
Short summary of the hydraulic equations used in the manuscript under 
discussion 
 
The phase lag equation (Eq. (6) in the manuscript under discussion), the scaling 
equation (Eq. (7)), the damping equation (Eq.(8)) and the celerity equation (Eq.(9)). 
Have been developed in different stages by Savenije (1992, 1998, 2001) and by 
Savenije and Veling (2005). They are summarised in Savenije (2005). These 
equations can be written in dimensionless form and subsequently they can be solved, 
as demonstrated by Savenije et al. (2008). In dimensionless form these equations are 
presented in the manuscript as Eqs. (17), (18) and (19), representing respectively: the 
damping equation, the celerity equation and the phase lag equation. The scaling 
equation then follows as: 

 µ = sin(ε )
λ

= 1
δ 2 + λ 2

 

The solution of this system is given in the Table below. It shows the dimensionless 
variables and the four equations in the left column. The other two columns present 
classical solutions by Battjes (well known in The Netherlands, but not in the formal 
literature) and the commonly known solution by Harleman and Ippen (1966). What we 
can see is that the equations for the velocity number, tidal propagation and phase lag are 
exactly the same. So in that sense the methods don't differ. The difference lies in two 
aspects. The first is the assumption of exponential damping, and the other is the 
linearization of the damping term in the momentum balance equation. By the way, these 
two aspects are one and the same thing, since the fully linearised momentum balance 
equation leads to exponential damping. 
 The assumption of exponential damping is shown in the top of the right column. 
This assumption is made by most classical methods, but it is seldom seen as an 
assumption. It is assumed to be correct. However, it is an implicit assumption that is not 
used in the left column. Related to the linearization of the friction term, most methods 
linearize by the Lorentz linearization. Savenije (1998), however used an envelope 
method that does not require the linearization of the friction term and results in a 
different damping equation, which is not exponential. In dimensionless form this 
damping equation is presented in the third row of the first column and it can be seen to 
be different from the classical equations which contain the Lorentz factor. 
 There is an additional benefit of this new damping equation (that does not 
assume exponential damping and does not use a linearized friction term), which is that it 
allows fully explicit solution of the set of equations. The second row in the first column 
presents the explicit solution for the velocity number, after which all equations have an 
explicit solution. In the manuscript under discussion this solution is also presented. A 
full description of this solution is given in Savenije et al. (2008). 
 In the framework of this discussion it is not useful to repeat the full mathematical 
handling of this solution, but as the editor indicated, some more background about what 
is really different in the method used is needed. That's why here below, we summarize 
the derivation of the damping equation which is the main and essential difference with 
other methods used in the classical literature. It uses a Lagrangean transform and 
subsequently determines the tidal damping by subtraction of the envelopes of maximum 
high and low water. The subtraction of these extreme water levels yields the differential 
equation for the tidal range, which is the damping equation. We start with the 
Lagrangean form of the water balance equation (based on Savenije, 1992) and 
subsequently we present the envelope method presented in Savenije (1998). The entire 
method is fully worked out in the book "Salinity and Tides in Alluvial Estuaries" by 



Savenije (2005). The equation numbers below are related to this publication, which is 
presently being revised for a fully revised and updated edition. 
 

 
 
 
Lagrangean form of the water balance equation 
 
The tidal flow velocity U can be expressed both in Eulerian and Lagrangean terms. The 
connection between the two is given by Eqs. (2.76) and (2.75): 
 ( )ξυ sin = U  (2.76) 
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where U=U(x,t) is the Eulerian velocity of flow at a certain location at a certain time and 
c is the tidal wave celerity. If we move with the water particle, then x = x0 + S, ξ = ωt 
and U = V, where V is the Lagrangean velocity of the moving particle. Using (2.75) and 
(2.76), the Eulerian continuity equation for one-dimensional flow, can be transformed to 
the Lagrangean reference frame. 



