caused by disparate physical 15 

mechanisms) can mix and lead to unexpected and unwanted behavior in the corrected time 16 

series and blur the interpretation for future scenario corrections'. In support, they present an 17 

example where bias correction based on daily temperature led to an improvement of the day-18 

to-day variance, but the variance of the monthly means in fact became less realistic after 19 

performing the bias correction. On the other hand, Rojas et al. (2011) found that BC of 20 

temperature based on monthly transfer functions fully preserved observed annual and 21 

seasonal statistics. 22 

5.2 Conclusions on the applicability of Bias Correction 23 

The range of existing BC methods as outlined in Sect. 4 reflects the user perspective of 24 

deficits of GCM/RCM models to reproduce present-day and predict future climate. In general, 25 

the biases corrected for are a function of time, space and meteorological variable and spread 26 

in a non-uniform way through the entire distribution of the variables. The biases also manifest 27 

themselves in the characteristics of spatiotemporal field covariance.  In short, the bias 28 

structure is complex, which is a direct result of the complex nature of hydro-meteorological 29 

atmospheric and land-surface process interactions. The question is then whether or not the 30 

application of BC, which is essentially a post-processing step neglecting these complex 31 
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interactions is valid in making GCM/RCM output usable for CCIS. This is increasingly 1 

discussed in the scientific community: Hagemann et al. (2011) conclude that 'it is rather 2 

difficult to judge whether the impact of the bias correction on the climate change signal leads 3 

to a more realistic signal or not', Vannitsem (2011) wonders 'whether this type of post 4 

processing can still be used in the context of a transient climate, in particular in the context of 5 

decadal forecasts. The obvious answer would be no in a strict sense since modifications of 6 

external parameters generically imply modifications of the variability of the system'. Haerter 7 

et al. (2011) formulate limitations to the application of BC: i) at every gridbox where BC is to 8 

be applied, it must be ensured that the model provides a realistic representation of the physical 9 

processes involved, ii) quantitative discrepancies between the modelled and observed 10 

probability density function of the quantity at hand must be constant in time, iii) BC cannot 11 

improve the representation of fundamentally misrepresented physical processes, iv) only 12 

when short-term and long-term fluctuations are aligned, the bias correction will lead to 13 

improvements on both timescales. Teutschbein and Seibert (2010) generally recommend the 14 

application of bias-correction methods but warn that 'the need for bias corrections adds 15 

significantly to uncertainties in modelling climate change impacts'. 16 

Let us go back once more to the core of most CCIS, the GCM/RCM/HM model chain: Most 17 

of the confidence we have in them comes from the fact that the models are based upon 18 

established physical-chemical laws, their capability to produce thermodynamic fields with a 19 

spatiotemporal correlation structure consistent with atmospheric physics and their inherent 20 

consideration of various feedback processes. This is especially important for hydrological 21 

considerations, as hydro-meteorological atmospheric and land-surface processes interactions 22 

are complex and non-negligible. BC impairs these advantages by altering spatiotemporal field 23 

consistency, relations among variables and conservation principles. In addition, it remains 24 

doubtful that BC methods parameterized on observed climate will hold under changing 25 

climate conditions. 26 

Further we ask what can be gained from advancing BC methods: Let us extrapolate the 27 

current evolution of bias correction from simple towards more complex models (see Sect. 4). 28 

If we arrive at the perfect BC method correcting at high spatial and temporal resolution all 29 

moments of the variable of interest, assure consistency over many spatial and temporal scales 30 

as well as inter-field correlations, discriminate between different weather situations, allow for 31 

the bias to be time-transient and include feedback effects, then we inevitably arrive at a 32 
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complexity of the BC method comparable to the GCM or RCM itself, but still lack the 1 

physical justification of the latter. This will limit our confidence in climate change predictions 2 

involving BC. 3 

Applying BC on GCM/RCM output (by definition) increases agreement with observations 4 

and hence narrows the uncertainty range of simulations and predictions, without however 5 

providing a satisfactory physical justification. This is in most cases not transparent to the end 6 

user. We argue that this hides rather than reduces uncertainty, which may lead to avoidable 7 

forejudging of end users and decision makers.  8 

Our last argument relates to hydrology-related outcomes of CCIS based on GCM/RCM/HM 9 

model chains such as future flood (or drought) characteristics: Instead of bias-correcting the 10 

meteorological drivers, a logical step would be to simply bias-correct the outcome of the 11 

HMs, e.g. discharge simulations and predictions. Applying this 'end-of-pipe' bias-correction 12 

would be based on the same justification as BC of GCM/RCM output, but we dare say that it 13 

would not be accepted by hydrologically educated end users, at least not without an explicit 14 

knowledge of the impact of BC on the result. 15 

In short, we conclude that BC is currently often used in an invalid way: It is added to the 16 

GCM/RCM model chain without sufficient proof that the consistency of the latter, i.e. the 17 

agreement between model dynamics/output and our judgement and the generality of its 18 

applicability increases. 19 

6 Ways forward: Proposals on how to use and how to avoid Bias Correction 20 

Notwithstanding the reservations we have with current BC practice, providing answers on 21 

climate change impact remains an urgent task, and the deficiencies of present-day GCMs and 22 

