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Abstract 16 

Drought in East Africa is a recurring phenomenon with significant humanitarian 17 

impacts. Given the steep climatic gradients, topographic contrasts, general data scarcity, 18 

and, in places, political instability that characterize the region, there is a need for spatially 19 

distributed, remotely derived monitoring systems to inform national and international 20 

drought response. At the same time, the very diversity and data scarcity that necessitate 21 

remote monitoring also make it difficult to evaluate the reliability of these systems. Here 22 

we apply a suite of remote monitoring techniques to characterize the temporal and spatial 23 

evolution of the 2010-2011 Horn of Africa drought. Diverse satellite observations allow 24 

for evaluation of meteorological, agricultural, and hydrological aspects of drought, each 25 

of which is of interest to different stakeholders. Focusing on soil moisture, we apply 26 

triple collocation analysis (TCA) to three independent methods for estimating soil 27 

moisture anomalies to characterize relative error between products and to provide a basis 28 
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for objective data merging.  The three soil moisture methods evaluated include 29 

microwave remote sensing using the Advanced Microwave Scanning Radiometer – Earth 30 

Observing System (AMSR-E) sensor, thermal remote sensing using the Atmosphere-31 

Land Exchange Inverse (ALEXI) surface energy balance algorithm, and physically-based 32 

land surface modeling using the Noah land surface model. It was found that the three soil 33 

moisture monitoring methods yield similar drought anomaly estimates in areas 34 

characterized by extremely low or by moderate vegetation cover, particularly during the 35 

below-average 2011 long rainy season. Systematic discrepancies were found, however, in 36 

regions of moderately low vegetation cover and high vegetation cover, especially during 37 

the failed 2010 short rains. The merged, TCA-weighted soil moisture composite product 38 

takes advantage of the relative strengths of each method, as judged by the consistency of 39 

anomaly estimates across independent methods. This approach holds potential as a 40 

remote soil moisture-based drought monitoring system that is robust across the diverse 41 

climatic and ecological zones of East Africa.   42 

 43 

1. Introduction 44 

The 2010-2011 Horn of Africa drought affected over 13 million people (Ledwith, 45 

2011). The failure of the October to December 2010 “short” rains and delayed arrival of 46 

the April to June 2011 “long” rains caused crop failures across Somalia, Ethiopia and 47 

Kenya.  The price of food reflected the effect of crop failures on a food insecure region; 48 

the price of maize in Kenya, for example, rose 246% over the span of a year (Funk, 49 

2011). On June 7th 2011, the Famine Early Warning System Network (FEWS NET) 50 

issued a statement declaring the crisis to be “the most severe food security emergency in 51 

the world today”. Over the course of the next two months, the crises worsened and the 52 

United Nations declared famine in five regions of Somalia (United Nations, 2011).  53 

In broad terms, the drought and subsequent famine were anticipated by 54 

forecasters. The emerging La Niña event in summer 2010, occurring on top of steady 55 

Indian Ocean warming that has been associated with reduced precipitation in the Horn of 56 

Africa, and combined with weakened social resilience due to poor harvests and rangeland 57 

conditions in recent years, were recognized as a significant risk to the region (Funk 58 

2011). Given such warnings—albeit warnings that come with substantial uncertainty—59 
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national governments and international actors were in position to respond quickly when 60 

the rains failed. The failure to muster adequate disaster mitigation can be attributed 61 

largely to political instability and to the limitations of what can be accomplished in 62 

reactive drought response. At the same time, adequate emergency intervention is also 63 

limited by inadequate access to reliable, spatially-distributed drought monitoring 64 

information available in near real-time. In situ monitoring networks, though critical to 65 

drought planning and response, are limited in this regard, both practically—the Horn of 66 

Africa has limited networks and is affected by political instability—and inherently—it is 67 

difficult to capture the spatial variability of drought impacts using point monitoring 68 

stations alone.  69 

For this reason, there has been considerable interest in developing East African 70 

drought monitoring systems based on remotely sensed and model derived analyses. The 71 

most advanced of these systems is the Famine Early Warning System Network (FEWS 72 

NET), which operates throughout East Africa, Afghanistan, and Central America. A 73 

United States Agency for International Development (USAID) project in operation since 74 

1985, FEWS NET combines local socio-economic information with agricultural 75 

production and precipitation information to predict food security conditions (Funk, 2009).  76 

Satellite data feeds into the system in the form of remotely sensed vegetation indices and 77 

precipitation estimates, while a Water Requirements Satisfaction Index (WRSI) model is 78 

used to gauge crop conditions. Additional remote drought monitors covering East Africa 79 

include the Experimental African Drought Monitor maintained by the Land Surface 80 

Hydrology Group at Princeton, which provides near real-time drought monitoring for all 81 

of Africa using the Variable Infiltration Capacity (VIC) hydrological model and a long-82 

term retrospective meteorological reanalysis (Sheffield et al. 2008) to quantify current 83 

drought conditions across the continent1. The International Research Institute for Climate 84 

and Society Map Room2 serves regional precipitation anomaly maps derived from the 85 

Climate Anomaly Monitoring System Outgoing Longwave Radiation Precipitation Index 86 

(CAMS_OMI; Janowiak and Xie 1999) while the Global Drought Monitor provides 87 

drought monitoring that includes coverage of Africa at a spatial resolution of ~100 km 88 

                                                
1 http://hydrology.princeton.edu/monitor 
2 http://iridl.ldeo.columbia.edu/maproom/ 
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and at monthly intervals3. The Global Drought Monitor is based on the Standardized 89 

Precipitation Index (SPI) and the Palmer Drought Severity Index (PDSI).  90 

Outside of Africa, there are numerous examples of experimental and operational 91 

drought monitoring systems that rely on either remote sensing or hydrological models. In 92 

the United States, these include the Vegetation Drought Response Index (VegDRI), 93 

which monitors drought conditions for the continental United States by combining 94 

climate-related variables with satellite-derived vegetation condition information obtained 95 

using Advanced Very High Resolution Radiometer (AVHRR)-based vegetation indices 96 

(Brown, 2010), and the University of Washington Experimental Surface Water Monitor 97 

(Wood, 2008)., based on a multi-model monitor employing VIC (Liang et al., 1994), 98 

Sacramento Soil Moisture Accounting (SAC-SMA; Burnash, 1995), Community Land 99 

Model (CLM; Dai et al., 2003, Lawrence et al., 2011), Catchment (Koster et al. 2000),  100 

and Noah (Chen et al., 1996; Ek et al., 2003; Koren et al., 1999) land-surface models 101 

(LSMs), Other AVHRR-derived drought indices include the Vegetation Condition Index 102 

(VCI), derived from AVHRR Normalized Difference Vegetation Index (NDVI) data and 103 

the Temperature Condition Index (TCI), which is calculated using AVHRR thermal data 104 

(Kogan, 1995; Kogan, 1990), as well as the Vegetation Health Index (VHI) which 105 

combines the VCI and TCI (Kogan, 1997). Remotely sensed land-surface temperature 106 

and vegetation cover information have also been combined within the Atmosphere-Land 107 

Exchange Inverse (ALEXI) surface energy balance algorithm (Anderson et al., 1997, 108 

2007a) to generate an Evaporative Stress Index (ESI), quantifying anomalies in the ratio 109 

of actual to potential evapotranspiration (Anderson et al. 2011a; Anderson et al. 2007b). 110 

