1	The effects of cumulative forest disturbance on streamflow in a large
2	watershed in the central interior of British Columbia, Canada
3	
4	M. Zhang ¹ and X. Wei ¹
5	¹ Department of Earth and Environmental Science, The University of British Columbia
6	(Okanagan campus), 3333 University Way, Kelowna, British Columbia, Canada
7	Correspondence to: X. Wei (adam.wei@ubc.ca.)

8 Abstract

9	The Baker Creek watershed (1570 km ²) situated in the central interior of British
10	Columbia, Canada has been severely disturbed by both human being logging and natural
11	disturbance, particularly by a recent large-scale mountain pine beetle (MPB) infestation
12	(up to 2009, 70.2% of the watershed area was attacked by MPB) and subsequent salvage
13	logging. The concept of equivalent clear-cut area (ECA) was used to indicate the
14	magnitude of forest disturbance with consideration of hydrological recovery following
15	various types of disturbances (wildfire, logging and MPB infestation) cumulated over
16	space and time in the studied watershed. The cumulative ECA was up topeaked at 62.2%
17	in 2009. A combined approach of statistical analysis (<u>i.e.,</u> time series analysis) with and
18	graphic method (modified double mass curve-) was employed to evaluate the impacts of
19	forest disturbance on hydrology. Our results showed that severe forest disturbance

20	significantly increased annual mean flow. The average increment in annual mean flow		
21	caused by forest disturbance was 48.4 mm/yr, while the average decrease in annual mean		
22	flow cased by climatic variability during the same disturbance period was -35.5mm/yr.		
23	The opposite changes in directions and magnitudes clearly suggest offsetting effect		
24	between forest disturbance and climatic variability, with the absolute influential strength		
25	of forest disturbance (57.7%) overriding that from climate variability (42.3%). Forest		
26	disturbances also produced significant positive effects on low flow and dry season (fall		
27	and winter) mean flow. Implications of our findings for future forest and water resources		
28	management are discussed in the context of long-term watershed sustainability.		
29			
30	Key words: forest disturbance, logging, wildfire, mountain pine beetle infestation,		
31	annual mean flow, low flow, time series analysis		
32			
33	1. Introduction		
34	Forests play an important role in <u>the</u> water cycle mainly through by influencing rainfall		
35	interception, evapotranspiration, and soil infiltration and storage. Forest disturbances		
36	such as logging, wildfire, and insect infestation will inevitably have impactscan effect on		
37	streamflow by altering its regime (i.e., magnitude, frequency, timing, duration and rate of		
38	change). Numerous studies on the hydrological impacts of logging have been conducted		

Formatted: Font: (Defau New Roman, (Asian) Chi (PRC)

40	approach, and those studies have shown that forest logging harvesting can significantly
41	increase annual mean and peak flows, and change dry season low flow (Stednick, 1996;
42	Neary et al., 2003; Bruijnzeel, 2004; Moore and Wondzell, 2005). But the research on
43	impacts of forest disturbances on hydrology in large watersheds (>1000 km ²) is limited
44	(Wei and Zhang, 2010a; Vose, et al., 2011), and the results are inconsistent (Ring and
45	Fisher, 1985; Buttle and Metcalfe, 2000; Costa et al., 2003; Tuteja et al., 2007; Wei and
46	Zhang, 2010b). In spite of limited research, the topic on-of the forest disturbance-
47	hydrology relationship at-in large watersheds has received growing attention mainly
48	because of increasing need to support natural resources planning and management at
49	large spatial scales.
49 50	large spatial scales.
49 50 51	large spatial scales. A large watershed is always featured withcan be shown to have various types of forest
49 50 51 52	large spatial scales. A large watershed <u>is always featured withcan be shown to have</u> various types of forest disturbances that are cumulative over both space and time. These disturbances
49 50 51 52 53	large spatial scales. A large watershed is always featured withcan be shown to have various types of forest disturbances that are cumulative over both space and time. These disturbances interactively affect watershed hydrology, and their effects tend to be cumulative. The
 49 50 51 52 53 54 	large spatial scales. A large watershed is always featured withcan be shown to have various types of forest disturbances that are cumulative over both space and time. These disturbances interactively affect watershed hydrology, and their effects tend to be cumulative. The interactive effects of various forest disturbances on hydrology in large watersheds are
 49 50 51 52 53 54 55 	large spatial scales. A large watershed is always featured withcan be shown to have various types of forest disturbances that are cumulative over both space and time. These disturbances interactively affect watershed hydrology, and their effects tend to be cumulative. The interactive effects of various forest disturbances on hydrology in large watersheds are seldom examined mainly due to lack of an indicator for representing and integrating
 49 50 51 52 53 54 55 56 	large spatial scales. A large watershed is always featured withcan be shown to have various types of forest disturbances that are cumulative over both space and time. These disturbances interactively affect watershed hydrology, and their effects tend to be cumulative. The interactive effects of various forest disturbances on hydrology in large watersheds are seldom examined mainly due to lack of an indicator for representing and integrating various types of forest disturbances, as well as great difficulty in separating the effects of
 49 50 51 52 53 54 55 56 57 	large spatial scales. A large watershed is always featured withcan be shown to have various types of forest disturbances that are cumulative over both space and time. These disturbances interactively affect watershed hydrology, and their effects tend to be cumulative. The interactive effects of various forest disturbances on hydrology in large watersheds are seldom examined mainly due to lack of an indicator for representing and integrating various types of forest disturbances, as well as great difficulty in separating the effects of forest disturbance from the influence of climatic variability (Wei and Zhang, 2010a).

59	A suitable forest disturbance indicator for a large watershed should not only represent all
60	types of disturbances and ranges of their intensities, but also include their cumulative
61	forest disturbance history and subsequent recovery processes following disturbance over
62	space and time (Wei and Zhang, 2010a). ECA (equivalent clear-cut area), an indicator
63	widely used in Canada, particularly in British Columbia and Alberta, is defined as the
64	area that has been clear-cut, with a reduction factor to account for hydrological recovery
65	due to forest regeneration after disturbances (BCMFRBritish Columbia Ministry of
66	Forests, 1996). Harvest blocks, agricultural areas, residential development, and roads
67	Roads, clear cuts, burned areas and partial cuts can all be expressed as ECA. Research
68	has established the relationships between vegetation growth (ages or tree heights)
69	following disturbances and hydrological recovery rates so that ECA can be derived
70	spatially and temporally in a watershed (Hudson, 2000; Talbot and Plamondon, 2002;
71	Winkler et al., 2005; Lewis and Huggard, 2010). The ECA has already been successfully
72	used in British Columbia, Canada to test watershed-scale forest disturbances and their
73	effects on various watershed processes including aquatic habitat (Chen and Wei, 2008),
74	hydrology (Lin and Wei, 2008) and aquatic biology (Whitaker et al., 2002; Jost et al.,
75	2008). In spite of growing recognition of ECA, its utility in representing all-various types
76	of forest disturbances including mountain pine beetle infestation, harvesting and fire in a
77	single large watershed for hydrological studies has not been applied as far as we know.

79	Another barrier for large watershed studies is <u>the lack of <u>a</u> robust research methodology.</u>
80	Forest disturbance and climatic variability are viewed as two major drivers interactively
81	influencing streamflow in large forested watersheds (Buttle and Metcalfe, 2000; Sharma
82	et al., 2000; Blöschl et al., 2007; Ma et al., 2010; Wei and Zhang, 2010b). The greatest
83	challenge is how to separate their relative contributions to hydrology (Zhang et al., 2008;
84	Wang et al., 2009; Zheng et al., 2009; Wei and Zhang, 2010b). PThe physically-based
85	hydrological modeling is commonly used to assess the relative effects of climate
86	variability and forest change on hydrology (Tuteja et al., 2007; Juckem et al., 2008; Zégre
87	et al., 2010; Zhao et al., 2010). But this modeling approach is only suitable for the
88	watersheds that are well monitored with extensive, long-term available data on
89	vegetation, soil, topography, land use, hydrology and climate (Wei and Zhang, 2010a, b).
90	Moreover, it requires time-consuming model calibration and validation. Advanced
91	statistical methods (e.g., non-parametric tests, regression analysis and time series
92	analysis), combined with graphical methods (double mass curves, single mass curves, and
93	flow duration curves) have been proved to beare promising alternatives in view of their
94	limited data requirements and abilities to generate reliable inferences (Jones and Grant,
95	1996; Buttle and Metcalfe, 2000; Wei and Lin, 2008; Wei and Zhang, 2010b).
96	Lack of suitable watersheds can also constrain forest hydrological study at large spatial

scales. In order to detect the cumulative effects of forest disturbances on hydrology, a

98	large watershed must experience significant forest disturbances. It must also have long-
99	term data on forest disturbance, climatic and hydrological data with a sufficient long
100	period of no or limited forest disturbance as a comparable reference or control period.
101	Given the fact that the majority of large watersheds are poorly monitored or regulated,
102	it's-it is rather challenging to find suitable study watersheds.
103	
104	The Baker Creek watershed in the central interior of British Columbia, Canada has been
105	severely disturbed by large-scale mountain pine beetle (MPB) infestation and subsequent
106	salvage logging in recent the last 10 years. Up to 2009, 70.2% of the watershed area was
107	attacked by MPB, and cumulative logged area accounted for about 41.4% of the total
108	watershed area. The forest disturbance level in terms of ECA was up to 62.2% in 2009.
109	The significant forest disturbances, along with long-term data on climate, hydrology and
110	forest disturbance history provide a unique opportunity to examine the possible
111	cumulative effects of forest disturbances on hydrology at a large spatial scale. Early work
112	by Alila et al. (2007) used the DHSVM model to evaluate the hydrological impacts of
113	different forest logging scenarios in the Baker Creek watershed. However, their analysis
114	only included forest logging without addressing the cumulative hydrologic effect of
115	various types of forests disturbances. In this study, we used our well testedour non-
116	modeling methodology to study the cumulative effects of forest disturbances on the
117	hydrology in of the Baker Creek watershed. The methodology combines statistical

analysis (e.g. time series analysis) with graphical methods (e.g., modified double mass
curves) (Wei and Zhang, 2010b). The major objectives of this study were: (1) to assess
the cumulative effect of forest disturbances on annual mean and low flows; and (2) to
quantify the relative contributions of forest disturbance and climatic variability to annual
mean flows in the Baker Creek watershed.