RCMs that prepared the grounds for BC in the first place do not vanish by criticizing the 23 

shortcomings of BC either. In the following section, we therefore propose ways forward to 24 

cope with and reduce the bias associated with output of GCMs and RCMs for CCIS. 25 

6.1 Proposals for the short term 26 

The first and easiest task to accomplish is to openly communicate to the end user the impact 27 

of BC and the uncertainties associated with it by: 28 

• providing all results of any impact study for both bias corrected AND non-corrected 29 

input, for the hind cast period and the projection, along with a detailed explanation of the 30 
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BC method.  From the spread of the results in the hind cast period and the projection, the 1 

impact of BC must therefore be made comprehensible to any end user. For non-expert end 2 

users, it may be better to avoid publication of the bias-corrected results altogether. 3 

• Further, to avoid confusion, we strongly suggest restricting the use of the term 'bias' to the 4 

definition given by WMO (WWRP 2009-1), see Sect. 2.1. Any other discrepancy of 5 

interest between a model result and the related observation/reference should be named 6 

differently (e.g. mean difference of the variance, etc.). 7 

These steps will not lead to less biased GCM/RCM output; however they will contribute to 8 

the quantification of bias and to raising its awareness among end users. Maraun et al. (2010) 9 

stated with respect to  end user needs for downscaled precipitation that 'as well as the product, 10 

the end user might also require a clear statement of the assumptions involved and limitations 11 

of the downscaling procedure, a transparent explanation of the method, a description of the 12 

driving variables used in the downscaling procedure and their source, a clear statement of the 13 

validation method and performance, and some characterization of the uncertainty or reliability 14 

of the supplied data'. We agree and suggest that the same also holds for BC methods. 15 

6.2 Proposals for the mid term 16 

The second set of proposals, namely the use of nested GCM/RCM approaches and the use of 17 

multi-model ensembles already finds high attention within the scientific community (see also 18 

Sect. 3): 19 

• Nested approaches, i.e. the use of RCMs to downscale GCM output have already proven 20 

their potential to improve the quality of regional climate simulations and climate change 21 

predictions in dependence of forcing conditions. Improvements can be attributed to the 22 

higher spatial resolution and hence a better description of orographic effects, land/sea 23 

contrast, land surface characteristics (Maraun et al., 2010) and especially to move from a 24 

parameterized to an explicit representation of convection. RCMs also contain (compared to 25 

GCMs) better representations fine scale physical and dynamical processes including 26 

feedback processes which leads to a more realistic regional redistribution of mass, energy 27 

and momentum, e.g. in the form of mesoscale circulation patterns which are absent in 28 

GCMs (Maraun et al., 2010; Liang et al., 2008). 29 

• Multi model ensembles provide an ensemble of simulations and predictions either by the 30 

use of several models for some or all components of the modelling chain 31 
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(GCM/RCM/HM) and/or by using ensembles of perturbed initial conditions or model 1 

parameterizations. Ensemble approaches help to quantify uncertainty of CCIS through the 2 

ensemble spread (e.g. Knutti, 2008). They are also useful to attribute uncertainty to 3 

different components of the modelling chain and natural variability (Maraun et al., 2010; 4 

Teutschbein and Seibert, 2010). With respect to uncertainty quantification, many projects 5 

such as ENSEMBLES (Christensen et al., 2008), PRUDENCE (Christensen and 6 

Christensen, 2007) and among many others, Wilby (2010), Ott et al. (2012), Schädler et al. 7 

(2012) or Sun et al. (2011) promote the use of model ensembles to avoid non-8 

representativeness of the sample. Currently within the COordinated Regional climate 9 

Downscaling EXperiment (CORDEX) (Giorgi et al., 2009) high-resolution (50 km, 25 km 10 

and – for Europe- 11 km) ensembles and comparisons of regional climate simulations are 11 

underway for all continents forced with the most recent re-analysis data (ERA-interim) and 12 

GCM data from CMIP5 for the IPCC-AR5 report (e.g. Warrach-Sagi et al. (2012). 13 

Haddeland et al. (2011) highlighted that ensemble approaches should not be limited to the 14 

atmospheric models (GCM/RCM), as results from different impact models (here: HMs) 15 

revealed their considerable contribution to overall impact uncertainty. It is interesting that 16 

with respect to the ensemble mean, Jacob et al. (2007) pointed out that 'when many RCMs 17 

are used in a coordinated way, (…) the ensemble mean nearly always is in better 18 

agreement with observed climatology than any individual model'. Similar findings were 19 

reported e.g. by Ines and Hansen (2006), Gleckler et al. (2008), Dosio and Paruolo (2011) 20 

or Nikulin et al. (2012). It should be kept in mind, however, that just as the application of 21 