Combined satellite/model drought monitoring tools are also becoming more 111 

common. Data assimilation systems merge observations with physically based models, 112 

using the model to provide spatially and temporally complete estimates of all drought-113 

relevant hydrologic variables and the observation record to correct for model error. 114 

Examples include the North American Land Data Assimilation System (NLDAS; 115 

Sheffield et al., 2012; Xia et al., 2012) and Gravity Recovery and Climate Experiment 116 

(GRACE) Data Assimilation System4 Drought Monitors. The NLDAS Drought Monitor 117 

                                                
3 http://drought.mssl.ucl.ac.uk 
4 http://drought.unl.edu/MonitoringTools/NASAGRACEDataAssimilation.aspx 
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covers the continental United States and is based on output from the Mosaic (Koster and 118 

Suarez, 1996), VIC (Liang et al., 1994), Sacramento Soil Moisture Accounting (SAC-119 

SMA; Burnash, 1995), and Noah (Chen et al., 1996, Ek et al., 2003, Koren et al., 1999) 120 

LSMs. These models are uncoupled and forced mainly by observational data to avoid 121 

numerical weather prediction forcing biases. Anomalies and percentiles in soil moisture, 122 

stream flow and runoff are computed for each individual model and for ensemble 123 

averages with respect to climatological normal conditions computed for 1980 to 20075 124 

(Sheffield et al., 2012; Xia et al., 2012). The GRACE Data Assimilation System Drought 125 

Monitor produces weekly updated soil moisture and drought indicators. Terrestrial water 126 

storage observations from GRACE satellite data are integrated with additional 127 

meteorological measurements using an Ensemble Kalman Filter within the Catchment 128 

Land Surface Model (Zaitchik et al., 2008). Current hydrologic conditions are expressed 129 

as percentiles relative baseline measurements from 1948 to 2009. 130 

For all of the value that these satellite and model-based drought monitors provide, 131 

a monitoring system based on a single algorithm or observational record is prone to 132 

systematic and/or transient error. This is a particular concern in data poor regions like 133 

East Africa, where it is not possible to evaluate a remote drought monitor 134 

comprehensively against in situ observations.  In this context, it is desirable to apply 135 

multiple, independent methods to remote drought monitoring in order to characterize 136 

systematic differences between methods, to identify and address limitations in particular 137 

techniques, and to generate consensus drought indices. Merging independent methods to 138 

generate a consensus drought index will help reduce the random and systematic error 139 

components of the input datasets. 140 

In this paper we examine the 2010-2011 Horn of Africa drought using remotely 141 

sensed estimates of soil moisture, evapotranspiration, precipitation, and terrestrial water 142 

storage. The relative merits of each observational technique are discussed in qualitative 143 

terms, and soil moisture estimates are then assessed quantitatively and merged into a 144 

consensus drought monitor product by applying a Least Squares algorithm that depends 145 

on Triple Collocation Analysis (TCA)-based errors associated with soil moisture 146 

anomalies derived from ALEXI, AMSR-E, and the Noah LSM. TCA is a statistical 147 

                                                
5 http://www.emc.ncep.noaa.gov/mmb/nldas/drought/ 



 6 

method for characterizing consensus and discrepancies across multiple independent 148 

datasets. Though developed originally for oceanographic applications (Stoffelen, 1998), 149 

the method has recently been applied successfully to the problem of estimating soil 150 

moisture variability at regional to global scale (Scipal et al., 2008; Hain et al., 2011; 151 

Parinussa et al., 2011; Yilmaz et al.,  2012). TCA is of particular value in regions that 152 

lack in situ soil moisture monitoring networks, as consensus anomaly estimates derived 153 

from multiple independent datasets can be interpreted as a measure of confidence in the 154 

absence of adequate in situ evaluation data. The least squares-based merging technique 155 

applied to these TCA-based error estimates was chosen as an objective offline merging 156 

method because it requires minimal assumptions be made about the input datasets and 157 

their error characteristics. 158 

 159 

2. Methods 160 

2.1 Soil Moisture Estimates  161 

2.1.1 AMSR-E Passive Microwave Sensor 162 

The Advanced Microwave Scanning Radiometer for EOS (AMSR-E) is a passive 163 

microwave-radiometer system mounted on the Aqua satellite.  From July 2002 to 164 

September 2011, AMSR-E retrievals of microwave brightness temperature were used to 165 

derive estimates of surface soil moisture with near daily coverage. The instrument is 166 

currently experiencing an antenna malfunction that may be terminal, but similar 167 

microwave measurements are available on existing and planned satellite missions. 168 

Several algorithms have been developed to estimate soil moisture on the basis of AMSR-169 

E retrievals. In this application, we use the soil moisture product derived using the Land 170 

Parameter Retrieval Model (LPRM) developed by Vrije Universiteit Amsterdam (VUA) 171 

and the National Aeronautics and Space Administration (NASA).  The LPRM algorithm 172 

relies on C-band observations and can utilize X-band observations under conditions of 173 

radio frequency interference in the C-band (Owe et al. 2008). The LPRM product was 174 

chosen over other available AMSR-E soil moisture products on the basis of previously 175 

published comparisons (Rudiger et al., 2008; Wagner et al., 2007; Draper et al., 2009; Hain 176 

et al., 2011).  The product produces daily ascending and descending estimates at 1:30 177 

AM and 1:30 PM local time. To avoid complications such as sun glint and strong 178 
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temperature gradients, which are more prevalent in the ascending passes when using the 179 

VUA algorithm, only descending passes (1:30 AM local) of the AMSR-E measurements 180 

were used (Kerr and Njoku, 1990; Crow et al. 2010).   181 

While the temporal resolution of AMSR-E is relatively high, the spatial resolution 182 

remains coarse at ~25 km with a sensing depth of only ~1 cm.  The native spatial 183 

resolution of AMSR-E and the remapping used in the LPRM algorithm is further 184 

discussed in Section 2.3. 185 

 186 

2.1.2 ALEXI Thermal Infrared Model 187 

The Atmosphere-Land Exchange Inverse (ALEXI) model is a thermal infrared-188 

based diagnostic model that employs the two-source energy balance (TSEB) model of 189 

Norman et al. (1995), representing the land surface as a composite of soil and vegetation 190 

cover, while coupling with an atmospheric boundary layer model to internally simulate 191 

land-atmosphere feedback on near-surface air temperature (Anderson et al., 1997; 192 

Anderson et al., 2007a). ALEXI solves the surface energy balance for latent and sensible 193 

heat components using time-differential land surface temperature measurements taken 194 

from geostationary satellites between ~1.5 hours after local sunrise and ~1.5 hours before 195 

local noon. The morning surface temperature rise is largely governed by soil moisture 196 

conditions and available energy. Wet conditions in the surface layer increase latent heat 197 

flux and therefore decrease morning temperature amplitude while dry conditions lead to 198 

increased sensible heat flux and therefore higher morning temperature amplitudes. 199 

Anderson et al. (2007b) and Hain et al. (2009;2011) detail a method of relating latent heat 200 

fluxes retrieved by ALEXI to soil moisture conditions by applying a soil moisture stress 201 

function between the fraction of actual to potential evaporation (fPET) and the fraction of 202 

available water. A relation between fPET and retrieved soil moisture values based on 203 

ALEXI estimates of fPET may be derived that is of the form:  204 

 205 

!ALEXI = (! fc "!wp ) * fPET +!wp     (1) 206 

 207 
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where θALEXI is the soil moisture value reported by ALEXI, θfc and θwp are the soil 208 

moisture at field capacity and wilting point, respectively, and fPET
 is the fraction of actual 209 

to potential evapotranspiration. Note that while Eq (1) requires information about SM at 210 

field capacity and wilting point, these values drop out during the computation of 211 

standardized grid cell anomalies describing the deviation from mean conditions for each 212 