 
The water balance equation (2.27) can be combined with the exponential variation of the 
cross-section to yield equation (2.77) 
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Partial differentiation of (2.76) with respect to x for a moving particle where x=x0+S, 
and combination of the result with (2.72) and (2.75), yields a Lagrangean expression for 
the partial derivative of U with respect to x: 
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Moreover, the variation of the water depth with time for a moving water particle is 
defined by: 
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Substitution of (2.78) and (2.79) into (2.77) yields the continuity equation for a moving 
volume of water (U=V) in a Lagrangean reference frame. We can further assume that: 1) 
rS is close to unity; and 2) the Froude number is small. As a result, the second term of 
(2.79) is much smaller than the first. Therefore the introduction of the storage width ratio 
in the second term of the water balance equation creates only a third order error. Hence: 
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We can rearrange (2.80) as follows: 
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We shall now make use of (2.94), stating that the damping of the velocity amplitude is 
almost equal to the damping of the tidal range (including an error term Δ). This error 
term is zero when the phase lag ε and the damping/amplification δU are constant 
(implying exponential damping or no damping). This assumption is valid in long 
estuaries that gradually transform into a river. In short and closed estuaries this 
assumption may not be correct, but we'll see further on in Section 3.4 that in short 
estuaries we may use a simple linearised equation that performs well under those 
conditions. Making use of this assumption, (3.1) becomes: 
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Lagrangean form of the momentum balance equation 
 
Next we combine (3.2) with the Lagrangean momentum balance equation. Written in 
a Lagrangean reference frame it reads: 
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Combination of (3.2) and (3.3), and making use of the Lagrangean relationship 
V = dv / d t , yields: 
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To derive an explicit relation for the tidal damping, we shall condition this differential 
equation for the occurrence of HW and LW. We shall then obtain two differential 
equations describing the envelopes of the water levels at HW and LW. At HW and 
LW the special condition applies that ∂h /∂t = 0 , and hence: 

dh
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Using this relation we can write (3.4) completely in Lagrangean derivatives for the 
conditions of HW and LW. Moreover, since the tidal range H is the difference 
between hHW and hLW, the Lagrangean gradient of the tidal range is defined by: 
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And similarly because the sum of the two depth is twice the average depth (for a 
symmetrical wave), which we may assume to be correct if the tidal amplitude to depth 
ratio is small: 
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where I is the residual water level slope. Finally the following conditions apply for 
HW and LW if the tidal amplitude to depth ratio is not too large:  

η+≈ hhHW  (3.8) 

hLW ≈ h−η  (3.9) 
where η = H / 2 . Moreover, if the velocity has a sinus shape: 

ευ sin=VHW  (3.10) 
ευ sin−=VLW  (3.11) 