BC methods, averaging across an ensemble invariably compromises physical consistency 22 

among fields. 23 

In short, nested approaches can help to reduce the bias, multi-model ensembles can help to 24 

quantify the uncertainty associated with CCIS results while averaging over the ensemble often 25 

reduces the bias compared to single models. Implementing any of these approaches requires 26 

considerable expertise across a range of models as well as extensive data handling and 27 

computing power. Establishing full multi-model ensembles as a standard will therefore be 28 

more likely to happen in the mid- rather than the short-term. 29 

6.3 Proposals for the long term 30 

The most challenging, time-consuming but ultimately most promising and satisfying approach 31 

to reduce the bias in GCM/RCM/HM model chains is to improve the models themselves. 32 
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Current-day GCMs and RCMs are far from being perfect, and issues such as truncation of 1 

scales, violation of scaling laws, collapsing physical processes to their mean, lack of feedback 2 

from regional to global scales etc. still compromise the physical foundation of the models. 3 

However, they are the only basis to which we can, by and by, add new insights in the 4 

functioning of the coupled atmosphere-land-ocean system. 5 

This can be achieved in several ways: 6 

• Improved process descriptions: Beside improvements as a result of deeper insight into 7 

meteorological processes based on novel experiments and observations, especially the 8 

explicit representation of convection in RCMs but also GCMs, has the potential to 9 

substantially enhance model accuracy (Maraun et al., 2010). Explicit incorporation of 10 

convection adds process knowledge to the model and allows for small-scale land-11 

atmosphere feedback processes. Convection-permitting approaches partially alleviate the 12 

wet-day bias and underestimation of precipitation extremes present in most GCMs/RCMs 13 

(see Sect. 2.2), (Stephens et al., 2010; Maraun et al., 2010; Warrach-Sagi et al., 2012). 14 

Recent results from campaigns and modeling activities within projects of the World 15 

Weather Research Program (WWRP) demonstrate advanced model performance if the 16 

models are operated on the convection-permitting scale, i.e. grid resolutions of about 4 km 17 

(Rotach et al., 2009; Bauer et al., 2011; Wulfmeyer et al., 2011).  18 

• An indispensable prerequisite for the move from parameterized to explicit representation 19 

of deep convection is increased spatiotemporal resolution. This is computationally 20 

expensive and currently restricts convection-permitting approaches mainly to RCMs. 21 

However, first tests with the global Nonhydrostatic ICosahedral Atmospheric Model 22 

NICAM (Satoh et al., 2008) at convection-permitting resolution (e.g. Fudeyasu et al., 23 

2008) show encouraging results. 24 

• Improved Ensemble prediction systems (EPS) by suitable perturbations: Extensive 25 

research is required on the development of multi-model or multi-physics EPS. It is not 26 

clear yet what is the most promising approach. In any case, it is necessary to perturb the 27 

land-surface model, too.  28 

• Integration of state-of-the-art hydrological models in GCMs/RCMs: As described in 29 

Sect. 5.1, terrestrial hydrological processes in GCMs and RCMs are usually represented in 30 

a way which precludes their direct use for hydrological problems. Instead, HMs are 31 

successively applied at the expense of losing the possibility for direct land-atmosphere 32 
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feedback. The way forward is then to integrate state-of-the-art hydrological models, 1 

capable of closing the energy, mass and momentum balance of the atmospheric model 2 

components while at the same time operating at acceptable computation times (e.g. Van 3 

den Hurk et al., 2005). Given the importance of land-atmosphere interaction, especially 4 

related to water availability on the ground and the resulting partitioning into 5 

evapotranspiration and runoff, local heat fluxes and convection initiation (Betts, 2009; Van 6 

den Hurk et al., 2005), this has the potential to substantially improve the reliability of 7 

climate simulations and predictions. 8 

Have the research activities conducted to develop and test BC methods then, after all, been a 9 

waste of time? Surely not: Despite our opinion that BC should not be applied in the way it is 10 

currently often done, analysing the nature and quantifying the magnitude of model biases 11 

associated with research on BC or post-processing in general has greatly improved the 12 

identification of model deficiencies (e.g. Vannitsem and Nicolis, 2008; Vannitsem, 2008; 13 

Eden et al. 2012). In that sense, the methods of BC can be seen as model diagnostic tools, for 14 

instance for problems associated with model resolution (e.g. Giorgi and Marinucci, 1996) or 15 

coupling of climate system components (e.g. Gupta et al, 2012). 16 

Knowledge of the spatio-temporal patterns of bias thus helps to identify specific model 17 

deficits and offers the possibility of targeted improvement of GCM/RCM/HM process 18 

formulations, resolution and parameterization. 19 

7 Summary and conclusions 20 

In this article, we have argued that bias correction as currently used to correct the output of 21 

Global or Regional Circulation Models (GCM/RCM) in Climate Change Impact Studies 22 

(CCIS) is often not a valid procedure. To motivate this, we started with a definition of bias 23 

and presented an overview of its causes. We have demonstrated that biases of current-day 24 