8-day composite period at each pixel in the study period. Hain et al. (2009) validated this 213 

relationship by comparing soil moisture observations from the Oklahoma Mesonet to 214 

ALEXI soil moisture retrievals. 215 

 ALEXI was executed at 6-km spatial resolution over the Horn of Africa domain 216 

using hourly land-surface temperature and insolation products developed by the Land 217 

Surface Analysis Satellite Applications Facility (LSA SAF), using imagery from the 218 

primary Meteosat Second Generation (MSG) geostationary satellite (landsaf.meteo.pt) 219 

(see Anderson et al., 2011b). ALEXI output was then aggregated to the 25-km grid 220 

associated with the AMSR-E product.  As a thermal remote sensing model, ALEXI is 221 

limited to cloud-free sky conditions during the morning hours when the ground is visible 222 

to the thermal satellite sensor. 223 

           224 

2.1.3 Noah Land Surface Model 225 

Offline simulations of Noah LSM version 3.2 were performed using Global Data 226 

Assimilation System (Derber et al., 1991) meteorological forcing supplemented by the 227 

three hourly precipitation estimates from the gauge-adjusted Tropical Rainfall 228 

Measurement Mission (TRMM) Multisensor Precipitation Analysis (TMPA), version 6 229 

(product 3B42; Huffman et al., 2007). Noah is a one-dimensional model that evaluates 230 

the surface energy and water budgets to calculate the distribution of soil moisture in the 231 

soil column.  Evapotranspiration is defined as the sum of canopy transpiration, 232 

evaporation from the top soil layer, and evaporation of canopy-intercepted water (Ek et 233 

al., 2003; Chen et al., 1996).  Soil moisture is a prognostic field for each of the model’s 234 

four vertical soil layers, which allows for the diagnosis of both near surface and root zone 235 

soil moisture. 236 

An LSM-based prediction of soil moisture offers the benefit of providing 237 

continuous estimates under all weather and surface cover conditions, as opposed to 238 
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ALEXI and AMSR-E, which are hindered by clouds and dense vegetation, respectively.  239 

Model output was stored and evaluated at three-hour intervals, but only outputs aligned 240 

with the overpass times of AMSR-E retrievals were used in this analysis to ensure a 241 

consistent comparison.  The AMSR-E descending overpass time for the Horn of Africa is 242 

4:30 GMT which corresponds to the 3:00-6:00 GMT output interval of Noah.  Model 243 

simulations were run at a spatial resolution of 25 km to match the spatial resolution of the 244 

AMSR-E measurements. Noah simulations in this region are the subject of ongoing 245 

evaluation, with early results indicating that simulations forced with GDAS meteorology 246 

supplemented by TMPA precipitation provide reasonable results over much of the Nile 247 

Basin and surroundings (Zaitchik et al., 2010). 248 

 249 

2.2. Supplementary satellite-derived observations 250 

Additional data sources were included in the anomaly analyses to depict a more 251 

complete hydrologic picture. For all datasets, we compiled gridded data for East Africa 252 

for the period 2003-2011 and then calculated anomalies relative to the 2003-2010 253 

climatology: 254 

• Precipitation: three hourly TMPAv6 precipitation estimates (25km 255 

resolution), averaged over 8-day composite periods, were used to compare the 256 

2010-2011 seasonal rains to those from 2003 - 2010.  257 

• Vegetation Index: 16-day, 0.05° resolution composited MODerate Resolution 258 

Imaging Spectroradiometer (MODIS) NDVI estimates (product MOD13C1;  259 

Huete et al. 2002) were used to evaluate drought impacts on biomass 260 

production.  261 

• Terrestrial Water Storage: monthly estimates of terrestrial water storage 262 

anomaly derived from GRACE were used as an independent assessment of 263 

drought conditions. GRACE anomalies for the area of interest were extracted 264 

from the CSR level 2 GRACE gridded land product, release 4, with a 300km 265 
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smoothing radius. Land scaling factors were included in data extraction 266 

(Swenson & Wahr 2006).6  267 

 268 

2.3 Comparison and Data Merging 269 

For TCA, the three independent soil moisture datasets (LPRM, Noah and ALEXI) 270 

were standardized to a common spatial resolution, depth, frequency, and unit of measure. 271 

 272 

2.3.1 Resampling to a common grid 273 

Each dataset was resampled using a nearest neighbor resample to match the 0.25 x 274 

0.25 degree flat grid of the LPRM data.  The ALEXI model was run with a 6 km spatial 275 

resolution, which necessitated an aggregation of the data prior to resampling.  The Noah 276 

LSM was run at 25 km spatial resolution, requiring only a resample to match the chosen 277 

grid. 278 

 279 

2.3.2 Creating composite time periods 280 

Although each methodology is capable of producing daily measurements for the 281 

domain of the analysis under favorable conditions, the satellite-derived records suffered 282 

from data gaps. LPRM gaps are a product of the overpass repeat cycle of Aqua, which 283 

results in spatial swaths of missing data on a regular repeat cycle, and of interference 284 

from precipitation, dense vegetation, radio signals or frozen ground.  Retrievals that were 285 

flagged as poor quality due to such interference were removed from the analysis.  286 

Missing values were present in the ALEXI model because the algorithm requires morning 287 

observations of radiometric surface temperature, which can only be observed for cloud-288 

free regions. This creates seasonally repeating areas of sparse data coverage in 289 

climatologically cloudy regions. Gap-filling algorithms for ALEXI have been developed 290 

to generate daily ET estimates (Anderson et al., 2007a), but they were not utilized in this 291 

study so as to focus only on direct retrievals of soil moisture (rather than interpolated 292 

values). Eight-day composites across the period of study were created for each data set to 293 

                                                
6 GRACE land data were processed by Sean Swenson, supported by the NASA 
MEASURES Program, and are available at http://grace.jpl.nasa.gov. 
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avoid oversampling in the analysis due to seasonal weather events. All available 294 

observations were averaged within a given compositing period. 295 

 296 

2.3.3 Estimating root zone soil moisture for all products  297 

To standardize the depth of soil moisture estimate across LPRM, ALEXI, and 298 

Noah, each dataset was converted to an estimate of soil moisture through the root zone.  299 

For this study the root zone was defined as the top one meter of the soil column.  300 

ALEXI provides a single column-integrated soil moisture estimate that reflects 301 

soil moisture from the surface to the rooting depth of the vegetation: surface soil wetness 302 

cools the surface through direct evaporation, while root zone soil moisture leads to 303 

cooling through plant transpiration. The degree to which near-surface vs. deeper root 304 

zone soil moisture influences the ALEXI signal is assumed to be related to the observed 305 

green vegetation cover fraction (fc; Hain et al. 2009; 2011), as described further below.  306 

The Noah LSM produces a stratified soil moisture estimate that is divided into 307 

four layers: 0-10 cm, 10-40 cm, 40-100 cm and 100-200 cm.  For the purposes of this 308 

study the first layer (0-10 cm) was considered the surface layer while the depth-weighted 309 

average of the first three layers (together 0-100 cm) was considered the root zone. 310 

LPRM produces soil moisture estimates for only the top layer of soil (~ 1 cm). An 311 

exponential filter (Eq. 2) was used to extrapolate these measurements and simulate 312 

infiltration of surface soil moisture into the root zone. The filter used was developed by 313 