123 2. Watershed description

The Baker Creek, about 114 km in length and with a drainage area of 1570 km², flows 124 125 into the Fraser River in Quesnel in the central interior of B.C., Canada (Figure 1). Most 126 of the watershed is a plateau. EThe elevations for the watershed range from 475m at the 127 river mouth to 1500 m in the headwaters, with a median elevation of 1100 m. Areas at 128 higher elevations and the valley bottom above the canyon section are characterized by 129 volcanic bedrock. Unconsolidated sediments are dominant at middle elevations, while the 130 middle or canyon section of the watershed is a complex of meta sedimentary and volcanic 131 rock. 132 133 The climate in the Baker Creek watershed is relatively cool and dry. As shown in Figure 134 2, December and January always have lowest temperatures while July and August are

- 135 featured with<u>have the</u> highest temperatures. The long-term average monthly maximum
- temperature can reach 20.4 °C in July, while the average monthly minimum temperature

137	is -14.4 °C in January. Annual watershed areal precipitation ranges from 360 mm (in
138	1987) to 738 mm (in 1982) with an average of 542 mm, of which 34% is from snow
139	during the winter season (November to March).
140	
141	According to the biogeoclimatic ecosystem classification (BEC) system, this watershed is
142	primarily located within the Sub-Boreal-Pine-Spruce (SBPS) biogeoclimatic zone
143	featured with lodgepole pine (<i>Pinus contorta</i>) and white spruce (<i>Picea glauca</i>) (BCMFR,
144	2012). The Sub-Boreal-Spruce (SBS) and the Montane-Spruce (MS) biogeoclimatic
145	zones can also be found at middle and higher elevations, respectively.
146	Figure 1 Location of the study watershed in the central interior of British Columbia,
147	Canada
147 148	Canada Figure 2 Long-term (1964 to 2009) average monthly temperature (°C) and
147 148 149	Canada Figure 2 Long-term (1964 to 2009) average monthly temperature (°C) and precipitation (mm)
147 148 149	Canada Figure 2 Long-term (1964 to 2009) average monthly temperature (°C) and precipitation (mm)
147 148 149 150	Canada Figure 2 Long-term (1964 to 2009) average monthly temperature (°C) and precipitation (mm) 3. Data and methods
147 148 149 150 151	Canada Figure 2 Long-term (1964 to 2009) average monthly temperature (°C) and precipitation (mm) 3. Data and methods 3.1. Data
147 148 149 150 151 152	Canada Figure 2 Long-term (1964 to 2009) average monthly temperature (°C) and precipitation (mm) Janeard Janeard Janeard There is one active hydrometric station in the Baker Creek watershed (Station ID:
147 148 149 150 151 152 153	Canada Figure 2 Long-term (1964 to 2009) average monthly temperature (°C) and precipitation (mm) 3. Data and methods 3.1. Data Here is one active hydrometric station in the Baker Creek watershed (Station ID: 08KE016, Baker Creek at Quesnel), with records dating back to 1964. Hydrological data
147 148 149 150 151 152 153 154	Canada Figure 2 Long-term (1964 to 2009) average monthly temperature (°C) and precipitation (mm) 3. Data and methods 3.1. Data Here is one active hydrometric station in the Baker Creek watershed (Station ID: 08KE016, Baker Creek at Quesnel), with records dating back to 1964. Hydrological data including daily flows and monthly flows from 1964 to 2009 were obtained from this

156	divided into four periods: spring (April-June), summer (July-August), fall (September -		
157	October) and winter (November-March). The annual mean flow is highly variable,		
158	ranging between 24 mm in 1988 and 179 mm in 2007 with an average of 103.3 mm.		
159	Streamflow usually reaches peaks in late April or May from snowmelt, and the		
160	streamflow during the snowmelt seasons accounted for 68% of the annual total.		
161	Figure 3 Average monthly flows in the Baker Creek watershed		
162	Climate data such as monthly mean, maximum and minimum temperature, and		
163	precipitation used in this study are from ClimateWNA dataset. ClimateWNA is a gridded		
164	climate dataset for Western North America, which downscales and integrates monthly		
165	and annual historical climate data (1901-2009) (Mitchell and Jones, 2005; Mbogga et		
166	al., 2009). Given large spatial variations on-in climate and precipitation in particular due	 Formatted: Fo New Roman, 1	ont: (E 12 pt
167	to topographic effect, , precipitation in particular due to topographic effect in the		
168	watershed, gridded monthly climate data ClimateWNA were derived with a resolution of		
169	10 km*10 km and then aggregated to generate monthly climate data series for the whole		
170	watershed.		
171			
172	GIS based data on forest disturbances history for the study watershed were derived by use		
173	of ArcGIS 9.2 from two provincial databases: Cutblocks 2010 and VRI (Vegetation		
174	Resources Inventory) 2010, developed and maintained by the B.C. Ministry of Forests,		
175	Lands and Natural Resources Operations. The Cutblocks 2010 database combines		

(Defau

176	logging information from both the B.C. Ministry of Forests, Lands and Natural Resources
177	Operations and Forest Industries up to 2009. It contains complete records of cutblock
178	sizes and logged years but detailed vegetation information has not been included. The
179	VRI 2010 database records various disturbances information (i.e., fire, infestation, and
180	logging) and detailed vegetation descriptions up to 2009. However, its records on logging
181	are incomplete due to delayed submissions from the industries forestry companies. Thus,
182	both datasets are complementary, and were used in this study. Data from two databases
183	were overlaidy and analyzed in ArcGIS 9.2. to generate complete records on quantitative
184	forest disturbance history for the study watershed.
-01	
185	3.2. Method <u>s</u>
185 186	3.2. Method <u>s</u> 3.2.1. Quantification of forest disturbance level
185 186 187	 3.2. Methods 3.2.1. Quantification of forest disturbance level Logging, fire and MPB infestation are recognized as three major forest disturbance types
185 186 187 188	 3.2. Methods 3.2.1. Quantification of forest disturbance level Logging, fire and MPB infestation are recognized as three major forest disturbance types in the Baker Creek watershed. Between 1960s and 1970s, forest disturbances were rather
185 186 187 188 189	 3.2. Methods 3.2.1. Quantification of forest disturbance level Logging, fire and MPB infestation are recognized as three major forest disturbance types in the Baker Creek watershed. Between 1960s and 1970s, forest disturbances were rather limited except for a large burn in 1961 occurred in the long-Long John Creek-Wentworth
185 186 187 188 189 190	 3.2. Methods 3.2.1. Quantification of forest disturbance level Logging, fire and MPB infestation are recognized as three major forest disturbance types in the Baker Creek watershed. Between 1960s and 1970s, forest disturbances were rather limited except for a large burn in 1961 occurred in the long-Long John Creek-Wentworth Lake area, a tributary to the study watershed, in 1961 and by and which burned about 0.3%
185 186 187 188 189 190 191	 3.2. Methods 3.2.1. Quantification of forest disturbance level Logging, fire and MPB infestation are recognized as three major forest disturbance types in the Baker Creek watershed. Between 1960s and 1970s, forest disturbances were rather limited except for a large burn in 1961 occurred in the long Long John Creek-Wentworth Lake area, a tributary to the study watershed, in 1961 and by and which burned about 0.3% of the watershed area was burned. And tThe cumulative area burned by wildfire was less
185 186 187 188 189 190 191 192	 3.2. Methods 3.2.1. Quantification of forest disturbance level Logging, fire and MPB infestation are recognized as three major forest disturbance types in the Baker Creek watershed. Between 1960s and 1970s, forest disturbances were rather limited except for a large burn in 1961 occurred in the long Long John Creek-Wentworth Lake area, a tributary to the study watershed, in 1961 and by and which burned about 0.3% of the watershed area-was burned. And tThe cumulative area burned by wildfire was less than 1% till-up to 2009. The MPB disturbance was rare before 2000. Nevertheless, it has
185 186 187 188 189 190 191 192 193	 3.2. Methods 3.2.1. Quantification of forest disturbance level Logging, fire and MPB infestation are recognized as three major forest disturbance types in the Baker Creek watershed. Between 1960s and 1970s, forest disturbances were rather limited except for a large burn in 1961 occurred in the long-Long John Creek-Wentworth Lake area, a tributary to the study watershed, in 1961 and by and which burned about 0.3% of the watershed area was burned. And tThe cumulative area burned by wildfire was less than 1% till-up to 2009. The MPB disturbance was rare before 2000. Nevertheless, it has become dominating after its large-scale outbreak in 2003, with 17.3% of the watershed

195	been attacked by MPB. Up to 2009, forests attacked by MPB came up to 70.2% of the
196	total watershed areaLogging is the most dominant human-being disturbance after 1970.
197	Large-scale logging activities occurred in two periods (1975-1980 and 1989-2009). The
198	most intensive logging took place between 2001 and 2009 as a result of salvage logging
199	in response to large-scale MPB outbreak, and 23.8% of the watershed (14% salvage
200	logged) was harvested during that period with an average clear-cut rate of 2.6% per year.
201	From 1961 to 2009, the cumulative logged area accounted for 41.4% of the total
202	watershed area (Figure 4 <u>5a</u>). Thus, the Baker Creek watershed has been severely
203	disturbed by severe MPB infestation and subsequent salvage logging in the recent 10
204	years.
205	
206	Figure 4 Forest disturbances histories from 1961 to 2009
207	Since all kinds of forest disturbances are cumulative over both space and time in the
208	study watershed, ECA was used in this study as an integrated indicator that combines all
209	types of forest disturbances spatially and temporally with consideration of vegetation and
210	hydrological recovery following disturbances. For example, an ECA coefficient of 100%
211	means no hydrological recovery in a disturbed forest stand, while an ECA coefficient of 0%
212	indicates a 100% hydrological recovery. However, the generation of ECA coefficients for
213	each type disturbance is challenging because hydrological recovery is determined by