Circulation Models are substantial and that, as a consequence, removing them through bias 25 

correction (BC) influences the results of CCIS in a non-negligible way. We have presented 26 

approaches to deal with biased model output with a focus on BC. We argue that the range of 27 

existing BC methods reflects the range of Circulation Model deficiencies from the user 28 

perspective and that they have been developed more from the perspective of necessity rather 29 

than validity. Based on a brief overview of state-of-the-art BC methods, we discussed the 30 

related assumptions and implications and concluded that BC is currently often used in an 31 

invalid way: It is added to the GCM/RCM model chain without sufficient proof that the 32 
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consistency of the latter, i.e. the agreement between model dynamics/output and our 1 

judgement and the generality of its applicability increases. BC methods often impair the 2 

advantages of Circulation Models by altering spatiotemporal field consistency, relations 3 

among variables and by violating conservation principles. BC largely neglects feedback 4 

mechanisms and it is unclear whether BC methods are time-invariant under climate change 5 

conditions. Applying BC increases agreement of GCM/RCM output with observations and 6 

hence narrows the uncertainty range of simulations and predictions, often without providing a 7 

satisfactory physical justification. This is in most cases not transparent to the end user. We 8 

argued that this hides rather than reduces uncertainty, which may lead to avoidable 9 

forejudging by end users and decision makers. Finally, we proposed ways to cope with biased 10 

output of Circulation Models in the short term and how to reduce the bias in the long term. 11 

The most promising strategy for improved future GCM and RCM simulations is the increase 12 

in model resolution to the convection-permitting scale in combination with ensemble 13 

predictions based on sophisticated approaches for ensemble perturbation. 14 

With this article, we advocate openly communicating the entire uncertainty range associated 15 

with climate change predictions and hope to stimulate a lively discussion on BC among the 16 

atmospheric and hydrological community and end users of CCIS. 17 

Acknowledgements 18 

Uwe Ehret would like to thank HESS Editor Stan Schymanski and HESS Executive Editors 19 

Hubert Savenije and Murugesu Sivapalan for inviting him to write this commentary. 20 

Uwe Ehret and Erwin Zehe thank Hoshin V. Gupta for a stimulating discussion on the topic. 21 

22 



 23 

References 1 

Bauer, H.-S., Weusthoff, T., Dorninger, M., Wulfmeyer, V., Schwitalla, T., Gorgas, T., 2 

Arpagaus, M., and Warrach-Sagi, K.: Predictive skill of a subset of models participating in D-3 

PHASE in the COPS region, Quarterly Journal of the Royal Meteorological Society, 137, 4 

287-305, 10.1002/qj.715, 2011. 5 

Berg, P., Haerter, J. O., Thejll, P., Piani, C., Hagemann, S., and Christensen, J. H.: Seasonal 6 

characteristics of the relationship between daily precipitation intensity and surface 7 

temperature, J. Geophys. Res.-Atmos., 114, D18102 10.1029/2009jd012008, 2009. 8 

Betts, A. K.: Land-Surface-Atmosphere Coupling in Observations and Models, Journal of 9 

Advances in Modeling Earth Systems, 1, 18 pp., 10.3894/james.2009.1.4, 2009. 10 

Bloschl, G., and Sivapalan, M.: Scale issues in hydrological modeling - a review, Hydrol. 11 

Process., 9, 251-290, 10.1002/hyp.3360090305, 1995. 12 

Burger, G.: Expanded downscaling for generating local weather scenarios, Climate Research, 13 

7, 111-128, 10.3354/cr007111, 1996. 14 

Buser, C. M., Kunsch, H. R., Luthi, D., Wild, M., and Schar, C.: Bayesian multi-model 15 

projection of climate: bias assumptions and interannual variability, Clim. Dyn., 33, 849-868, 16 

10.1007/s00382-009-0588-6, 2009. 17 

Chen, C., Haerter, J. O., Hagemann, S., and Piani, C.: On the contribution of statistical bias 18 

correction to the uncertainty in the projected hydrological cycle, Geophysical Research 19 

Letters, 38, L20403 10.1029/2011gl049318, 2011. 20 

Christensen, J. H., Boberg, F., Christensen, O. B., and Lucas-Picher, P.: On the need for bias 21 

correction of regional climate change projections of temperature and precipitation, 22 

Geophysical Research Letters, 35, L20709 10.1029/2008gl035694, 2008. 23 

Christensen, J. H., and Christensen, O. B.: A summary of the PRUDENCE model projections 24 

of changes in European climate by the end of this century, Climatic Change, 81, 7-30, 25 

10.1007/s10584-006-9210-7, 2007. 26 

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., 27 

Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., 28 

Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., 29 

Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., 30 



 24 

McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., 1 

Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: configuration and 2 

performance of the data assimilation system, Quarterly Journal of the Royal Meteorological 3 

Society, 137, 553-597, 10.1002/qj.828, 2011. 4 

Doherty, S., Bojinski, S., Goodrich, D., Henderson-Sellers, A., Noone, K., Bindoff, N., 5 

Church, J., Hibbard, K., Karl, T., Kajfez-Bogataj, L., Lynch, A., Parker, D., Thorne, P., 6 

Prentice, I., Ramaswamy, V., Saunders, R., Smith, M., Steffen, K., Stocker, T., Trenberth, K., 7 

Verstraete, M., and Zwiers, F.: Lessons learned from IPCC AR4: Scientific developments 8 

needed to understand, predict, and respond to climate change, Bull. Amer. Meteorol. Soc., 90, 9 

497-513, 10.1175/2008bams2643.1, 2009. 10 

Dosio, A., and Paruolo, P.: Bias correction of the ENSEMBLES high-resolution climate 11 

change projections for use by impact models: Evaluation on the present climate, J. Geophys. 12 