Wagner et al. (1999) and has been employed by Ceballos et al. (2005), Albergel et al. 314 

(2008) and Hain et al. (2011).  The filter applies a two-layer water balance that estimates 315 

the root zone soil moisture using a surface soil moisture measurement and a characteristic 316 

time of variation between the surface and root zones (Wagner et al., 1999): 317 

! (tn )LPRM _ rz =
! (t n )LPRM _ sf e

"
tn " ti
#$

e
"
tn " ti
#$

    (2) 318 

where ! (tn )LPRM _ sf  represents the soil moisture retrieval for a past day ti, ! (tn )LPRM _ rz  319 

represents the root zone soil moisture estimation for a given day (tn), and represents the 320 

characteristic time of variation between the surface layer and root zone in the soil profile.  321 

Optimal values for  were calculated as those that maximized the correlation between the 322 
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Noah LSM root-zone estimates and root-zone estimates computed by running the Noah 323 

0-10 cm soil moisture estimates from 2003-2011 through the exponential filter (Eq. 2).  324 

The true depth of the soil moisture estimate produced by ALEXI is related to the 325 

fraction of green vegetation cover (fc).  Over bare soil the latent heat is dominated by the 326 

evaporation from the top layer of soil, similar to the sensing depth of microwave sensors 327 

such as AMSR-E (Hain et al. 2011; Crow et al., 2007).  Over densely vegetated areas (fc 328 

> 75%), ALEXI latent heat is dominated by the evapotranspiration from the canopy layer, 329 

which is indicative of soil moisture in the root zone.  This relationship is approximated by 330 

Eq. (3) 331 

 332 

!ALEXI = (1 " fc )!ALEXI _ sf + fc! ALEXI _ rz            (3) 333 

 334 

where ӨALEXI is the total profile soil moisture estimate retrieved from ALEXI, ӨALEXI_sf 335 

and ӨALEXI_rz are respectively the surface and root zone soil moistures and fc is the 336 

fractional green vegetation cover. For this study ӨALEXI_sf and ӨALEXI_rz are not 337 

independently retrieved, but are included in Eq. 3 to construct a conceptual framework. 338 

LPRM and Noah soil moisture measurements were scaled using the same methodology 339 

so that the physical value being measured remains consistent across all products: 340 

 341 

!LPRM = (1" fc )! LPRM _ sf + fc!LPRM _ rz          (4) 342 

!Noah = (1" fc )!Noah _ sf + fc!Noah _ rz               (5) 343 

 344 

where ӨLPRM_sf is defined as the LPRM surface soil moisture retrieval and ӨLPRM_rz is the 345 

estimate produced by the exponential filter.  ӨNoah_sf is the first Noah soil moisture output 346 

layer (0-10 cm) and ӨNoah_rz is the sum of the first through third layers (0-10 cm, 10- 347 

40cm and 40 – 100cm).   348 

The green vegetative cover of a pixel for LPRM and Noah was determined using 349 

MODIS 16-day NDVI estimates (MOD13C1) and the linear relationship of Gutman and 350 

Ignatov (1998): 351 
 352 
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fc =
(NDVI ! NDVI0 )
(NDVI100 ! NDVI 0 )

             (6) 353 

 354 
NDVI0 refers to the minimum observed NDVI for the entire area of study over the 355 

entire time period. In this case NDVI0 was calculated by averaging the five smallest 356 

observed values. NDVI100 refers to the maximum observed NDVI and was calculated as 357 

the average of the five largest observed values. NDVI is the specific NDVI for a given 358 

pixel at a given time. Small differences between MODIS-derived fc and the Meteosat-359 

derived fc used in the ALEXI processing stream may have a small impact on estimates of 360 

relative error between the three soil moisture products. 361 

 362 

2.3.4 Calculation of anomalies 363 

 364 

Weighted sums of surface and root zone soil moisture were generated for LPRM 365 

and Noah using the NDVI fc and the method described in the previous Sect 2.3.3. These 366 

depth-matched datasets were then used in the anomaly analysis. Two categories of 367 

anomalies were produced for this study: time series anomalies averaged over the area of 368 

interest (40.625 to 48.125 E, -3.1255 to 9.375 N; Fig. 1), and spatially distributed 369 

anomalies for all of East Africa in hydrologic year 2010-2011. The area of interest was 370 

selected to capture the area of maximum drought intensity, as identified through our own 371 

analyses and independent reports of the drought. All anomalies were calculated relative 372 

to the pre-drought baseline, 2003-2010. The ALEXI model was not included in the 373 

anomaly analysis because the dataset for East Africa only dates back to 2007 due to 374 

limitations on the LSA SAF product archive extent. 375 

 376 

(5) TCA and TCA-based data merging 377 

 378 

Triple Collocation Analysis (TCA) is a method that can be used to estimate the 379 

relative error variance associated with three collocated datasets, provided that the datasets 380 

are mutually linear and have independent error characteristics (Janssen et al., 2007). TCA 381 

is a powerful technique but only produces meaningful results if each dataset is measuring 382 
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the same physical parameter (and are therefore mutually linear).   To ensure that 383 

independent datasets were, indeed, appropriate for TCA, cross-correlations of the 384 

products were calculated. Pixels with very low cross-correlations (r < 0.2) were 385 

interpreted as non-analogous and were excluded from the TCA. All datasets were 386 

converted to a single reference climatology to account for variations in mean and 387 

standard deviation, following the methods of Hain et al. (2011); in this case Noah was 388 

chosen to be the reference dataset for the TCA calculations, but the choice of reference 389 

does not affect the results of the analysis.  390 

 As part of the data normalization process, a seasonal mean (µ) and standard 391 

deviation (σ) was computed for each eight-day composite soil moisture estimate (Ө) of 392 

each dataset.  The seasonal mean and standard deviation were calculated for the years 393 

2007-2010 using a 24-day centered window (one composite-week on either side of the 394 

composite of interest) and used to convert the ALEXI and LPRM soil moisture estimates 395 

into Noah climatology as outlined in Eqs. (7) and (8). 396 

 397 

! 'LPRM = µNoah + (! LPRM " µ LPRM )
# Noah

# LPRM

$
%&

'
()           

 (7) 398 

! 'ALEXI = µNoah + (! ALEXI " µALEXI )
# Noah

# ALEXI

$
%&

'
()

                (8) 399 

 400 

Following the conversion to a single climatology, the normalized seasonal 401 

composites (! ' ) were linearly rescaled and used as input for TCA as described in Eqs. (9) 402 

through (11). A full discussion of these methods can be found in Stoffelen (1998). Each 403 

pixel from each dataset was analyzed over the 2007-2010 time period to calculate TC 404 

values (ε2): 405 

!Noah
2 = "Noah #" ''LPRM( ) "Noah #" ''ALEXI( )     (9) 406 

!LPRM
2 = " ''LPRM # "Noah( ) " ''LPRM # " ''ALEXI( )                (10)  407 

!ALEXI
2 = " ''ALEXI #" ''LPRM( ) " ''ALEXI # "Noah( )    (11) 408 

 409 
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where ! ''  represents the rescaled seasonal composites and brackets indicate a temporal 410 

average taken over the study period 2007-2010.  411 

In areas above the correlation threshold set for the TCA, TC values were used as 412 

an objective measure for soil moisture data merging. A least squares approach was used 413 

to derive the weights for each product following the methods of Yilmaz et al. (2012). In 414 

order to produce an unbiased merged product, the sum of the weights of all products was 415 

constrained to one (wx + wy + wz = 1 ). The cost function (J) to be minimized in this case 416 

is the error variance of the merged product obtained from the least squares based merging 417 

method that depends on the TCA based errors. The cost function changes depending on 418 

the number of available soil moisture datasets for a given time and location. If only two 419 

datasets are available at a given pixel, the cost function is:  420 

 421 

J = !m
2 = wx!x

2 + (1" wx )! y
2                        (12) 422 

 423 

If all three datasets are available the cost function becomes:  424 

 425 

J = !m
2 = wx!x

2 + wy!y
2 + wz! z

2                           (13) 426 

J = !m
2 = wx!x

2 + (1" wx " wz )! y
2 + wz! z

2           (14) 427 

 428 

 and if only one dataset is available, it is given the full weight. Applying the least squares 429 

approach to the cost functions in Eqs. (12) and (14) yields the following weights. 430 