214	various factors, mainly including disturbance type, climate, and tree species (Hudson,	
215	2000; Talbot and Plamondon, 2002).	
216		
217	The relationship between vegetation growth represented by ages or tree heights following	
218	logging and hydrological recovery rates was studied by Hudson (2000) and Talbot and	
219	Plamondon (2002) in British Columbia, Canada, which was generally used to estimate	
220	ECA after logging for different tree species, mainly spruce and lodgepole pine forests in	
221	the watershed assessment (British Columbia Ministry of Forests and Rangeland, 1999).	
222	Given that those two species are dominant in the study watershed, we developed a	
223	relationship between age / height and hydrological recovery for those two tree species for	
224	logging. For MPB infestation, Lewis and Huggard (2010) have developed a model to	Formatted: Font: No
225	quantify the effects of MPB infestation on ECA calculation based on their monitoring in	
226	different biogeoclimatic zones. Based on their studies and inputs from local forest	
227	hydrologists, we also developed relationships between tree ages/height and hydrological	
228	recovery in SBPS, SBS and MS biogeoclimatic zones for the MPB killed forest stands.	Formatted: Font: No color: Auto
229	The hydrological impact of MPB infestation on forests is different from that of logging.	
230	Since dead trees remain in stands, the hydrological function of dead trees is not	
231	completely damaged as removal of trees by logging (Winkler et al., 2008). Moreover, the	
232	understory beneath MPB attacked stands and other trees not attached by MPB at	

233 overstorey can also intercept and transpire water. Thus, the alteration of hydrology due to

12

ot Ita

ot Ita

234	MPB infestation was much lower than clear-cut, especially within 1-2 years after attacks.	
235	However, as dead trees lose their canopy over time, the hydrological effect of MPB	
236	attack is increased and then decreased with regeneration of young trees. For example, the	
237	ECA coefficient for the forest stand in SBS/SBPS zone is only about 15% one year after	
238	MPB attack and reaches the maximum of 75% in 18-20 years later and then drop to 10%	
239	after 60 years (Lewis and Huggard, 2010). Figure 4 provided time series of ECA	Fo
240	coefficients for logging, fire and MPB, which was used to estimate ECA data series for	
241	each forest stand based on their disturbed area (i.e., annual clear-cut area) derived from	
242	historic disturbance recordsFor MPB infestation, Lewis and Huggard (2010) have	
243	developed a model to quantify the effects of MPB infestation on ECA calculation based	
244	on their monitoring in different biogeoclimate zones. Based on their studies and inputs	
245	from local forest hydrologists, we also developed relationships between tree ages/height	
246	and hydrological recovery in SBPS, SBS and MS biogeoclimatic zones for the MPB	
247	killed forest stands Figure 5-4 provided time series of ECA coefficients for logging, fire	
248	and MPB, which was used to estimate ECA data series for each forest stand based on	
249	their disturbed area (i.e., annual clear-cut area) derived from historic disturbance records.	
250	Figure <u>5-4</u> Equivalent clear-cut area (ECA) coefficients for the Baker Creek	
251	watershed	
252	Any forest stand in the study watershed could actually be disturbed by a single	
253	disturbance agent or multiple types of disturbances chronologically or simultaneously. In	

Formatted: Font: Not Ita

254	order to calculate long-term ECA for the whole watershed, disturbed forest stands in the
255	Baker Creek watershed were classified into 5 groups according to the disturbances
256	history from two datasets, Cutblocks 2010 and VRI 2010. They are described as below:
257	a) Forest stands disturbed by logging;
258	b) Forest stands disturbed by MPB;
259	c) Forest stands disturbed by fire;
260	d) Forest stands disturbed by both logging and fire;
261	e) Forest stands disturbed by both logging and MPB.
262	
263	Annual ECA data series for each group was calculated individually and then added
264	upsummed to derive annual ECA data for all disturbances in the watershed. As shown in
265	Figure 65b, cumulative ECA was about 1% in 1975, which was then slowly increased to
266	10.4% and jumped from 22.4% in 2002 to 62.2% in 2009 due to salvage logging after the
267	large-scale MPB outbreak in 2003. Up to 2009, the cumulative ECA of logging and
268	salvage logging in response to MPB attack were 24.4 % and 22.6%, respectively. The
269	cumulative ECA of MPB attack without logging was 14.8% (Figure 6).
270	
271	Figure <u>6-5a,b</u> Cumulative equivalent clear-cut area (ECA) from 1961 to 2009

272 3.2.2. Trend analysis

	n temporal
274 dynamics in hydrological and climatic data series over the study period f	or better
275 understanding of hydrological variations caused by different factors. Hydrological variations caused by different factors.	drological
276 variables involved in trend analysis including mean flow and 7 day low f	low (lowest
277 average flow over a 7-day period) on annual and seasonal (spring, summ	er, fall and
278 winter) scales. The tested climatic variables Precipitation trends were also	<u>o viewed at are</u>
annual, spring, summer, fall and winter and seasonal precipitation.scales.	Many studies
280 show an obvious shift in the Pacific Decadal Oscillation (PDO) regimes	from cool phase
to warm phase around 1977 (Mantua and Hare, 2002; Fleming et al., 200	07). This shift has
282 caused a significant effect on climate in the Pacific North America with r	more
283 precipitation and lower temperature in the cool phase (1946-1976) than t	he warm phase
284 (1977-1990s) (Kiffney et al., 2002; St. Jacques et al., 2010). To exclude t	the effect of this
285 climate regime shift on streamflow, trend analysis was conducted not onl	ly over the whole
study period (1964-2009), but also under different PDO regimes (1964-1	976 and 1977-
287 2009). Non-parametric tests including Mann-Kendall tau and Spearman'	's rho are most
288 widely used for trend detection in hydrology and meteorology (Berryman	n et al., 1988;
289 Burn and Hag Elnur, 2002 ; González Hidalgo et al., 2003; Déry and Woo	od, 2005) due to
290 their fewer assumptions than parametric tests (;McCabe and Wolock, 200	02 ; Xu et al.,
291 2003)). In this paper, both Mann-Kendall tau and Spearman's rho tests w	vere applied <u>in</u>

292 <u>the trend detection</u>, and changes with a significance level of 5% for each data series
293 during three different periods were identified.

294 3.2.3. Correlation analysis

295 Cross-correlation in time series analysis was performed to detect the relationships 296 between hydrological variables (mean flow and 7 day low flow on annual and seasonal 297 scales) and annual ECA series. Cross-correlation analysis is found to be an effective 298 approach to investigate the relationships among environmental variables for because it 299 canit can not only address autocorrelation issue in data series but also and identify the 300 lagged causality between two data series (Jassby and Powell, 1990; Lin and Wei, 2008; 301 Zhou et al., 2010). All hydrological data series along with ECA data series were pre-302 whitened to remove autocorrelations by fitting ARIMA (Autoregressive Integrated 303 Moving Average) models. White noises or model residuals from ARIMA models with 304 best performance in terms of achievements of model stationarity and coefficient of 305 determination (\mathbf{R}^2) were selected for cross-correlations (Lin and Wei, 2008). 306 3.2.4. Quantification of forest disturbance effect on annual mean flow 307 For a large forested watershed, climatic variability and forest disturbances are two 308 primary drivers for of hydrological variation. In order to separate the effects of climate 309 variability and forest disturbances on annual mean flow, the "modified double mass 310 curve" developed by Wei and Zhang (2010b) was used to eliminate the influence of

311	climatic variability on annual mean flow. According to the annual watershed water
312	balance, streamflow is determined by the difference between precipitation and
313	evapotranspiration because change in soil water storage over an annual scale can be
314	assumed to be constant and minor (Zhang et al., 2001). Thus, we firstly defined an
315	integrated climatic index named "effective precipitation (Pe)" for streamflow generation,
316	referring to the difference between precipitation and evapotranspiration (Wei and Zhang
317	2010b). The annual evapotranspiration was estimated by Equation (1) (Zhang et al.,
318	2001), a modification of Budyko's evaporation by adding an additional vegetation factor
319	w, which has been proven to be a sound solution for watershed scale evapotranspiration
320	estimation (Donohue et al., 2007; Li et al., 2007; Oudin et al., 2008). Given the limited
321	long-term data in this large watershed, temperature-based methods-the_Hargreaves
322	method-equation (Hargreaves and Samani, 1985) was applied to compute potential
323	evapotranspiration (Equation (2)). It requires only mean, minimum and maximum air
324	temperature, and extraterrestrial radiation (Shuttleworth, 1993; Sankarasubramanian et
325	al., 2001), which are available in the study watershed. has been recognized as the best
326	temperature-based potential evaporation estimation method by many hydrologists
327	(Shuttleworth, 1993; Sankarasubramanian et al., 2001).
328	$E=P[1+w(E_0/P)]/[1+w(E_0/P)+P/E_0] $ (1)

 $E_0=0.0023*Ra*[(Tmax+Tmin)/2+17.8)]*(Tmax-Tmin)^{0.5}$ (2)

333	Then, a <u>A</u> modified double mass curve was created then by plotting accumulated annual
334	mean flow versus accumulated annual effective precipitation. In this way, the climatic
335	effect on annual mean flow can be eliminated. The basic assumption underlying this
336	modified double mass curve (MDMC) is that there is a linear relation between variation
337	in annual mean flow and that in effective precipitation (Zheng et al., 2009; Wei and
338	Zhang, 2010b). In the period without or with minor forest disturbances (namely the
339	reference period), a straight line is expected, which serves as a baseline describing the
340	linear relation between annual mean flow and annual effective precipitation, and a break
341	in this curve indicates the change of annual mean flow caused by the factors other than
342	climatic variability, for example, forest disturbance or land use change. In other words, a
343	step change or regime shift occurs in the slope of the modified double mass curve and the
344	slope before the break is different from that afterwards. Both the CUSUM control chart
345	(the cumulative sum control chart) and the Mann-Whitney U test were applied to
346	determine identified the breakpoint with statistical significance. The CUSUM control
347	chart (or cumulative sum control chart), a widely used change point detection method
348	was applied to identify the breakpoints of statistical significance (Barnard, 1959). Then

349	the study period was divided into the reference period and disturbance period using the
350	significant breakpoint. Mann-Whitney U test (Siegel, 1957) was then used to further
351	confirm if there <u>is</u> 's a step change of statistical significance in the slope of MDMC
352	through comparison of slope in the reference period with that in the disturbance period.
353	
354	Finally, the difference between the observed values and the values predicted by the
355	baseline during the disturbance period in the MDMC can be viewed as is the estimated
356	cumulative effect of forest disturbances on annual mean flow as compared with
357	undisturbed conditions. Once annual mean flow deviation attributed to forest disturbance
358	(ΔQ_f) is estimated, the deviation resulting from climatic variability can then be computed
359	by the following equation:
360	$\Delta Q_{c}(t) = \Delta Q(t) - \Delta Q_{f}(t) $ (3)
361	Where, $\Delta Q(t)$, $\Delta Q_c(t)$ and $\Delta Q_f(t)$ represent annual mean flow deviation, annual mean
362	flow deviation attributed to climate variability and annual mean flow deviation attributed
363	to forest disturbances for the t th year, respectively.