 
The envelopes for HW and LW lead to the damping equation 
 
Combination of (3.4), (3.5), (3.8) and (3.10) yields for the condition of HW: 
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This is the differential equation that describes the upper envelope of all water levels in 
the estuary, because no water level can rise above the point of HW. Similarly for the 
condition of LW we find the envelope for LW, which is the lower boundary of all the 
water levels in the estuary: 
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Subtraction of these two envelopes yields: 
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where f ' is the adjusted friction factor taking account of the friction being larger at 
LW than at HW. One could also determine this friction factor on the basis of 
Strickler's formula. It would then read: 
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The coefficient 1.33 in this equation follows from a Taylor series expansion of 
(h+η)1.33 ≈ h1.33(1+1.33 η/h), if η<h. Due to the factor 1.33, this equation only makes 
sense as long as η/h<0.7 and may only be applied for smaller amplitude to depth 
ratios. We can see that if the tidal amplitude to depth ratio is small f ' ≈ f = g /C2 . 
 The part between brackets in the first term of (3.14) can be replaced by the 
residual water level slope I defined in (3.7), provided η/h<1. Elaboration yields: 
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Now let us consider the order of magnitude of the terms containing the residual slope 
and hΔ  and compare them to h/b. First the residual slope. Over the distance L of the 
tidal influence the bottom slope is negligible, hence I<<h/L. Moreover in all estuaries 
b is several times smaller than L. As a result, I is at least an order of magnitude 
smaller than h/b during periods of low river discharge. Therefore, the residual slope 
term can be disregarded in most practical cases. However, as the residual slope gains 
prominence as we move further up the estuary, where river discharge becomes more 
dominant and where there is more bottom slope, it causes additional damping and the 
tide gradually dies out. Further research into the relative importance of I versus h/b 
may be needed (particularly in the upstream part of an estuary), which is complicated 
by the fact that I is difficult to observe accurately. Regarding the term hΔ . It is zero 
in a near ideal estuary where: a) there is no bottom slope, b) the tide is modestly 
damped/amplified or δU is constant, and c) the phase lag is constant. In long coastal 
plain estuaries this is generally an acceptable assumption. If there is amplification or 
damping in a coastal plain estuary, then this is generally modest. In that case the term 
hΔ is non-zero, but since the gradient of the tidal velocity amplitude small compared 
to the convergence length (δUb < 0.1), hΔ  is still much smaller than h/b. In short 
(amplified) estuaries, there may be a bottom gradient, a gradient in the phase lag 
(gradually moving towards a standing wave) and a gradient in the tidal velocity 
amplitude (gradually reducing to zero). So in short estuaries the hΔ  term may 
become prominent and may need to be accounted for. In coastal plain estuaries, 
however, particularly in the downstream part, this term may be disregarded. 
 Hence, the analytical solution of the St. Venant’s equations yields the 
damping equation: 
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This is a differential equation describing the damping of the tidal amplitude as a 
function of the estuary shape, the friction and the residual slope. The subtraction of 
the two envelopes for HW and LW resulted in a differential equation that describes 
the tidal range. It will prove to be a very useful equation to elaborate further. In the 
following text, for convenience sake, we shall drop the over-bar for the average depth 
and h will stand for the tidal average depth. 
 It is interesting to check the origin of the terms in this equation. The first term 
on the right hand side obviously comes from the convergence term in the continuity 
equation. The second term stems from the friction term in the momentum balance 
equation. On the left hand side, it is less obvious. The 1 stems from the last term in 
(3.1) and is the term that determines the effect of tidal damping on the mass balance 
equation; the second term between brackets stems from the depth gradient in the 
momentum balance equation (clearly an important term). Scaling (see below) shows 
that this term is indeed larger than 1. 
 This equation is a general version of Green's law, a rule of thumb often 
quoted. Green (1837) assumed that the amount of energy in a progressive tidal wave 
( BcTgE 25.0 ηρ= ) would remain constant under frictionless flow as it travels up a 
converging estuary. If we use the classical equation for wave propagation (c2=gh), 
this leads to the tidal range being inversely proportional to the square root of the 
width and the 0.25th power of the depth. In an ideal estuary with constant depth, it 
implies that δH=1/(2b). We shall see further on in equation (3.64) that zero friction 
(f'=0) indeed leads to Green's law. So Green's law is a special case of (3.17), and 
(3.17) is a general version of Green's law. 
 From (3.17), it can be seen that in an ideal estuary where there is no tidal 
damping or amplification: 
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This is a similar result as in (2.57), which was the condition for an ideal estuary to 
occur. The resistance term R’/c is also presented in Table 2.2. We can indeed verify 
the earlier remark that there is tidal amplification if 1/b>R’/c, see Figure 3.1. We can 
also verify that since b f, h and υ are constant along the estuary, the wave celerity and 
sin(ε) are proportional. Since sin(ε) indicates the type of tidal wave (it equals zero for 
a standing wave and 1 for a progressive wave) it is called the Wave-type number NE 
(Savenije, 1998). In alluvial estuaries, where the tidal wave is of a mixed character, 
the Wave-type number is between 0 and 1. Since it has been observed that the phase 
lag is constant along an estuary, the wave celerity also is, which can indeed be 
observed in estuaries, at least for considerable stretches where convergence and depth 
are constant. 
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