For two available datasets scenario:  431 

  wx =
!y
2

! x
2 + ! y

2          (15) 432 

wy =
!x
2

!x
2 + ! y

2        (16) 433 

 434 

For three available datasets scenario:  435 
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wx =
!y
2! z
2

! x
2! y

2 + !x
2! z
2 + !y

2! z
2                                (17) 436 

wy =
!x
2! z
2

!x
2! y
2 + !x

2! z
2 + ! y

2!z
2       (18) 437 

wz =
! x
2! y

2

! x
2!y

2 + ! x
2! z

2 + ! y
2! z
2       (19) 438 

 439 

 Equations (15-19) were used to produce a weighting map for each product in the 440 

domain of the TC analysis. Note that these weights are stationary provided that the 441 

number of datasets with available measurements remains constant. 442 

 In areas below the correlation threshold set for the TCA, no TC values were 443 

produced; however, that does not mean that no useable data are available for the 444 

weighting map. For the case in which a significant correlation was observed between two 445 

of the methods in an area that was screened out of the TCA, an equal weight was 446 

assigned to each of the correlated methods. 447 

 448 

3. Results and Discussion 449 

3.1 Anomaly Analysis 450 

TRMM precipitation measurements from June 2003 to June 2011 were used to 451 

compare the magnitude and duration of the 2010-2011 seasonal rains with those of the 452 

previous seven years (Fig. 2). The precipitation data show a near complete failure of the 453 

October – December rains as well as weak April-June rains. In fact, FEWS NET 454 

determined that the total anomaly in precipitation during the 2010-2011 rainy seasons 455 

was the most severe in the last fifty years for parts of Kenya and Ethiopia (USAID FEWS 456 

NET, 2011). The lack of precipitation is evident in modeled and remotely sensed 457 

estimates of soil moisture, NDVI, and terrestrial water storage (Fig. 3). For each of these 458 

variables, the 2010-2011 drought was the most severe or close to the most severe 459 

negative anomaly in magnitude and duration recorded during the period of analysis. The 460 

drought is unique in that it was a two-season drought of comparable magnitude to 461 

previous drying events of shorter duration. 462 
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The datasets displayed in Fig. 3 represent the 2010-2011 droughts in similar but 463 

not identical ways. Soil moisture anomalies (LPRM and Noah) trend negative from the 464 

very beginning of the negative anomaly in precipitation (October 2010), but they persist 465 

beyond the end of each failed rainy season. This is to be expected, as soil moisture 466 

anomalies reflect cumulative precipitation anomalies and are known to provide memory 467 

in the climate and hydrological system. In the period between the 2010 short rains and the 468 

2011 long rains, TMPA anomalies return to near zero—true almost by definition for the 469 

period between rainy seasons in this region—and LPRM, which is dominated by surface 470 

soil moisture variability, notwithstanding the fc filter, nearly returns to a zero anomaly as 471 

well. Noah soil moisture and MODIS NDVI anomalies, both of which reflect dry 472 

conditions in the root zone, remain negative between rainy seasons, illustrating how the 473 

agricultural drought carried over from the failed short rains to the beginning of the long 474 

rainy season. A snapshot of NDVI or Noah root zone soil moisture anomalies taken in 475 

March 2011, then, would indicate that the land was in moisture deficit going into the 476 

planting season, where a snapshot of surface soil moisture or precipitation would not.  477 

GRACE offers an entirely different perspective on the drought. Interestingly, 478 

there was a negative anomaly in terrestrial water storage even at the “onset” of the 2010-479 

2011 drought. Indeed, GRACE retrievals indicate that total water storage in the area of 480 

interest has declined relatively steadily since 2007 (data not shown). The relevance of this 481 

multiyear decline in total water storage to drought impacts in 2010-2011 has yet to be 482 

investigated.     483 

 484 

3.2 Spatial Anomalies 485 

Figure 4 illustrates the spatial distribution of soil moisture anomalies in the short and 486 

the long rainy seasons. LPRM, ALEXI and Noah soil moisture anomalies all reflect that 487 

the failure of the short rains (late September to December) was greatest in southern 488 

Somalia, Kenya and East Ethiopia while the long rain failures (April to July) extended 489 

further into Kenya, Ethiopia and Sudan. In general the soil moisture estimates agree 490 

relatively well on the location and magnitude of the drought, but there is some 491 

discrepancy in the observed spatial extent, as Noah detects a more intense drying in 492 

central Sudan during the long rains than either of the satellite-based methods.  493 
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Figure 5 shows temporal cross-correlation of rescaled soil moisture anomalies 494 

between ALEXI and Noah (Fig. 5A), LPRM and Noah (Fig. 5B), and LPRM and ALEXI 495 

(Fig. 5C) for the period 2007 to 2010. The difference in cross-correlations is displayed in 496 

Figure 6. For regions missing only one dataset, the cross-correlation between the 497 

remaining two methods is displayed, notwithstanding edge effects due to differences in 498 

coastal definition. Previous work in the United States (Hain et al., 2011) has indicated 499 

that ALEXI and LPRM soil moisture retrievals perform optimally in complementary 500 

regions due to strengths and limitations of each retrieval technique. Passive microwave 501 

soil moisture retrievals, including LPRM, are inherently limited to the top 1-2 centimeters 502 

of the soil column. Use of the exponential filter softens this limitation, assuming a 503 

correlation between surface and root-zone soil moisture, and can capture the influence of 504 

deeper soil moisture to some extent, but the LPRM soil moisture estimate is still highly 505 

sensitive to near-surface soil moisture variability, which makes it most appropriate in 506 

sparsely vegetated regions where vertical support of soil moisture is relatively small. In 507 

addition, attenuation of the microwave signal in areas of dense vegetation disrupts the 508 

retrieval of soil moisture measurements, potentially to the point of being unusable (Njoku 509 

et al., 2004; Owe et al. 2008). To ensure that the observed patterns of cross-correlation 510 

are a result of the information present in the LPRM soil moisture estimates, and not a 511 

result of the exponential filter applied to the original data, a series of sensitivity analyses 512 

were conducted. When the cross-correlations displayed in Figure (5) were reproduced 513 

using the LPRM data without the addition of the exponential filter, the spatial patterns of 514 

correlation remained unchanged and the magnitude of correlation changed only 515 

marginally for a limited number of areas (results not shown). The similarity of the cross-516 

correlations with and without the exponential filter applied to the LPRM data underscores 517 

the sensitivity of the microwave soil moisture estimates to near-surface soil moisture 518 

variability. 519 

The ALEXI thermal infrared model, in contrast, obtains its measurements based on 520 

radiometric temperature partitioned between the soil and vegetation. This means that 521 

while the physical depth of measurement may change as a function of vegetation, the 522 

performance is not expected to deteriorate with increasing vegetation cover, as found by 523 