4. Results

366	Over the whole study period between 1964 and 2009, there was a significant downward
367	trend in winter precipitation, while no statistical significant trends was were detected in
368	other hydrological variables and climatic variables (Table 1). However, when the
369	wholeseparation of the study period was separated into different PDO periods, revealed
370	no significant trend in annual precipitation some interesting results have been disclosed.
371	Ffrom 1977 to 2009, no significant trend was identified in annual precipitation but the
372	annual mean flow displayed a significant upward trend for annual mean flow (Table 1).
373	The inconsistent trends between annual precipitation and annual mean flow suggested
374	that the factorssomething other than climatic variability had-altered streamflow. Since
375	climatic variability and forest disturbances are regarded as the two main drivers for inter-
376	annual mean flow changes, the increment in annual mean flow during the period of 1977
377	to 2009 was judged to be caused by forest disturbances. This suggests that forest
378	disturbance and climate have interactively influenced streamflow. It further highlights
379	that the effect of climatic variability on streamflow must be removed before the effects of
380	forest disturbance on hydrology can be quantified.
381	Table 1 Trends in hydrological and climatic variables from 1964 to 2009

365 4.1. Long-term changes in hydrological and climatic variables

382 **4.2.** Correlations between hydrological variables and forest disturbance level

383 As suggested by the cross-correlation analysis, annual, winter and fall mean flows were

384 significantly and positively correlated with ECA (Table 2). Also, there were significantly

385 positive correlations between annual 7-day low flow and ECA.

386 Table 2 Cross-correlation between hydrological variables and ECA

387 **4.3. Forest disturbance effect on annual mean flow**

388	Figure 7-6 displayed displays the modified double mass for the study watershed, where
389	accumulated annual mean flow was is plotted against accumulated annual effective
390	precipitation. According to the CUSUM control chart change point analysis of slopes in
391	Figure 7, a significant breakpoint in 1999 was detected at α =0.05. And The Mann-
392	Whitney U test further confirmed the statistical significance of this breakpoint by
393	comparing the median of slopes in the period from 1964 to 1998 with that from 1999 to
394	2009. Thus, we defined the reference period as between 1964 and 1998, while the
395	disturbance period was from 1999 to 2009. As shown in Figure 7, a straight line (linear
396	relationship) was observed between accumulated annual mean flow and accumulated
397	annual effective precipitation in the period from 1964 to 1998. After 1999, the observed
398	line started to deviate from the original line (predicted line), suggesting that more annual
399	streamflow was generated than predicted. The differences between observed accumulated
400	annual mean flow and predicted values from 1999 to 2009 are referred to as accumulated

401	annual mean flow deviations attributed to forest disturbances. Annual mean flow
402	deviations attributed to forest disturbance was were then calculated accordingly. As
403	described shown in Figure 8-7 (a, b), annual mean flow deviations attributed to forest
404	disturbances ranged from 9 mm (8.9% of long-term annual mean flow) to 91 mm (87.6%
405	of long-term annual mean flow), with an average of 48.4 mm (46.9% of long-term annual
406	mean flow). Meanwhile, ECA experienced a significant increase from 19.2% in 1999 to
407	62.2% in 2009.
408	Figure <mark>7-6</mark> Modified Double mass curve
409	Table 3 Statistical tests of changes in the slope of MDMC
410	Figure <u>8-7</u> a) Annual mean flow deviation attributed to forest disturbance in mm; b)
410 411	Figure 8-7_a) Annual mean flow deviation attributed to forest disturbance in mm; b) Annual mean flow deviation attributed to forest disturbance in percentage
410 411 412	 Figure 8-7 a) Annual mean flow deviation attributed to forest disturbance in mm; b) Annual mean flow deviation attributed to forest disturbance in percentage 4.4. Relative contributions of climatic variability and forest disturbance on annual
410 411 412 413	 Figure 8-7_a) Annual mean flow deviation attributed to forest disturbance in mm; b) Annual mean flow deviation attributed to forest disturbance in percentage 4.4. Relative contributions of climatic variability and forest disturbance on annual mean flow
410 411 412 413 414	 Figure 8-7_a) Annual mean flow deviation attributed to forest disturbance in mm; b) Annual mean flow deviation attributed to forest disturbance in percentage 4.4. Relative contributions of climatic variability and forest disturbance on annual mean flow In order to explore the temporal dynamic of the hydrological impact of forest
410 411 412 413 414 415	 Figure 8-7_a) Annual mean flow deviation attributed to forest disturbance in mm; b) Annual mean flow deviation attributed to forest disturbance in percentage 4.4. Relative contributions of climatic variability and forest disturbance on annual mean flow In order to explore the temporal dynamic of the hydrological impact of forest disturbances, the whole study period was divided into three phases according to forest
 410 411 412 413 414 415 416 	 Figure 8-7_a) Annual mean flow deviation attributed to forest disturbance in mm; b) Annual mean flow deviation attributed to forest disturbance in percentage 4.4. Relative contributions of climatic variability and forest disturbance on annual mean flow In order to explore the temporal dynamic of the hydrological impact of forest disturbances, the whole study period was divided into three phases according to forest disturbance level: 1964 to 1989 (Phase 1, ECA ≤10 %), 1990 to 1998 (Phase 2,
410 411 412 413 414 415 416 417	 Figure 8-7_a) Annual mean flow deviation attributed to forest disturbance in mm; b) Annual mean flow deviation attributed to forest disturbance in percentage 4.4. Relative contributions of climatic variability and forest disturbance on annual mean flow In order to explore the temporal dynamic of the hydrological impact of forest disturbances, the whole study period was divided into three phases according to forest disturbance level: 1964 to 1989 (Phase 1, ECA ≤10 %), 1990 to 1998 (Phase 2, 10 %≤ECA ≤20 %), and 1999 to 2009 (Phase 3, ECA≥20%). Table 4 summarized
410 411 412 413 414 415 416 417 418	 Figure 8-7_a) Annual mean flow deviation attributed to forest disturbance in mm; b) Annual mean flow deviation attributed to forest disturbance in percentage 4.4. Relative contributions of climatic variability and forest disturbance on annual mean flow In order to explore the temporal dynamic of the hydrological impact of forest disturbances, the whole study period was divided into three phases according to forest disturbance level: 1964 to 1989 (Phase 1, ECA ≤10 %), 1990 to 1998 (Phase 2, 10 %≤ECA ≤20 %), and 1999 to 2009 (Phase 3, ECA≥20%). Table 4 summarized summarizes the average annual mean flow deviation and its components in different

420	attributed to forest disturbances was -0.8 mm/yr, which rose to 9.2mm/yr in phase 2 and
421	sharply increased to 48.4mm (equivalent to 46.9% of average annual mean flow) in phase
422	3. Meanwhile, the average annual mean flow deviations attributed to climate variability
423	in phase 1, phase 2 and phase3 were -4.8, -13.3 and -35.5 mm, respectively. As shown in
424	Table 4, forest disturbance and climatic variability affected streamflow in opposite
425	directions. Forest disturbance increased streamflow, while climatic variability decreased
426	it over the study period.
427	Table 4 Annual mean flow deviation and its components in different phases
428	Table 5 demonstrated demonstrates the relative contributions of forest disturbances and
429	climatic variability on annual mean flow variation. The impacts of forest disturbances
430	and climate variability on annual mean flow were dynamic. The influence of forest
431	disturbances on annual mean flow went upwards with increasing ECA, while that of
432	climate variability declined over time. In phase 1, 84.9% of the variation in annual mean
433	flow was explained by climate variability and only 15.1% of that was accounted by forest
434	disturbances. During phase 2, the relative contribution of forest disturbances on annual
435	mean flow variation (R_f) climbed to 40.9%, compared with 59.1% of variation explained
436	by climate variability. And inIn phase 3, the relative contribution of forest disturbances
437	went up to 57.7%, while that of climate variability dropped to 42.3%. In short, climate
438	variability produced greater impact on annual mean flow than forest disturbances in
439	phases 1 and 2, while forest disturbances became more influencing in phase 3.

440 Table 5 The relative contributions of forest disturbance and climate variability on 441 annual mean flow variation

442 5. Discussion

443 **5.1. Thresholds of forest disturbance for significant hydrological changes**

444	Since watersheds always have ability to buffer changes caused by disturbances, there
445	must be a theoretical threshold on of forest disturbances level, below which significant
446	change on hydrology may not be detected. Identification of forest disturbance thresholds
447	is useful for guiding forest management practices to protect water resources and public
448	safety. Efforts have already been made to determine the thresholds of forest logging in
449	small watersheds. Such thresholds tend to be various variable due to the differences in
450	topography, vegetation, geology, hydrological regime and climate. For examples, in the
451	Appalachian Mountains, USA, only 10% reduction in forest cover can produce a
452	detectable response in annual mean flow (Swank et al., 1988), while in the Central Plains
453	of the Unite States, 50% harvest might be required for significant change on flows
454	(Stednick, 1996). Generally, it's believed that more than 20% of the watershed area must
455	be changed or disturbed to detect significant change in streamflow in small watersheds
456	(Bosch and Hewlett, 1982; Hetherington, 1987).

458	In comparison with small watersheds, the forest disturbances threshold for significant
459	streamflow responses in large watersheds is likely more variable and difficult to be
460	generalized due to the greater complexity of topographies, land forms and spatial
461	patterns. For examples, In the Baker Creek watershed (this study), with about $62.2\% \frac{1}{64}$
462	ECA, a significant change in annual mean flow was detected. Similarly, in the Willow
463	River watershed, adjacent to our study watershed, about a logging rate of about 30% of
464	the watershed (watershed area: 2,860 km2) caused a significant increase in annual mean
465	flow (Lin and Wei, 2008; Wei and Zhang, 2010b). And Costa et al (2003) found that in
466	the Tocaintins River watershed (175,360 km ²)-from , Brazila tropical region, only 19%
467	reduction in forest cover produced a significant increase in annual mean flow. In contrast,
468	Wei and Davidson (1998) did not detect significant change on-in annual mean flows in
469	the Bowron River watershed $(3,420 \text{ km}^2)$, the watershed adjacent to the Willow River
470	watershed mentioned above, although 30% of the watershed was harvested. The study
471	from Buttle and Metcalfe (2000) failed to find definitive changes in annual mean flow
472	with disturbance levels ranging from 5 to 25% of watersheds (from 401 to 11900 km^2) in
473	Canadian boreal forests. Additionally, even with forest cover reduced by 53%, no
474	significant hydrological change was identified in the Nam Pong River Basin (12,100
475	km ²), Northeast Thailand (Wilk et al., 2001). Those contrasted contrasting results clearly
476	suggest that forest disturbance threshold is likely watershed specific in large watersheds.