Res.-Atmos., 116, D16106 10.1029/2011jd015934, 2011. 13 

Eden, J. M., Widmann, M., Grawe, D., and Rast, S.: Skill, Correction, and Downscaling of 14 

GCM-Simulated Precipitation, Journal of Climate, 25, 3970-3984, 10.1175/jcli-d-11-00254.1, 15 

2012. 16 

Fudeyasu, H., Wang, Y. Q., Satoh, M., Nasuno, T., Miura, H., and Yanase, W.: Global cloud-17 

system-resolving model NICAM successfully simulated the lifecycles of two real tropical 18 

cyclones, Geophysical Research Letters, 35, L22808 10.1029/2008gl036003, 2008. 19 

Giorgi, F., Jones, C., and Asrar, G.: Addressing climate information needs at the regional 20 

level: The cordex framework. WMO Bull., 58, 175–183, 2009. 21 

Giorgi, F., and Marinucci, M. R.: An investigation of the sensitivity of simulated precipitation 22 

to model resolution and its implications for climate studies, Monthly Weather Review, 124, 23 

148-166, 10.1175/1520-0493(1996)124<0148:aiotso>2.0.co;2, 1996. 24 

Gleckler, P. J., Taylor, K. E., and Doutriaux, C.: Performance metrics for climate models, J. 25 

Geophys. Res.-Atmos., 113, D06104 10.1029/2007jd008972, 2008. 26 

Gupta, A. S., Muir, L. C., Brown, J. N., Phipps, S. J., Durack, P. J., Monselesan, D., and 27 

Wijffels, S. E.: Climate Drift in the CMIP3 Models, Journal of Climate, 25, 4621-4640, 28 

10.1175/jcli-d-11-00312.1, 2012. 29 



 25 

Haddeland, I., Clark, D. B., Franssen, W., Ludwig, F., Voß, F., Arnell, N. W., Bertrand, N., 1 

Best, M., Folwell, S., Gerten, D., Gomes, S., Gosling, S. N., Hagemann, S., Hanasaki, N., 2 

Harding, R., Heinke, J., Kabat, P., Koirala, S., Oki, T., Polcher, J., Stacke, T., Viterbo, P., 3 

Weedon, G. P., and Yeh, P.: Multimodel Estimate of the Global Terrestrial Water Balance: 4 

Setup and First Results, J. Hydrometeorol., 12, 869-884, 10.1175/2011jhm1324.1, 2011. 5 

Haddeland, I., Heinke, J., Voß, F., Eisner, S., Chen, C., Hagemann, S., and Ludwig, F.: 6 

Effects of climate model radiation, humidity and wind estimates on hydrological simulations, 7 

Hydrol. Earth Syst. Sci., 16, 305-318, 10.5194/hess-16-305-2012, 2012. 8 

Haerter, J. O., Hagemann, S., Moseley, C., and Piani, C.: Climate model bias correction and 9 

the role of timescales, Hydrology and Earth System Sciences, 15, 1065-1079, 10.5194/hess-10 

15-1065-2011, 2011. 11 

Hagemann, S., Chen, C., Haerter, J. O., Heinke, J., Gerten, D., and Piani, C.: Impact of a 12 

Statistical Bias Correction on the Projected Hydrological Changes Obtained from Three 13 

GCMs and Two Hydrology Models, J. Hydrometeorol., 12, 556-578, 14 

10.1175/2011jhm1336.1, 2011. 15 

Hay, L. E., and Clark, M. P.: Use of statistically and dynamically downscaled atmospheric 16 

model output for hydrologic simulations in three mountainous basins in the western United 17 

States, Journal of Hydrology, 282, 56-75, 10.1016/s0022-1694(03)00252-x, 2003. 18 

Hay, L. E., Clark, M. P., Wilby, R. L., Gutowski, W. J., Leavesley, G. H., Pan, Z., Arritt, R. 19 

W., and Takle, E. S.: Use of regional climate model output for hydrologic simulations, J. 20 

Hydrometeorol., 3, 571-590, 10.1175/1525-7541(2002)003<0571:uorcmo>2.0.co;2, 2002. 21 

Hay, L. E., Wilby, R. J. L., and Leavesley, G. H.: A comparison of delta change and 22 

downscaled GCM scenarios for three mountainous basins in the United States, Journal of the 23 

American Water Resources Association, 36, 387-397, 10.1111/j.1752-1688.2000.tb04276.x, 24 

2000. 25 

Ines, A. V. M., and Hansen, J. W.: Bias correction of daily GCM rainfall for crop simulation 26 

studies, Agric. For. Meteorol., 138, 44-53, 10.1016/j.agrformet.2006.03.009, 2006. 27 

Jacob, D., Bärring, L., Christensen, O., Christensen, J., de Castro, M., Déqué, M., Giorgi, F., 28 

Hagemann, S., Hirschi, M., Jones, R., Kjellström, E., Lenderink, G., Rockel, B., Sánchez, E., 29 

Schär, C., Seneviratne, S., Somot, S., van Ulden, A., and van den Hurk, B.: An inter-30 



 26 

comparison of regional climate models for Europe: model performance in present-day 1 

climate, Climatic Change, 81, 31-52, 10.1007/s10584-006-9213-4, 2007. 2 

Johnson, F., and Sharma, A.: A nesting model for bias correction of variability at multiple 3 

time scales in general circulation model precipitation simulations, Water Resources Research, 4 