Hain et al. (2011). Indeed, the fact that the thermally-based soil moisture estimate 524 
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integrates the effects of surface evaporation and plant transpiration makes it particularly 525 

valuable in densely vegetated regions, where root zone soil moisture variability can be 526 

significant.  527 

Figures 5 and 6 allow us to explore this pattern, first using Noah, then ALEXI as a 528 

point of reference. Over the majority of extremely arid regions (e.g., Egypt, Northern 529 

Sudan and portions of Saudi Arabia and the Horn) neither LPRM nor ALEXI clearly 530 

correlates more strongly with Noah. Similarly, Fig. (6B) demonstrates that when ALEXI 531 

is used as the reference dataset neither LPRM nor Noah display dominant correlation. 532 

Over semi-arid regions (e.g., central Sudan, portions of southern Ethiopia, Kenya and 533 

Somalia), LPRM correlates more strongly with Noah than does ALEXI, largely because 534 

LPRM errors are low for sparse vegetation cover while ALEXI errors are moderate 535 

across all vegetation conditions. This relation is highlighted in Fig. (6B) by the 536 

comparable correlations of LPRM and Noah with ALEXI in semi-arid regions. Some of 537 

the difference in perceived skill between ALEXI and LPRM/Noah in such regions may 538 

be related to the shorter repeat cycles of the microwave sensors and LSM output as 539 

compared with the thermal infrared method. Over areas of dense vegetation (e.g., 540 

Western Ethiopia and the Congo basin), LPRM correlates poorly with both Noah and 541 

ALEXI. This is in part due to interference from vegetation and in part due to the fact that 542 

LPRM soil moisture estimates, even when adjusted with an fc filter, are dominated by 543 

near surface rather than root zone variability.  544 

These spatial patterns can be summarized by plotting the difference between LPRM 545 

and ALEXI correlation with Noah as a function of fractional vegetation cover (Fig. 6C 546 

and D). In this application, the crossing point at which the sensors are approximately 547 

equally correlated with Noah is at an fc of 0.65. Above this threshold, ALEXI correlates 548 

more strongly with Noah, while below it LPRM correlates more strongly. The greatest 549 

divergence of the satellite-based soil moisture estimates is in the extremes of vegetation 550 

density (fc < 0.35 and fc > 0.8). Using ALEXI as the reference dataset reinforces these 551 

relations. At low to moderate vegetation density LPRM and Noah are comparably 552 

correlated with ALEXI, while at moderate to high vegetation density Noah correlates 553 

more strongly with ALEXI than does LPRM. 554 

 555 
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3.3 Triple Collocation Analysis and Data Merging 556 

TCA was employed to quantify relative agreement across the three soil moisture 557 

datasets and to provide an objective basis for data merging. The chosen datasets display 558 

high cross-correlations across the majority of the domain (indicating highly linear 559 

relationships between products) and are therefore suitable for a triple collocation analysis 560 

framework, assuming that the products have independent error characteristics. To 561 

evaluate whether the calibration of the exponential filter violates this assumption, the 562 

TCA estimates obtained using the exponential filter with a calibrated characteristic time 563 

were compared to those obtained using exponential filters with uniform characteristic 564 

times set at 8, 16 and 24 days.  The results were TCA values that differed only marginally 565 

in magnitude and not at all in structure (results not shown), indicating that the use of a 566 

calibrated exponential filter does not violate the assumption of independent error 567 

characteristics required for triple collocation analysis. The final assumption introduced 568 

during data processing to be evaluated is the vertical support consistency of the three soil 569 

moisture datasets, an issue extensively discussed in Yilmaz et al. (2012). In their paper 570 

Yilmaz et al. show that the applicability of TCA using products that have different 571 

vertical support information depends on the linear relationship between soil moisture at 572 

different soil depths (i.e. surface, vegetation-adjusted soil moisture, or root-zone). The 573 

depth variations will pose a problem if they manifest themselves in a nonlinear or a 574 

hysteric relationship; instead if the relationship is linear then it fits into the TCA 575 

framework. Therefore the impact of vertical inconsistencies will depend on the linear 576 

relation between the soil moisture values of different layers. Similar to what Yilmaz et al. 577 

(2012) have found over US, we found a very high linear relation between the 578 

representative soil depths of the products (results not shown), hence we expect the 579 

vertical support inconsistencies are effectively handled via the linear rescaling performed 580 

in TCA equations.  TCA was not applied, however, in some arid regions both because of 581 

the low cross-correlations in these regions and because drought monitoring in these 582 

persistently dry regions is not a practical priority. These arid regions were masked out of 583 

TCA on the basis of their low correlation coefficient between datasets (Fig. 7). It should 584 

be noted, however, that the TCA results reported in this paper are based on a somewhat 585 

limited time series due to data availability, and that as additional data become available 586 
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they may be incorporated into the analytical framework outlined in this paper.  Given a 587 

longer time-series, the TC values would be expected to vary seasonally. For example, the 588 

TC values during the rainy season would be expected to be larger simply because the 589 

magnitude of soil moisture during rainy events is larger. For this study, however, the TC 590 

values were assumed constant in time due to the short time series of available data. 591 

As with the correlations between products, the spatial variability of the TC values 592 

for each product was evaluated as a function of the fraction of green vegetation (Figs. 7 593 

and 8). LPRM has a clear dependence on the fraction of green vegetation cover, with a 594 

marked increase in TC errors above fc = 0.75. As a passive microwave based sensor, it is 595 

expected that the accuracy LPRM soil moisture retrievals would decrease over areas of 596 

dense vegetation (Hain et al., 2011). The poor performance of LPRM in densely 597 

vegetated areas is reflected in the TC values displayed in Fig. 7, especially over the 598 

Congo basin. In these regions, valid LPRM soil moisture retrievals are often not 599 

available, and are of relatively low accuracy when they are available.  600 

ALEXI and Noah have a less pronounced dependence on the fraction of green 601 

vegetation, but in general Noah maintains the constant TC values across all fc while the 602 

TC values of ALEXI decrease above moderate fc. These trends are further confirmed in 603 

Fig. 8b, showing the relative TC errors between retrieval techniques. LPRM has the 604 

highest TC over high mean fraction of vegetation cover (fc > 0.70), while for areas with a 605 

low to moderate fraction of vegetation cover (fc < 0.70) ALEXI displays higher TC 606 

values than those of Noah or LPRM. 607 

When considering the TC values from a data merging perspective, higher relative 608 

TC values correspond to lower merging weights (see Eqs. 15 – 19). In an operational 609 

setting, these weights would be expected to change with time as the TC values vary. 610 