477 It also demonstrates a need for more case studies in large watersheds before generalized478 conclusions can be derived.

5.2. Forest disturbance effect on mean flows

480	Not surprisingly, with With ECA over 60%, annual mean flow was significantly
481	increased by 46.9% on average after forest disturbances as suggested by both correlation
482	analysis and MDMC. This is consistent with the previous modeling work by Alila et al.
483	(2007) in the Baker Creek watershed where with 34% of the watershed harvested, annual
484	mean flows were predicted estimated to be increased by 31%. However, the change
485	magnitudes are different. The difference in hydrological responses between two studies
486	may be explained by their different research approaches and different disturbance levels.
487	
488	Our analysis shows that during the severe disturbance period from 1999-2009, with ECA
489	increased from 19.2% to 62.2%, average increment in annual mean flow caused by forest
490	disturbances is 48.4 mm, which is about 12 mm increment in annual mean flow for each
491	10% increase in ECA. The change magnitude is lower than that from an adjacent
492	watershed, the Willow River watershed (watershed size: 2860 km^2) where each 10%
493	increase in ECA can result in about <u>a 23 mm increment in annual mean flow</u> (Wei and
494	Zhang 2010b). The positive responses of annual mean flows to forest disturbance in both
495	the Baker and Willow watersheds are within the range of responses in the small

496	watershed studies in the Pacific Northwest (2.5 to 30 mm increment in annual mean flow
497	for each 10% increase in harvested area) (Moore and Wondzeller, 2005). However, the
498	relative change in long-term annual mean flow in the Baker Creek watershed is much
499	higher than that in the Willow River watershed. On average, with an ECA of 62.2%,
500	annual mean flow is increased by 46.9% in the Baker Creek watershed, while the
501	increment in the Willow River watershed is only 9.8% with an ECA of 29.4% (Wei and
502	Zhang 2010b). This suggests that the hydrological response to forest disturbances in the
503	Baker Creek watershed is more sensitive than that in the Willow River watershed. The
504	difference in the magnitude of annual mean flow may be responsible for different
505	hydrological responses between two neighbouring watersheds. The difference in climate
506	and forest disturbance intensity may be responsible for different hydrological responses
507	between two neighbouring watersheds. The long-term average annual precipitation and
508	mean flow in the Baker Creek watershed were 542 mm and annual mean flow in the
509	Baker Creek watershed was only 103 mm, respectively, while those values are 820 mm
510	andit is _435 mm, respectively in the Willow River watershed, For example, 20 mm
511	increment can increase the annual mean flow in the Baker Creek watershed by about 20%
512	while it can only cause less than 5% change in annual mean flow in the Willow River
513	watershed.

514	revealing that the Baker Creek watershed is much drier with very low runoff coefficient
515	(0.19). Besides, the forest disturbances in the Baker Creek watershed are more severe,
516	with ECA as twice as that of the Willow River watershed.
517	
518	There are limited large watershed studies on quantification of the hydrological impacts of
519	forest disturbance, and change magnitude in annual mean flow is highly variable, ranging
520	from 4% to 136%. The study from the interior Columbia River basin (567,000 km^2)
521	disclosed that 27% of land cover change resulted resulting in only 4.2-10.5% increment
522	in annual mean flow (Matheussen et al., 2000), while in the Great Lakes basin
523	(494,000 km ²), annual mean flow was augmented by up to 136% resulted from only 17%
524	of land cover change (Mao and Cherkauer, 2009). Clearly, more large watershed studies
525	are needed to draw any reliable conclusions on the annual mean flow change magnitude
526	caused by forest disturbances or land cover change.
F 2 7	5.2. Forest disturbance offect on law flows
527	5.5. Forest disturbance effect on low nows
528	The correlation analysis showed that forest disturbances significantly increased annual
529	low flow and dry season (fall and winter) mean flow. This is in accordance with some
530	small-scale studies from snowmelt dominated watersheds (Van Haveren, 1988; Swanson
531	et al., 1986; Gottfried, 1991) and the majority of studies from rainfall dominated
532	watersheds (Bari et al., 1996; Bent, 2001; Robinson and Dupeyrat, 2005; Webb et al.,

533 2007). Since removal or death of forests can decrease evapotranspiration and interception
534 in disturbed sites, it ultimately increases soil moisture and groundwater recharge (Bosch
535 and Hewlett, 1982). Hence, discharges to the streams from groundwater and channel
536 banks tend to increase in dry/low flow seasons.

538	However, no changes or decreases in dry season flow or low flow have also been
539	reported after forest disturbances (Bruijnzeel, 2004; Calder, 2005). Many factors such as
540	soil infiltration characteristics, regional aquifer characteristics, vegetation distribution,
541	climate, and human activities control low flow generation (Smakhtin, 2001). The degree
542	of soil disturbances after logging or wildfire is regarded as an important indicator for low
543	flow response. When the soil characteristics is severely affected by forest disturbances,
544	for example, soil compaction by heavy machinery of logging or soil hydrophobization
545	after fire, soil infiltration capacity can be severely impaired_,-and lead to more surface
546	runoff and consequently less recharge to deep soil and groundwater systems. As a result,
547	dry season flows or low flows are expected to be less or unchanged. Moreover, removal
548	of cloud forests in some coastal watersheds, where fog drips intercepted by forests serves
549	as an important precipitation input, is likely to reduce low flows. This is because
550	decreased fog drips after forest disturbances can lead to reduction of water input for
551	streamflow and consequently declined low flows in summers (Harr, 1982).

553	Our study watershed is a snowmelt dominated watershed with low flows typically	
554	occurring from late summer through the winter until spring snowmelt. Forest logging in	
555	the interior of B.C , Canada normally occurs in winter seasons when soils are completely	
556	frozen, which may cause minor or insignificant damage to soils. Therefore, dry season	
557	flows or low flows are expected to increase as removal of forests reduces	
558	evapotranspiration and interception, resulting in more water available in the soils to	
559	promote soil infiltration and groundwater recharge. This may explain why there are	
560	significant changes on <u>in</u> hydrology during low flow seasons in our study watershed.	
561	5.4. Off-setting effect of forest disturbance and climate variability on annual mean	
562	flow variation	
562 563	flow variation According to our analysis, forest disturbances and climatic variability produced opposite	
562 563 564	flow variation According to our analysis, forest disturbances and climatic variability produced opposite impacts on streamflow: forest disturbance increased streamflow while climatic variability	
562 563 564 565	flow variation According to our analysis, forest disturbances and climatic variability produced opposite impacts on streamflow: forest disturbance increased streamflow while climatic variability decreased it. For example, during the severely disturbed period from 1999 to 2009 with	
562 563 564 565 566	flow variation According to our analysis, forest disturbances and climatic variability produced opposite impacts on streamflow: forest disturbance increased streamflow while climatic variability decreased it. For example, during the severely disturbed period from 1999 to 2009 with ECA greater than 20%, forest disturbances boosted annual mean flow, averagelyon	
562 563 564 565 566 567	flow variation According to our analysis, forest disturbances and climatic variability produced opposite impacts on streamflow: forest disturbance increased streamflow while climatic variability decreased it. For example, during the severely disturbed period from 1999 to 2009 with ECA greater than 20%, forest disturbances boosted annual mean flow, averagelyon average, by about 48.4 mm/yr, while climate variability reduced it by 35.5 mm/yr. Not	
562 563 564 565 566 567 568	flow variation According to our analysis, forest disturbances and climatic variability produced opposite impacts on streamflow: forest disturbance increased streamflow while climatic variability decreased it. For example, during the severely disturbed period from 1999 to 2009 with ECA greater than 20%, forest disturbances boosted annual mean flow, averagelyon average, by about 48.4 mm/yr, while climate variability reduced it by 35.5 mm/yr. Not surprisingly, their counteracting or cancelling effects made meant that annual mean flow	
562 563 564 565 566 567 568 569	flow variation According to our analysis, forest disturbances and climatic variability produced opposite impacts on streamflow: forest disturbance increased streamflow while climatic variability decreased it. For example, during the severely disturbed period from 1999 to 2009 with ECA greater than 20%, forest disturbances boosted annual mean flow, averagelyon average, by about 48.4 mm/yr, while climate variability reduced it by 35.5 mm/yr. Not surprisingly, their counteracting or cancelling effects made-meant that annual mean flow displayed a stable trend over the study period. These counteracting effects of forest	
562 563 564 565 566 567 568 569 570	flow variation According to our analysis, forest disturbances and climatic variability produced opposite impacts on streamflow: forest disturbance increased streamflow while climatic variability decreased it. For example, during the severely disturbed period from 1999 to 2009 with ECA greater than 20%, forest disturbances boosted annual mean flow, averagelyon average, by about 48.4 mm/yr, while climate variability reduced it by 35.5 mm/yr. Not surprisingly, their counteracting or cancelling effects <u>made meant that</u> annual mean flow displayed a stable trend over the study period. <u>These counteracting effects of forest</u> disturbances and climate variability have also been identified by Jones et al's (2012)	

572	Canada. Both of our studies imply that forest ecosystems have the ability of adjusting
573	their water uses to compensate for climate variability.
574	
575	
576	
577	Interestingly, the interactive influences of climatic variability and forest disturbances are
578	dynamic over time with significantly increased forest disturbances. Prior to 1999 with
579	ECA less than 20%, climate variability was more influential than forest disturbances.
580	Before 1990, about 84.9% of variation in annual mean flow was accounted by climate
581	variability, and this percentage greatly declined to 42.3% during the severe disturbance
582	period (1999-2009) with an average ECA of 35%. In contrast, the contributions from
583	forest disturbances on annual mean flow variation was minor during the early period
584	when ECA was less than 10%, and then was on a significant increaseincreased
585	significantly after 1998. Clearly, between 1999 and 2009, the influence on streamflow
586	from forest disturbances overrode exceeded that from climatic variability and became
587	dominating. This finding is different from a similar study in the Willow River watershed
588	where climatic variability generally played a slightly more important role than forest
589	disturbances did (Wei and Zhang, 2010b). The Willow River watershed was mainly
590	disturbed by logging activities with ECA less than 30%, while the Baker Creek watershed
591	was attacked by large-scale MPB infestation and subsequent salvage logging with an