48, W01504 10.1029/2011wr010464, 2012. 5 

Knutti, R.: Should we believe model predictions of future climate change?, Philosophical 6 

Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 366, 7 

4647-4664, 10.1098/rsta.2008.0169, 2008. 8 

Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Döll, P., Kabat, P., Jiménez, B., Miller, K. A., 9 

Oki, T., Sen, Z., and Shiklomanov, I. A.: Freshwater resources and their management. In: 10 

Climate Change 2007: Impacts, Adaptation and Vulnerability—Contribution of Working 11 

Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 12 

Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007. 13 

Li, H. B., Sheffield, J., and Wood, E. F.: Bias correction of monthly precipitation and 14 

temperature fields from Intergovernmental Panel on Climate Change AR4 models using 15 

equidistant quantile matching, J. Geophys. Res.-Atmos., 115, D10101 16 

10.1029/2009jd012882, 2010. 17 

Liang, X. Z., Kunkel, K. E., Meehl, G. A., Jones, R. G., and Wang, J. X. L.: Regional climate 18 

models downscaling analysis of general circulation models present climate biases propagation 19 

into future change projections, Geophysical Research Letters, 35, L08709 20 

10.1029/2007gl032849, 2008. 21 

Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., 22 

Brienen, S., Rust, H. W., Sauter, T., Themessl, M., Venema, V. K. C., Chun, K. P., Goodess, 23 

C. M., Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I.: Precipitation downscaling under 24 

climate change: Recent developments to bridge the gap between dynamical models and the 25 

end user, Reviews of Geophysics, 48, Rg3003 10.1029/2009rg000314, 2010. 26 

Maraun, D.: Nonstationarities of regional climate model biases in European seasonal mean 27 

temperature and precipitation sums, Geophysical Research Letters, submitted, 2012. 28 

Moron, V., Robertson, A. W., Ward, M. N., and Ndiaye, O.: Weather types and rainfall over 29 

Senegal. part II: Downscaling of GCM simulations, Journal of Climate, 21, 288-307, 30 

10.1175/2007jcli1624.1, 2008. 31 



 27 

Murphy, A. H.: What is a good forecast - An essay on the nature of goodness in weather 1 

forecasting, Weather Forecast., 8, 281-293, 10.1175/1520-2 

0434(1993)008<0281:wiagfa>2.0.co;2, 1993. 3 

Nikulin, G., Jones, C., Samuelsson, P., Giorgi, F., Sylla, M.B., Asrar, G., Büchner, M., 4 

Cerezo-Mota, R., Christensen, O.B., Dequè, M., Fernández, J., Hänsler, A., van Meijgaard, 5 

E., Sushama, L.: Precipitation Climatology in an Ensemble of CORDEX-Africa Regional 6 

Climate Simulations. J. Climate, in press, 2012. 7 

Ott, I., Düthmann, D., Liebert, J., Berg, P., Feldmann, H., Ihringer, J., Kunstmann, H., Merz, 8 

B., Schädler, G., and Wagner, S.: Climate change impact on medium and small sized river 9 

catchments in Germany: An ensemble assessment, Journal of Hydrology, submitted, 2012. 10 

Piani, C., Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P., Hagemann, S., and Haerter, J. 11 

O.: Statistical bias correction of global simulated daily precipitation and temperature for the 12 

application of hydrological models, Journal of Hydrology, 395, 199-215, 13 

10.1016/j.jhydrol.2010.10.024, 2010. 14 

Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, 15 

A., Shukla, J., Srinivasan, J., Stouffer, R. J., Sumi, A., and Taylor, K. E.: Climate Models and 16 

Their Evaluation. In: Climate Change 2007: The Physical Science Basis. Contribution of 17 

Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate 18 

Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 19 

2007. 20 

Rojas, R., Feyen, L., Dosio, A., and Bavera, D.: Improving pan-European hydrological 21 

simulation of extreme events through statistical bias correction of RCM-driven climate 22 

simulations, Hydrology and Earth System Sciences, 15, 2599-2620, 10.5194/hess-15-2599-23 

2011, 2011. 24 

Rotach, M. W., Ambrosetti, P., Ament, F., Appenzeller, C., Arpagaus, M., Bauer, H. S., 25 

Behrendt, A., Bouttier, F., Buzzi, A., Corazza, M., Davolio, S., Denhard, M., Dorninger, M., 26 

Fontannaz, L., Frick, J., Fundel, F., Germann, U., Gorgas, T., Hegg, C., Hering, A., Keil, C., 27 

Liniger, M. A., Marsigli, C., McTaggart-Cowan, R., Montaini, A., Mylne, K., Ranzi, R., 28 

Richard, E., Rossa, A., Santos-Munoz, D., Schar, C., Seity, Y., Staudinger, M., Stoll, M., 29 

Volkert, H., Walser, A., Wang, Y., Werhahn, J., Wulfmeyer, V., and Zappa, M.: MAP D-30 



 28 

PHASE Real-Time Demonstration of Weather Forecast Quality in the Alpine Region, Bull. 1 