However, as previously discussed, the assumption of TC values constant in time leads to 611 

weights that are also constant in time. Owing to the heterogeneity of fractional vegetation 612 

and the complementary retrieval techniques, LPRM and ALEXI received low merging 613 

weights in offsetting regions while Noah received fairly constant weight across the 614 

domain.  This relationship is best illustrated by selecting a number of specific regions to 615 

analyze. For the purposes of this study four regions for which drought may be of concern 616 

but which display markedly different vegetation cover were chosen: the Ethiopian 617 
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Highlands, the Horn of Africa, northern Lake Victoria and Darfur (see Fig. 7). As 618 

expected, in the areas dominated by low fractional vegetation and an arid climate (Darfur 619 

and the Horn of Africa) LPRM and Noah received a higher merging weight and in 620 

general displayed lower TC values than ALEXI (Tables 1- 4). However, over moderate to 621 

dense fractional vegetation the performance of LPRM degraded (as TC values increased), 622 

while ALEXI and Noah on average had lower TC values and therefore received a higher 623 

merging weight.  624 

Bearing in mind the predominantly arid conditions of the study region, these 625 

results are also consistent with the correlation analysis (Fig. 5 and Table 5), which 626 

indicates that Noah has the highest cross-correlations and LPRM cross-correlations are 627 

better than the cross-correlations of ALEXI. However, the majority of the cross-628 

correlation differences are only marginal, especially the difference between the cross-629 

correlations of Noah and ALEXI, implying the weight differences we find here are only 630 

due to small differences that exist in the cross-correlations. Here the weights do not imply 631 

any relation with the absolute magnitude of the errors, but rather only give information 632 

about the relative magnitudes of the errors regardless of the error differences.   633 

The performance of the merged product was compared to each individual method 634 

in Fig. (10), which compares estimates of soil moisture during an 8-day period of the 635 

long rains in 2011. The merged product achieves a more complete spatial coverage than 636 

either of the satellite methods while reflecting a consensus location and magnitude 637 

anomaly pattern. The yearlong progression of the 2010-2011 drought is depicted in Fig. 638 

(11), which displays the monthly anomalies of the merged product for July 2010 – June 639 

2011. This figure highlights the spatial evolution of the two-season drought as captured 640 

by the merged product.  641 

Importantly, the merged product and all three independent products generally 642 

agree on the seasonality and general patterns of interannual variability in soil moisture in 643 

the drought affected region (Fig. 12).  This suggests that the independent products are 644 

capturing sufficiently similar processes at seasonal and interannual timescales, and it 645 

indicates that within the drought affected region the merged product provides a spatially 646 

complete, consensus-derived drought monitor that is not overly influenced by 647 

discrepancies between datasets. This point is reinforced by the fact that there is near total 648 
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agreement in the rank order soil moisture deficit conditions for long and short rainy 649 

seasons across LPRM, ALEXI, Noah, and the merged product (Table 6). In all cases, the 650 

2010 short rains and 2011 long rains are identified as the most anomalously dry rainy 651 

seasons in the five year record. This consistency in results offers some confidence that 652 

the merged product for the drought region is informed by consensus between all three 653 

products and is not disregarding one product in favor of consensus between the other two. 654 

The rainy season rankings of these soil moisture products is also broadly consistent with 655 

rankings derived from vegetation index anomalies and GRACE water storage anomalies 656 

(see Fig. 3). Relatively small discrepancies between products—for example, the 657 

relatively slow dry-down in ALEXI observed in 2009 and 2011 (Fig. 12)—are interesting 658 

in their own right and are the subject of further study. But they do not strongly influence 659 

the seasonal rankings. 660 

 661 

4. Conclusions 662 

 663 

Remote sensing and physically-based models are critically important methods for 664 

monitoring drought in areas with limited in situ observation networks, particularly for 665 

countries with food security concerns. As shown in this study, remotely sensed 666 

observations are valuable for their spatial and temporal continuity as well as for their 667 

diversity—satellite-derived observations of precipitation, soil moisture, vegetation 668 

condition and terrestrial water storage offer a range of information on meteorological, 669 

agricultural, and hydrological drought over space and time. An anomaly analysis of 670 

satellite and model-based drought indicators demonstrated that the 2010-2011 drought 671 

stands out as an extreme event according to all measures included in this study. But 672 

different data records provide different perspectives on the onset and progression of the 673 

drought. TRMM and LPRM capture rapid-response anomalies associated with the failure 674 

of rains in each rainy season, while ALEXI and Noah track the evolution of the drought 675 

as it deepened from 2010 to 2011, and GRACE captures the fact that the drought 676 

occurred against a background of a multiyear deficit in the regional water balance. This 677 

diversity of information is valuable for tracking the progression and severity of a drought 678 
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and for anticipating the impacts that an emerging drought may have on ecological and 679 

human systems. 680 

In addition to providing observations that capture diverse drought-related 681 

processes across time and space, earth observing systems and models often provide 682 

complementary estimates of a single variable. In this study, independent estimates of soil 683 

moisture derived from passive microwave (AMSR-E; LPRM), thermal infrared (ALEXI), 684 

and model-based (Noah) methods were cross-compared and merged into a single 685 

consensus drought monitor product using triple collocation analysis. It was found that 686 

ALEXI complements poor LPRM performance under conditions of dense vegetation, 687 

while LPRM and Noah provide more consistent anomaly estimates under more sparse 688 

vegetation conditions. This general pattern, which derives from the fact that vegetation 689 

interferes with LPRM soil moisture retrievals but does not compromise thermally derived 690 

soil moisture estimates from ALEXI, is consistent with findings of Hain et al. (2011) for 691 

the contiguous United States. The least squares-based objective data merging technique 692 

that is built over the TCA-based error estimates utilizes the complementary strengths of 693 

each method to generate soil moisture anomaly estimates across agroclimatic zones.  694 

While the present study is limited by short satellite data records and an absence of 695 

direct in situ soil moisture evaluation data, the consistency of the results with studies in 696 

the United States and the coherency of independent satellite and model-based analyses of 697 

the 2010-2011 Horn of Africa drought point to the promise of the least squares-based 698 

merging approach that utilizes TCA-based errors. ALEXI, AMSR-E, Noah, and the 699 

merged product all credibly capture the major 2010-2011 drought event, the relative 700 

dryness rankings of each year, and the expected seasonal cycles of soil moisture. In 701 

addition, the TRMM precipitation product used to force Noah simulations has 702 

demonstrated good performance in the drought affected portion of the study region, 703 

which lends additional confidence to the Noah results. With the addition of a longer 704 

ALEXI time-series, the sampling errors that arise from short satellite data records are 705 

expected to decrease relative to the current study.  706 

While data merging offers several advantages over a single-source product—707 

including improved spatial coverage relative to single sensor techniques, the potential to 708 

down-weight products with systematic biases in certain locations or environments, and 709 
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the utilization of information from multiple independent data streams—merging on the 710 

basis of consensus alone should properly be viewed as an experimental, transitional 711 

approach pending confirmation with in situ data. The merging technique would, for 712 

example, tend to propagate any bias that exists in two or more products, possibly 713 

degrading performance relative to a single-source product that does not suffer from such 714 

bias. In the absence of ground truth, the weighted merging technique proposed in this 715 

paper is justified by the well understood physical processes that underlie general patterns 716 

in TCA values—most notably the gradient towards degraded AMSR-E performance in 717 

densely vegetated regions—and the expectation that there is some information in 718 

consensus between independent products, such that a TCA-weighted merged value that 719 

captures systematic deviations of one product from the others is, on the balance, better 720 

justified than a flat average across products and is preferable to relying on a single 721 

product with data gaps.  722 

Pending further evaluation, the TCA-based data merging technique could form 723 

the foundation for a soil moisture-based drought monitor in East Africa. Such a product 724 

would complement existing drought analysis tools that are based on precipitation 725 

anomaly, hydrological models, or vegetation indices. Implementation of an operational 726 

TCA-based system would, of course, entail a number of practical challenges. First, data 727 

latency would need to be addressed. The real-time TRMM 3B42-RT product is typically 728 

produced with a 9 hour latency, while LPRM data are produced with a lag of 24 hours. 729 