592	ECA of 62%. This incredible high level of forest disturbances made it as the major
593	contributor to annual mean flow variation instead of climate variability. As a matter of
594	fact, in many other large watersheds experienced significant land use changes, the
595	influence of climate variability on streamflow appeared to be weaker. For examples,
596	research by Zheng et al. (2009) in the headwaters of the Yellow River Basin, China
597	disclosed that only 30% of the streamflow reduction in the 1990s was caused by climate
598	variability while land use change was responsible for 70% of the reduction (Zheng et al.,
599	2009). A similar result was also reported in the Chaobai River watershed, China by Wang
600	et al. (2009) and Zhang et al. (2008)Moreover, small watershed studies yielded similar
601	findings too. Land use changes or forest disturbances are believed to mitigate or even
602	overwhelm climatic effects on streamflow. For example, in three long-term experimental
603	forests (Andrews, Coweeta and Hubbard Brook), increments of daily streamflow in the
604	late summer and early fall caused by forest harvest can be up to 300% in early years after
605	disturbance while climate induced changes in streamflow can be 10-50% (Jones and Post,
606	<u>2004).</u>
607	
608	
609	In forest dominant watersheds, forest changes and climatic variability are commonly
610	recognized as two major drivers for hydrological changes. Understanding their interactive,
611	dynamic effects is important for sustainable water management and protection of

612	ecosystem functions and public safety. In our study watershed, the effects of climatic
613	variability and forest disturbance were offsetting over the study period because the dry
614	climate trend reduced streamflow while forest disturbances increased it. This offsetting
615	effect can help buffer hydrological alteration. In some dry small watershed in the United
616	States, no trends in streamflow have been identified with global warming (Jones et al,
617	2012)However, the effects of climatic variability and forest disturbances can be
618	cumulatively added if their effects are on the same direction. For example, if climate
619	displayed a wetting trend, then increasing streamflow resulting from climatic variability
620	could further augment higher river discharge from more forest disturbance, and
621	consequently led to higher risks of floods. To maintain a healthy watershed, the level of
622	forest disturbances or land use change should be carefully designed so that their negative
623	impacts on aquatic functions can be minimized.
624	5.5. Implication for watershed management
625	Severe forest disturbances have produced significant hydrological impact in the Baker
626	Creek watershed. Annual mean flow has been increased by 47.6%, and dry season mean
627	flow has also been significantly augmented. From the water supply perspective, these
628	increases can be positive and substantial, particularly for this relatively dry watershed.
629	The average annual mean flow in our study watershed is only 103.3 mm with great inter-
630	annual variability, suggesting that water supply is likely constrained or stressed,

631	especially in the dry seasons from late summers to winters. The positive effect of forest
632	disturbances on streamflow will certainly help alleviate the water supply stress within the
633	watershed and downstream of the watershed. But such a positive effect will be gradually
634	diminished with forest regeneration over time. Resource managers must recognize this
635	dynamic, positive effect and incorporate it into designing of sustainable water
636	management.
637	
638	Forest disturbances and climate variability have counteracting effect on streamflow,
639	which helps maintain a stable water supply system. However, as forest disturbances
640	become more severe, the impact of forest disturbances on hydrology tends to override the
641	influence from climate variability, which possibly breaks the inherent balance of aquatic
642	system. For example, severe forest disturbance can dramatically increase soil erosion and
643	impose negative impacts on aquatic habitat due to increased water temperature and
644	sediments. Under this circumstance, forest disturbance may cause irreversible change in
645	aquatic ecosystems and eventually damage watershed ecological functions. Therefore,
646	it's critical to constrain forest disturbance to a safe level so that their negative effects can
647	be minimized.
648	
649	

650 Our analysis suggests that dry season flows or low flows have been significantly

651	increased by forest disturbance. This finding is important for water allocation and fish
652	habitat conservation. As mentioned before, increased dry season flows or low flows may
653	reduce drought risks and enhance water supply from late summers through winters. On
654	the other hand, these changes may affect aquatic habitat. For example, salmons always
655	migrate from the Pacific Ocean to the upper reaches and tributaries of Fraser River to
656	spawn in dry seasons. Significantly increased flow in dry seasons may affect salmon
657	migration and spawning due to alteration of flow magnitude and associated water quality.
658	More research is needed to further explore the potential impacts of low flow change on
659	aquatic ecosystems.

6. Conclusion

661	Severe forest disturbances such as large-scale MPB infestation and subsequent salvage
662	logging have significantly increased annual mean and low flows in the Baker Creek
663	watershed. The influence of forest disturbances on hydrology exceeded that from climatic
664	variability when forest disturbances level in terms of ECA was up to 62.2% in the
665	watershed. These findings are of great importance to water resource planning and aquatic
666	habitats protection. Although the increment in annual mean flow and dry season flows
667	has positive effects on water supply and can alleviate water stress in this dry watershed,
668	their impacts on aquatic habitat and other aquatic functions remain uncertain. This result
669	can be useful for hydrological modeling studies.

References

693	Alila, Y., Chatwin, S., and Luo, C.: An application of the DHSVM model to e	estimating the
-----	---	----------------

- 694 impact of mountain pine beetle attack and salvage harvesting on stream flows, in: Mountain
- 695 Pine Beetle and Watershed Hydrology Workshop: Preliminary Results of Research from BC,
- Alberta and Colorado, Redding, T. (Eds.), Kelowna, Canada, 45-46, 2007.

697 Bari, M.A., Smith, N., Ruprecht, J.K., and Boyd, B.W.: Changes in streamflow components

- 698 following logging and regeneration in the southern forest of Western Australia, Hydrol.
- 699 Process, 10, 447–461, 1996.

700 Barna	d, G.A.: Co	ntrol charts a	and stochastic	processes, J. Ro	y. Stat. Soc	. B Met., 21	1, 239-
-----------	-------------	----------------	----------------	------------------	--------------	--------------	---------

- 701 71,1959.
- 702 Bent, G.C: Effects of forest-management activities on runoff components and ground-water
- recharge to Quabbin Reservoir, central Massachusetts, Forest Ecol.Manag., 143, 115–129,
- 704 2001.
- Berryman, D., Bobêe, B., Cluis, D., and Haemmerli, J.: Nonparametric tests for trend detection in
- water quality time series, Water Resour. Bull., 24(3), 545-556, 1988.
- 707 Blöschl, G., Ardoin-Bardin, Bonell, M., Dorninger, M., Goodrich, D., Gutknecht, D., Matamoros,
- D., Merz, B., Shand, P., and Szolgay, J.:At what scales do climate variability and land cover
- change impact on flooding and low flows?, Hydrol. Process, 21(9), 1241-1247, 2007.

710 Bosch, J.M. and Hewlett, J.D.: A review of catchment experiments to determine the effect of

vegetation changes on water yield and evapotranspiration, J. Hydrol., 55(1-4), 3-23, 1982.

- 712 British Columbia Ministry of Forests and Rangeland: Interior Watershed Assessment Guidebook
- 713 (Appendix 8) <u>2nd edition</u>, Victoria, British Columbia, Canada, <u>19961999</u>.
- 714 British Columbia Ministry of Forests and Rangeland; Map of Biogeoclimatic Zones of British
- 715 Columbia, Victoria, British Columbia, Canada, 2012, Accessed on May 25th.
- 716 <u>http://www.for.gov.bc.ca/hre/becweb/resources/maps/ProvinceWideMaps.html</u>

Formatted: Superscript

Formatted: Font: 1	1 pt
Formatted: Font: 1	1 pt
Formatted: Font: 7 Roman, 11 pt, Fon	Times t color
Formatted: Font: 1	1 pt
Formatted: Font: 1	1 pt
Formatted: Font: 1	1 pt
Formatted: Supers	script

- 717 Bruijnzeel, L.: Hydrological functions of tropical forests: not seeing the soil for the trees?, Agric.
- 718 Ecosyst. Environ., 104(1), 185-228,2004.
- 719 Burn, D. and Hag Elnur, M.: Detection of hydrologic trends and variability, J. Hydrol., 255(1-4),
- 720 107-122, 2002.
- 721 Buttle, J. and Metcalfe, R.: Boreal forest disturbance and streamflow response, northeastern
- 722 Ontario, Can. J. Fish. Aquat. Sci., 57(S2), 5-18, 2000.
- 723 Calder, I.R.: Blue revolution integrated land and water resources management, 2nd ed.,
- Earthscan, London, UK, 2005.
- 725 Chen, W. and Wei, X.: Assessing the relations between aquatic habitat indicators and forest
- harvesting at watershed scale in the interior of British Columbia, Forest Ecol Manag, 256,
- 727 152-160, 2008
- 728 Costa, M.H., Botta, A. and Cardille, J.A.: Effects of large-scale changes in land cover on the
- discharge of the Tocantins River, Southeastern Amazonia, J. Hydrol, 283(1-4), 206-217, 2003.
- 730 Costa, M.H., Botta, A., and Cardille, J.A.: Effects of large-scale changes in land cover on the
- discharge of the Tocantins River, Southeastern Amazonia, J. Hydrol., 283(1-4), 206-217,
- 732 2003.
- Déry, S. and Wood, E.: Decreasing river discharge in northern Canada, Geophys. Res. Lett., 32,
 L10401, doi:10.1029/2005GL022845, 2005.

/35	Donohue, R., Roderick, M., and McVicar, T.: On the importance of including vegetation
736	dynamics in Budyko's hydrological model, Hydrol. Earth Syst. Sci., 11(2), 983, 2007.
737	Fleming, S. W., Whitfield, P.H., Moore, R. D., and Quilty, E.J.: Regime-dependent streamflow
738	sensitivities to Pacific climate modes cross the Georgia-Puget transboundary ecoregion,
739	Hydrol. Processes, 21, 3264-3287, doi:10.1002/hyp.6544, 2007
740	González Hidalgo, J. C., De Luis, M., Raventós, J., and Sánchez, J. R.: Daily rainfall trend in the
741	Valencia Region of Spain, Theor. Appl. Climatol., 75, 117-130, 10.1007/s00704-002-0718-0,
742	2003.
743	Gottfried, G.J.: Moderate timber harvesting increases water yields from an Arizona mixed conifer
744	watershed, Water Resour. Bull., 27, 537-547,1991.
745	Hargreaves, G. and Samani Z.: Reference crop evapotranspiration from temperature, Appl. Eng.
746	Agric., 1(2), 96-99.
747	Hargreaves, G.H. and Samani, Z.A.: Reference crop evapotranspiration from temperature,
748	Appl.Eng. Agric., 1(2), 96-99, 1985.
749	Harr, R.D.: Fog Drip in the Bull Run Municipal Watershed, Oregon, Water Resour. Bull., 18,
750	785-789, 1982.