Amer. Meteorol. Soc., 90, 1321-+, 10.1175/2009bams2776.1, 2009. 2 

Satoh, M., Matsuno, T., Tomita, H., Miura, H., Nasuno, T., and Iga, S.: Nonhydrostatic 3 

icosahedral atmospheric model (NICAM) for global cloud resolving simulations, Journal of 4 

Computational Physics, 227, 3486-3514, 10.1016/jjcp.2007.02.006, 2008. 5 

Schädler, G., Berg, P., Düthmann, D., Feldmann, H., Ihringer, J., Kunstmann, H., Liebert, J., 6 

Merz, B., Ott, I., and Wagner, S.: Flood hazards in a changing climate, Project Report, Center 7 

for Disaster Management and Risk Reduction Technology (CEDIM), 8 

http://www.cedim.de/download/Flood_Hazards_in_a_Changing_Climate.pdf, 2012. 9 

Schmidli, J., Frei, C., and Vidale, P. L.: Downscaling from GC precipitation: A benchmark 10 

for dynamical and statistical downscaling methods, Int. J. Climatol., 26, 679-689, 11 

10.1002/joc.1287, 2006. 12 

Seneviratne, S. I., Luthi, D., Litschi, M., and Schar, C.: Land-atmosphere coupling and 13 

climate change in Europe, Nature, 443, 205-209, 10.1038/nature05095, 2006. 14 

Sharma, D., Das Gupta, A., and Babel, M. S.: Spatial disaggregation of bias-corrected GCM 15 

precipitation for improved hydrologic simulation: Ping River Basin, Thailand, Hydrology and 16 

Earth System Sciences, 11, 1373-1390, 2007. 17 

Stehlik, J., and Bardossy, A.: Multivariate stochastic downscaling model for generating daily 18 

precipitation series based on atmospheric circulation, Journal of Hydrology, 256, 120-141, 19 

10.1016/s0022-1694(01)00529-7, 2002. 20 

Stephens, G. L., L'Ecuyer, T., Forbes, R., Gettlemen, A., Golaz, J. C., Bodas-Salcedo, A., 21 

Suzuki, K., Gabriel, P., and Haynes, J.: Dreary state of precipitation in global models, J. 22 

Geophys. Res.-Atmos., 115, D24211 10.1029/2010jd014532, 2010. 23 

Sun, F. B., Roderick, M. L., Lim, W. H., and Farquhar, G. D.: Hydroclimatic projections for 24 

the Murray-Darling Basin based on an ensemble derived from Intergovernmental Panel on 25 

Climate Change AR4 climate models, Water Resources Research, 47, W00g02 26 

10.1029/2010wr009829, 2011. 27 

Sun, Y., Solomon, S., Dai, A., and Portmann, R. W.: How often does it rain?, Journal of 28 

Climate, 19, 916-934, 10.1175/jcli3672.1, 2006. 29 



 29 

Terink, W., Hurkmans, R., Torfs, P., and Uijlenhoet, R.: Evaluation of a bias correction 1 

method applied to downscaled precipitation and temperature reanalysis data for the Rhine 2 

basin, Hydrology and Earth System Sciences, 14, 687-703, 2010. 3 

Teutschbein, C., and Seibert, J.: Regional Climate Models for Hydrological Impact Studies at 4 

the Catchment Scale: A Review of Recent Modeling Strategies, Geography Compass, 4, 834-5 

860, 10.1111/j.1749-8198.2010.00357.x, 2010. 6 

Teutschbein, C., Wetterhall, F., and Seibert, J.: Evaluation of different downscaling 7 

techniques for hydrological climate-change impact studies at the catchment scale, Clim. Dyn., 8 

37, 2087-2105, 10.1007/s00382-010-0979-8, 2011. 9 

Themessl, M. J., Gobiet, A., and Leuprecht, A.: Empirical-statistical downscaling and error 10 

correction of daily precipitation from regional climate models, Int. J. Climatol., 31, 1530-11 

1544, 10.1002/joc.2168, 2011. 12 

Van den Hurk, B., Hirschi, M., Schar, C., Lenderink, G., Van Meijgaard, E., Van Ulden, A., 13 

Rockel, B., Hagemann, S., Graham, P., Kjellstrom, E., and Jones, R.: Soil control on runoff 14 

response to climate change in regional climate model simulations, Journal of Climate, 18, 15 

3536-3551, 10.1175/jcli3471.1, 2005. 16 

Vannitsem, S.: Bias correction and post-processing under climate change, Nonlinear 17 

Processes in Geophysics, 18, 911-924, 10.5194/npg-18-911-2011, 2011. 18 

Vannitsem S. and Nicolis, C.: Dynamical properties of Model Output Statistics forecasts. 19 

Mon. Wea. Rev., 136, 405-419, 2008. 20 

Vannitsem S.: Dynamical properties of MOS forecasts: Analysis of the ECMWF operational 21 

forecasting system. Weather and Forecasting, 23, 1032-1043, 2008. 22 

Warrach-Sagi, K., Schwitalla, T., Wulfmeyer, V., and Bauer, H-S.: Evaluation of a 23 

CORDEX-Europe simulation with WRF: precipitation in Germany, submitted to Climate 24 