ALEXI data latency is currently a function of the accessibility of Meteosat data (e.g., 730 

land surface temperature, incoming solar radiation) and processing time for the regional 731 

numerical weather prediction (NWP) model used to generate necessary meteorological 732 

data fields. In an operational context, it should be possible to make use of operational 733 

NWP models (e.g., Global Forecast System or European Centre for Medium-Range 734 

Weather Forecasts) to provide the necessary meteorological fields facilitating a rapid 735 

product turnaround on the order of 12-24 hours. TCA analysis itself can be automated to 736 

require minimal processing time, and results can be disseminated through a web interface 737 

or email alerts. As such, system latency represents a surmountable challenge for 738 

operational monitoring. A second challenge is that the analysis system currently makes 739 

use of research-grade remote sensing products, including TRMM precipitation and 740 
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AMSR-E soil moisture, that are subject to active algorithm development and—as was 741 

recently experienced with AMSR-E—failure of one-of-a-kind sensors. The challenge of 742 

evolving retrieval algorithms can be overcome with regular recalibration of the analysis 743 

system—TCA analysis and data merging can readily be recalculated as data are updated, 744 

provided that the updates are applied consistently to the historical data archive. The 745 

problem of data continuity in research-grade products is more difficult to address, and 746 

points to the value of flexible analysis systems that can be adapted to new satellite 747 

products (e.g., using SMAP in place of AMSR-E for soil moisture) and, ultimately, the 748 

value of transitioning applications-oriented research sensors to operational status. 749 

As demonstrated in this study, diverse satellite and model-based monitoring 750 

methodologies provide complementary information on the evolution and severity of 751 

drought. Ultimately, East Africa—and other drought prone regions—would benefit from 752 

an accessible and intuitive drought portal that allows drought analysts and decision 753 

makers real time access to a range of drought monitoring products. As a component of a 754 

much broader movement for drought preparedness and response capacity in the region, 755 

such a monitor can provide valuable information to inform early warning and disaster 756 

response for future droughts. 757 
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Table 1: Average merging weight and TC values for the Ethiopian Highlands 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Table 2: Average merging weight and TC values for Darfur 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 3: Average merging weight and TC values for the Horn of Africa 
 
 
 
 
 
 
 
 
 
 
 

Ethiopian Highlands 
(34.59, 40.21, 6.86, 13.53) [W, E, S, N] 

Retrieval 
Average TCA value 

[( m3m-3)2 ] 
Average merging 

weight 

LPRM 4.312 x10-4 0.283 

ALEXI 3.914 x10-4 0.331 

Noah 2.822 x10-4 0.385 

Darfur 
(23.89, 27.78, 9.82, 19.09) [W, E, S, N] 

Retrieval 
Average TCA value 

[( m3m-3)2 ] 
Average merging 

weight 

LPRM 1.107 x10-4 0.351 

ALEXI 1.561 x10-4 0.264 

Noah 1.134 x10-4 0.384 

Horn of Africa 
(40.62, 48.12, -3.12, 9.37)  [W, E, S, N] 

Retrieval 
Average TCA value 

[( m3m-3)2 ] 
Average merging 

weight 

LPRM 3.023 x10-4 0.401 

ALEXI 5.700 x10-4 0.212 

Noah 2.793 x10-4 0.387 
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Table 4: Average merging weight and TC values for northern Lake Victoria 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table 5: Average anomaly correlations 
 

 

 

Table 6: Rank order of long and short rainy seasons based on severity of soil moisture 

deficit. ALEXI data are missing for the period of the 2007 short rains. 

    ALEXI LPRM Noah Merged Product 
Long Rains 6 7 7 7 

2007 Short Rains NA 9 8 8 
Long Rains 3 4 4 4 

2008 Short Rains 7 6 6 6 
Long Rains 4 3 3 3 

2009 Short Rains 5 5 5 5 
Long Rains 8 8 9 9 

2010 Short Rains 1 2 2 2 
2011 Long Rains 2 1 1 1 

Northern Lake Victoria 
(28.71, 35.95, -0.25, 3.65) [W, E, S, N] 

Retrieval 
Average TCA value 

[( m3m-3)2 ] 
Average merging 

weight 

LPRM 4.867 x10-4 0.273 

ALEXI 5.187 x10-4 0.330 

Noah 3.331 x10-4 0.396 

Retrieval Pair Darfur 
Ethiopian 
Highlands 

Horn of Africa Northern Lake 
Victoria 

Noah - LPRM 0.848 0.737 0.828 0.689 

ALEXI – LPRM 0.798 0.720 0.773 0.636 

Noah - ALEXI 0.796 0.781 0.777 0.711 
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Figure 1: Selected area of interest within the Horn of Africa (40.625, 48.125, -3.125, 
9.375) [W, E, S, N] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: TRMM Multisensor Precipitation Analysis (3B42) Precipitation estimates from 
2003 – 2011. Blue = 2010-2011; Gray = all other years. 
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Figure 3: Anomaly analysis of TRMM precipitation, LPRM and Noah soil moisture 
estimates, MODIS NDVI and GRACE terrestrial water storage using a Jan 2003 to Jun 
2010 baseline.  
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Figure 4: Seasonal anomalies averaged over the 2010 short rains (A-C) and 2011 long 
rains (D-F) for LPRM (A,D), ALEXI (B,E) and Noah (C,F). The short rains are defined 
as the period from September 12 – December 1, while the long rains span March 28 – 
June 30. 
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Figure 5: Temporal cross-correlation of rescaled soil moisture anomalies for Jan 2007 – 
Jun 2010 computed between A)  LPRM and Noah, B) ALEXI and Noah, and C) ALEXI 
and LPRM. 
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Figure 6: Anomaly correlation difference using Noah (A,C) and ALEXI (B, D) as 
reference datasets. Areas shaded in brown or pink represent a greater correlation between 
LPRM and the reference dataset. A) and B) show the spatial distribution of correlation 
differences, while C) and D) show correlation differences as a function of the average 
fraction of green vegetation during the rainy seasons. 
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Figure 7: The variance of the triple collocation analysis based errors in (m3m-3)2 for each 
product juxtaposed with the annual average fraction of green vegetation cover. A) 
ALEXI TCA, B) LPRM TCA, C) Noah TCA, D) Mean fraction of green vegetation 
cover over the period 2007 to 2011. Gray areas in panels A-C indicate regions below the 
correlation threshold for the TC analysis (r < 0.2). Red boundaries in panel D indicate 
bounding boxes for the analysis in Tables 1-4. 
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Figure 8: The variance of the triple collocation analysis based errors in (m3m-3)2 binned 
as a function of average fraction of green vegetation cover during the rainy season, 
showing a) TCA values for each SM retrieval technique, and b) differences in TCA 
between retrieval techniques. 
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Figure 9: TCA based weight map for the case in which data is available from all products 
for A) ALEXI, B) LPRM and C) Noah. 
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Figure 10: Individual and merged product anomaly maps for an 8-day period during the 
2011 long rainy season (Apr 28 – May 06). A) LPRM, B) ALEXI, C) Noah, D) Merged 
Product. 
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Figure 11: Monthly anomaly maps of the progression of the 2010-2011 drought using the 
merged product. July – December 2010 (A-F) and January –June 2011 (G – L).  



 47 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12: Comparison of anomalies from individual and merged products using a Jan 
2007 – Jun 2010 baseline, averaged over the area of interest within the Horn of Africa 
(see Fig. 1). 