751	Hetherington, E.D.: The importance of forests in the hydrological regime, in: Canadian Bulletin		
752	Fisheries and Aquatic Sciences, Healy, M.D. and Wallace, R.R. (Eds.), Ottawa, Ont., No. 215,		
753	533 pp., 1987.		
754	Hudson, R.: Snowpack recovery in regenerating coastal British Columbia clearcuts, Can. J. For.		
755	Res., 30, 548-556, doi:10.1139/cjfr-30-4-548, 2000.		
756	Jassby, A. D. and Powell, T. M.: Detecting Changes in Ecological Time Series, Ecology, 71(6),		
757	2044-2052, 1990.		
758	Jost, G, Moore R.D., Weiler, M., and Alila, Y.: A Combined Statistical and Mechanistic		
759	Modeling Approach to Study the Effect of Clear-cutting in a Snow Dominated Watershed, in:		
760	Proceedings of the American Geophysical Union Fall Meeting, San Francisco, 15-19 Dec,		
761	2008.		
762	Jones, J. A. and Post, D. A. : Seasonal and successional streamflow response to forest cutting and		Formatted: Font: Times Roman, 11 pt
763	regrowth in the northwest and eastern United States, Water Resour. Res., 40, W05203,	 `````````````````````````````````	Formatted: Font: Times Roman, 11 pt
764	1-::10 1020/2002W/D002052 2004		Font, Font: Times New F
/04	<u>doi:10.1029/2003 W R002932.2004</u>		Formatted: Font: Times Roman, 11 pt
765	Jones et al.: Ecosystem Processes and Human Influences Regulate Streamflow Response to	1	Formatted: Font: (Asian)
766	Climate Change at Long-Term Ecological Research Sites, Bioscience.62(4)	1	Formatted: Font: (Asian) 11 pt, Not Italic
767	doi:10.1525/bio.2012.62.4.10.2012		Formatted: Font: (Asian)
/0/	401.10.1525/010.2012.02. 1 .10.2012		Formatted: Font: (Asian)
768			

769	Juckem, P.F., Hunt, R.J., Anderson, M.P., and Robertson, D.M.: Effects of climate and land
770	management change on streamflow in the driftless area of Wisconsin, J. Hydrol., 355(1-4),
771	123-130, 2008.
772	Kiffney, P., Bull, J. P., and Feller, M. C.: Climatic and hydrologic variability in a coastal
773	watershed of southwestern British Columbia, J. Am. Water Resour. Assoc., 38, 1437-1451,
774	doi:10.1111/j.1752-1688.2002.tb04357.x, 2002.
775	Lewis, D. and Huggard, D.: A model to quantify effects of mountain pine beetle on equivalent
776	clearcut area, Streamline Watershed Manag. Bull., 13(2), 42-51, 2010.
777	Li, L., Zhang, L., Wang, H., Wang, J., Yang, J., Jiang, D., Li, J., and Qin, D.: Assessing the

- impact of climate variability and human activities on streamflow from the Wuding River basin
- in China, Hydrol. Process, 21, 3485-3491, doi:10.1002/hyp.6485, 2007.
- 780 Lin, Y. and Wei, X.: The impact of large-scale forest harvesting on hydrology in the Willow
- 781 watershed of Central British Columbia, J. Hydrol., 359(1-2), 141-149, 2008.
- 782 Ma, X., Xu, J., and van Noordwijk, M.: Sensitivity of streamflow from a Himalayan catchment to
- plausible changes in land cover and climate, Hydrol. Process, 24(11), 1379-1390, 2010.
- 784 Mantua, N. and Hare, S.: The Pacific Decadal Oscillation, J. Oceanogra., 58, 35-44,
- 785 doi:10.1023/A:1015820616384, 2002.

- 786 Mao, D. and Cherkaue, K.A.: Impacts of land-use change on hydrologic responses in the Great
- 787 Lakes region, J. Hydrol., 374, 71–82, 2009.
- 788 Matheussen, B., Kirschbaum, R.L., Goodman, I.A., O'Donnell, G.M., and Lettenmaier, D.P.:
- 789 Effects of land cover change on streamflow in the interior Columbia River Basin (USA and
- 790 Canada), Hydrol. Process, 14(5), 867-885, 2000.
- 791 Mbogga, M., Hamann, A., and Wang, T.: Historical and projected climate data for natural
- resource management in western Canada, Agr. Forest Meteorol., 149,881-890, 2009.
- 793 McCabe, G. and Wolock, D.: A step increase in streamflow in the conterminous United States,
- 794 Geophys. Res. Lett., 29, 38-31, doi:10.1029/2002GL015999, 2002.
- 795 Mitchell, T.D. and Jones, P.D.: An improved method of constructing a database of monthly
- climate observations and associated high-resolution grids, Int. J.Climatol., 25, 693-712, 2005.
- 797 Moore, R. and Wondzell, S. : Physical hydrology and the effects of forest harvesting in the
- Pacific Northwest: a review, J. Am. Water Reour .Assoc., 41(4), 763-784, 2005.
- 799 Neary, D. G., Gottfried, G. J., and Ffolliott, P.E.:Post-wildfire watershed flood response, in:
- 800 Proceedings of the 2nd International Fire Ecology Conference, Orlando, Florida, 16-20
- 801 November, Paper 1 B.7, 2003.

802	Oudin, L., Andréassian,	۷.,	Lerat, .	I., and	l Michel,	C.: Has	land	cover	a significant	t impact	on

- 803 mean annual streamflow? An international assessment using 1508 catchments, J. Hydrol.,
- 804 357(3-4), 303-316, 2008.
- 805 Ring, P.J. and Fisher, I.H.: The effects of changes in land use on runoff from large catchments in
- the upper Macintyre Valley, NSW, in: Hydrology and Water Resources Symposium, Sydney,
- 807 14 -16 May, 1985. The Institution of Engineers, Australia, National Conference Publication
- 808 85/2, 153-158, 1985.
- 809 Robinson, M.and Dupeyrat, A.: Effects of commercial timber harvesting on streamflow regimes
- 810 in the Plynlimon catchments, mid-Wales, Hydrol. Process, 19, 1213–1226, 2005.
- 811 Sankarasubramanian, A., Vogel, R.M. and Limbrunner, J.F.: Climate elasticity of streamflow in
- 812 the United States, Water Resour. Res., 37(6), 1771-1781, 2001.
- 813 Sharma, K.P., Vorosmarty, C.J., and Moore, B.: Sensitivity of the Himalayan hydrology to land-
- use and climatic changes, Climatic Change, 47(1), 117-139, 2000.
- 815 Shuttleworth, W. J.: Evaporation, in: Maidment, D. R. (Eds.), Handbook of Hydrology,
- 816 McGraw-Hill, New York, 418, 1993.
- 817 Siegel, S.: Nonparametric statistics, Am.Statistician, 11(3), 13-19, 1957.
- 818 Smakhtin, V.U.: Low flow hydrology: a review, J. Hydrol., 240, 147–186, 2001.

819	St. Jacques, J.M.,. Sauchyn, D.J, and Zhao, Y. : Northern Rocky Mountain streamflow records:
820	Global warming trends, human impacts or natural variability?, Geophys. Res. Lett., 37,
821	L06407, doi:10.1029/2009GL042045, 2010.
822	Stednick, J.D.: Monitoring the effects of timber harvest on annual water yield, J. Hydrol., 176(1-
823	4), 79-95, 1996.
824	Swank, W.T., Swift, J.R., and Douglas, J.E.: Streamflow changes associated with forest cutting,
825	species conversion and natural disturbance, in: Forest Hydrology and Ecology at Coweeta,
826	Ecological Studies 66, Swank, W.T., Crossley, D.A. (Eds.), Springer, New York, 297-312,
827	1988.
828	Talbot, J. and Plamondon A. P.: The diminution of snowmelt rate with forest regrowth as an
829	index of peak flow hydrologic recovery, Montmorency Forest, Quebec, in: Proceedings of the

- 83059th Eastern Snow Conference, Stowe, Vermont, USA, 2002.
- 831 Tuteja, N.K., Vaze, J., Teng, J., and Mutendeudzi, M.: Partitioning the effects of pine plantations
- and climate variability on runoff from a large catchment in southeastern Australia, Water
- 833 Resour. Res.,43(8),W08415, doi:10.1029/2006WR005016, 2007.
- 834 Van Haveren, B.P.: A Reevaluation of the Wagon Wheel Gap Forest Watershed Experiment,
- 835 Forest Sci., 34, 208-214, 1988.