Dynamics, 2012. 25 

World Climate Research, P., World Meteorological, O., Intergovernmental Oceanographic, 26 

C., and International Council of Scientific, U.: WCRP implementation plan 2010-2015, World 27 

Meteorological Organization, Geneva, 2009. 28 

Weedon, G. P., Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth, E., Osterle, H., Adam, J. 29 

C., Bellouin, N., Boucher, O., and Best, M.: Creation of the WATCH Forcing Data and Its 30 



 30 

Use to Assess Global and Regional Reference Crop Evaporation over Land during the 1 

Twentieth Century, J. Hydrometeorol., 12, 823-848, 10.1175/2011jhm1369.1, 2011. 2 

Wilby, R. L., and Wigley, T. M. L.: Downscaling general circulation model output: a review 3 

of methods and limitations, Progress in Physical Geography, 21, 530-548, 4 

10.1177/030913339702100403, 1997. 5 

Wilby, R. L., Hay, L. E., Gutowski, W. J., Arritt, R. W., Takle, E. S., Pan, Z. T., Leavesley, 6 

G. H., and Clark, M. P.: Hydrological responses to dynamically and statistically downscaled 7 

climate model output, Geophysical Research Letters, 27, 1199-1202, 10.1029/1999gl006078, 8 

2000. 9 

Wilby, R. L.: Evaluating climate model outputs for hydrological applications, Hydrol. Sci. J.-10 

J. Sci. Hydrol., 55, 1090-1093, 10.1080/02626667.2010.513212, 2010. 11 

Wojcik, R., and Buishand, T. A.: Simulation of 6-hourly rainfall and temperature by two 12 

resampling schemes, Journal of Hydrology, 273, 69-80, 10.1016/s0022-1694(02)00355-4, 13 

2003. 14 

Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hydrologic implications of 15 

dynamical and statistical approaches to downscaling climate model outputs, Climatic Change, 16 

62, 189-216, 10.1023/B:CLIM.0000013685.99609.9e, 2004. 17 

Wulfmeyer, V., Behrendt, A., Kottmeier, C., Corsmeier, U., Barthlott, C., Craig, G. C., 18 

Hagen, M., Althausen, D., Aoshima, F., Arpagaus, M., Bauer, H. S., Bennett, L., Blyth, A., 19 

Brandau, C., Champollion, C., Crewell, S., Dick, G., Di Girolamo, P., Dorninger, M., 20 

Dufournet, Y., Eigenmann, R., Engelmann, R., Flamant, C., Foken, T., Gorgas, T., Grzeschik, 21 

M., Handwerker, J., Hauck, C., Holler, H., Junkermann, W., Kalthoff, N., Kiemle, C., Klink, 22 

S., Konig, M., Krauss, L., Long, C. N., Madonna, F., Mobbs, S., Neininger, B., Pal, S., Peters, 23 

G., Pigeon, G., Richard, E., Rotach, M. W., Russchenberg, H., Schwitalla, T., Smith, V., 24 

Steinacker, R., Trentmann, J., Turner, D. D., van Baelen, J., Vogt, S., Volkert, H., 25 

Weckwerth, T., Wernli, H., Wieser, A., and Wirth, M.: The Convective and Orographically-26 

induced Precipitation Study (COPS): the scientific strategy, the field phase, and research 27 

highlights, Quarterly Journal of the Royal Meteorological Society, 137, 3-30, 10.1002/qj.752, 28 

2011. 29 



 31 

WWRP 2009-1: Recommendations for the Verification and Intercomparison of QPFs and 1 

PQPFs from Operational NWP Models, World Meteorological Organization, WMO/TD - No. 2 

1485, 2009. 3 


	Original paper: HESSD-9-5355-2012: HESS Opinions - Should we apply Bias Correction to Global and Regional Climate Model Data?
	Author's response to reviewers and guest comments
	Please find below our point-to-point replies to the comments made by referees and guests. We highlight the comments in green, additions to the manuscript are indicated by page and line. The page/line indicators refer to the revised manuscript (attached).
	Comments by Referee #1, Stephane Vannitsem
	Comments by Referee #2, Douglas Maraun
	Comments by Jonathan Eden
	Yours sincerely,
	Uwe Ehret, Erwin Zehe, Volker Wulfmeyer, Kirsten Warrach-Sagi and Joachim Liebert
	HESSOpinions_Ehretetal_revision_1_120801.pdf
	HESS Opinions - Should we apply Bias Correction to Global and Regional Climate Model Data?
	U. Ehret1, E. Zehe1, V. Wulfmeyer2, K. Warrach-Sagi2 and J. Liebert1
	Abstract

	1 Introduction
	2 Model bias: Definition, causes and magnitude
	2.1 Definition
	2.2 Causes
	2.3 Magnitude

	3 Hiding model bias through Bias Correction
	4 Bias Correction methods
	5 Applicability of Bias Correction
	5.1 Assumptions and implications of Bias Correction
	5.2 Conclusions on the applicability of Bias Correction

	6 Ways forward: Proposals on how to use and how to avoid Bias Correction
	6.1 Proposals for the short term
	6.2 Proposals for the mid term
	6.3 Proposals for the long term

	7 Summary and conclusions
	Acknowledgements
	References