836	Vose, J.M., Sun, G., Ford, C.R., Bredemeier, M., Otsuki, K., Wei, X., Zhang, Z., and Zhang, L.:
837	Forest ecohydrological research in the 21st century: what are the critical needs?, Ecohydrol.,
838	4(2), 146-158, 2011.
839	Wang, G., Xia, J., and Chen, J.: Quantification of effects of climate variations and human
840	activities on runoff by a monthly water balance model: A case study of the Chaobai River
841	basin in northern China, Water Resour. Res., 45, W00A11, doi:10.1029/2007WR006768,
842	2009.
843	Webb, A., Jarrett, B., and Turner, L.: Effects of plantation forest harvesting on water quality and
844	quantity: Canobolas State Forest, NSW, in: Proceedings of the 5th Australian Stream
845	Management Conference, Australian Rivers: Making a Difference, Wilson, A., Deehan, R.,
846	Watts, R., Page, K., Bownan, K. and Curtis, A. (Eds.), Charles Sturt University, Thurgoona,
847	Australia, 2007.
848	Wei, A. and Davidson, G.: Impacts of large scale timber harvesting on the hydrology of the
849	Bowron River Watershed, in: Proceedings of the 51st Annual CWRA Conference, Mountains
850	to Sea: Human Interaction with the Hydrologic Cycle, Victoria, Canada, June 10 - 12, 45-52,
851	1998.
852	Wei, X. and Zhang, M., :Research methods for assessing the impacts of forest disturbance on

853 hydrology at large-scale watersheds, in: Landscape Ecology and Forest Management:

854	Challenges and Solutions in a Changing Globe, Chen, J., Chao, L. and Lafortezza, R.,	
855	Springer-Verlag, Berlin Heidelberg, Germany, 119–147, 2010a.	
856	Wei, X. and Zhang, M.: Quantifying streamflow change caused by forest disturbance at a large	
857	spatial scale: A single watershed study, Water Resour. Res., 46(12), W12525,	
858	doi:10.1029/2010WR009250,2010b.	
859	Whitaker, A., Alila, Y., Beckers, J., and Toews D.: Evaluating peak flow sensitivity to clear-	
860	cutting in different elevation bands of a snowmelt-dominated mountainous catchment, Water	Formatted: Font: (Asian 11 pt
861	Resour. Res., 38(9), 1172, doi:10.1029/2001WR000514, 2002.	Formatted: Font: (Asian 11 pt Formatted: Font: (Asian
862	Wilk, J., Andersson, L., and Plermkamon, V.: Hydrological impacts of forest conversion to	Formatted: Font: (Asian
863	agriculture in a large river basin in northeast Thailand, Hydrol. Process, 15(14), 2729-2748,	Formatted: Font: (Asian
864	2001.	Formatted: Font: (Asian
865	Winkler, R.D., Spittlehouse, D.L., and Golding, D.L.: Measured differences in snow	Formatted: Font: (Asian
866	accumulation and melt among clearcut, juvenile, and mature forests in southern British	Formatted: Font: (Asian 11 pt
867	Columbia, Hydrol. Process, 19, 51–62, -2005.	Formatted: Font: (Asian 11 pt Formatted: Font: (Asian
868	Winkler, R.D., Rex, J.F., Teti, P., Maloney, D.A., and Redding, T.; Mountain pine beetle, forest	11 pt Formatted: Font: (Asian
869	practices, and watershed management, B.C. Min. For. Range, Res. Br., Victoria, B.C. Exten.	Formatted: Font: (Asian 11 pt
870	Note No. 88, 2008. www.for.gov.bc.ca/hfd/pubs/Docs/En/En88.pdf (Accessed on March	Formatted: Font: (Asian 11 pt
871	2010)	Formatted: Font: (Asian 11 pt
071		Formatted: Font: (Asian 11 pt

Formatted: Font: (Asian)

872	Xu, Z. X., Takeuchi, K., and Ishidaira, H.: Monotonic trend and step changes in Japanese
873	precipitation, J. Hydrol., 279, 144-150, doi:10.1016/S0022-1694(03)00178-1, 2003.
874	Zégre, N., Skaugset, A.E., Som, N.A., McDonnell, J.J., and Ganio, L.M.: In lieu of the paired
875	catchment approach: Hydrologic model change detection at the catchment scale, Water
876	Resour. Res., 46(11), W11544, doi:10.1029/2009WR008601, 2010.
877	Zhang, L., Dawes, W. R., and Walker, G. R.: Response of mean annual evapotranspiration to
878	vegetation changes at catchment scale, Water Resour. Res., 37(3), 701–708, 2001.
879	Zhang, X., Zhang, L., Zhao, J., Rustomji, P., and Hairsine, P.: Responses of streamflow to
880	changes in climate and land use/cover in the Loess Plateau, China, Water Resour. Res., 44,
881	W00A07, doi:10.1029/2007WR006711, 2008.
882	Zhao, F., Zhang, L., Xu, Z., and Scott, D.F.: Evaluation of methods for estimating the effects of
883	vegetation change and climate variability on streamflow, Water Resour. Res., 46(3), W03505,
884	doi:10.1029/2009WR007702, 2010.
885	Zheng, H., Zhang, L., Zhu, R., Liu, C., Sato, Y., and Fukushima, Y.: Responses of streamflow to
886	climate and land surface change in the headwaters of the Yellow River Basin, Water Resour.
887	Res., 45(7), W00A19, 2009.
888	Zheng, H., Zhang, L., Zhu, R., Liu, C., Sato, Y., and Fukushima, Y.: Responses of streamflow to
889	climate and land surface change in the headwaters of the Yellow River Basin, Water Resour.

890 Res., 45, W00A19, doi:10.1029/2007WR006665, 2009

891	Zhou, G., Wei, X., Luo, Y., Zhang, M., Li, Y., Qiao, Y., Liu, H., and Wang, C.: Forest recovery
892	and river discharge at the regional scale of Guangdong Province, China, Water Resour. Res.,
893	46, W09503, doi:10.1029/2009WR008829, 2010.
894	
895	
896	
897	
898	
899	
900	
901	
902	
903	
904	
905	
906	
907	
908	
909	
910	
911	
912	
913	
914	
915	
910	
917	
910 910	
919 919	
920 921	
922	
, <u>, ,</u>	

923 Tables

924	Table 1	Trends in	hydrologic	al and	l climatic	variables	from	1964 to	2009
-----	---------	-----------	------------	--------	------------	-----------	------	---------	------

	1954-2009		1954-1976		1977-2009	
Variables	Mann- Kendal tau	Spearman rho	Mann- Kendal tau	Spearman rho	Mann- Kendal tau	Spearman rho
Annual Q	0.01	0.05	-0.23	-0.25	0.25*	0.39*
	(<i>p</i> =0.89)	(<i>p</i> =0.70)	(<i>p</i> =0.08)	(p=0.20)	(<i>p</i>=0.04)	(<i>p</i>=0.03)
Winter Q	0.08	0.14	-0.10	-0.15	0.12	0.19
	(<i>p</i> =0.48)	(<i>p</i> =0.18)	(p=0.45)	(p=0.55)	(<i>p</i> =0.14)	(p=0.30)
Spring Q	-0.02	-0.01	0.10	0.17	0.19	0.30
	(<i>p</i> =0.82)	(<i>p</i> =0.89)	(<i>p</i> =0.45)	(p=0.42)	(<i>p</i> =0.20)	(<i>p</i> =0.15)
Summer Q	-0.04	-0.06	-0.21	-0.26	0.04	0.05
	(<i>p</i> =0.75)	(<i>p</i> =0.65)	(p=0.10)	(<i>p</i> =0.18)	(<i>p</i> =0.83)	(<i>p</i> =0.82)
Fall Q	0.02	0.03	-0.10	-0.21	0.05	0.08
	(<i>p</i> =0.82)	(<i>p</i> =0.78)	(<i>p</i> =0.45)	(<i>p</i> =0.25)	(<i>p</i> =0.62)	(<i>p</i> =0.65)
Annual P	-0.15	-0.20	-0.08	-0.11	0.03	0.05
	(<i>p</i> =0.15)	(<i>p</i> =0.18)	(<i>p</i> =0.58)	(p=0.70)	(<i>p</i> =0.88)	(<i>p</i> =0.89)
Winter P	-0.19*	-0.30*	0.21	0.29	0.17	0.2
	(<i>p</i>=0.04)	(<i>p</i> =0.02)	(p=0.10)	(p=0.15)	(<i>p</i> =0.28)	(<i>p</i> =0.23)
Spring P	-0.03	-0.05	-0.07	-0.12	-0.05	-0.07
	(<i>p</i> =0.78)	(<i>p</i> =0.70)	(<i>p</i> =0.65)	(p=0.64)	(<i>p</i> =0.62)	(p=0.70)
Summer P	-0.05	-0.09	-0.13	-0.15	0	-0.03
	(<i>p</i> =0.72)	(<i>p</i> =0.55)	(p=0.32)	(p=0.55)	(<i>p</i> =0.99)	(<i>p</i> =0.98)
Fall P	-0.05	-0.09	-0.36*	-0.55*	0.03	-0.04
	(<i>p</i> =0.72)	(<i>p</i> =0.55)	(<i>p</i>=0.01)	(p<0.01)	(<i>p</i> =0.88)	(<i>p</i> =0.85)
Annual E	-0.03	-0.04	-0.21	-0.28	0.08	0.10
	(<i>p</i> =0.78)	(<i>p</i> =0.72)	(p=0.10)	(<i>p</i> =0.16)	(<i>p</i> =0.48)	(p=0.50)
Annual Pe	-0.13	-0.20	-0.13	-0.16	0.02	0
	(<i>p</i> =0.17)	(<i>p</i> =0.18)	(<i>p</i> =0.32)	(<i>p</i> =0.48)	(<i>p</i> =0.88)	(<i>p</i> =0.99)
Annual 7day	0.15	0.20	-0.09	-0.18	0.21	0.24
low flow	(<i>p</i> =0.15)	(<i>p</i> =0.18)	(p=0.50)	(p=0.35)	(<i>p</i> =0.10)	(<i>p</i> =0.22)

925 * Significant at α =0.05

928 Table 2 Cross-correlation between hydrological variables and ECA

Hydrological variables	Lag				
Trydrological variables	0	-1	-2		
Annual mean flow	0.19(<i>p</i> =0.25)	0.34 *(<i>p</i> =0.05)	0.19(<i>p</i> =0.25)		
Winter mean flow	0.20(<i>p</i> =0.26)	0.38 *(<i>p</i> =0.03)	0.47 *(<i>p</i> <0.01)		
Spring mean flow	0.20(<i>p</i> =0.26)	0.22(<i>p</i> =0.20)	0.12(<i>p</i> =0.39)		
Summer mean flow	0.17(<i>p</i> =0.36)	0.05(<i>p</i> =0.60)	0.10(<i>p</i> =0.46)		
Fall mean flow	0.24(<i>p</i> =0.16)	0.47 *(<i>p</i> <0.01)	0.09(<i>p</i> =0.50)		
Annual 7 day low flow	0.10(<i>p</i> =0.46)	0.50* (<i>p</i> <0.01)	0.08(<i>p</i> =0.56)		

929 * Significant at α =0.05; ARIMA model for ECA (1,1,1) non-constant

930

931 Table 3 Statistical tests of changes in the slope of MDMC

CUSUM Control Chart		Mann-Whitney U test		
change point	Bootstrap times	Step change	Statistics Z	
1999 *	5000	1999*	-3.03	
(<i>p</i> =0.04)			(<i>p</i> <0.01)	

932 *Significant at α=0.05

933

934

	ΔQ	$\Delta Q_{\rm f}$	ΔQ_c	$\Delta Q/Q$	$\Delta Q_{\rm f}/Q$	$\Delta Q_c/Q$	ECA
Period	(mm)	(mm)	(mm)	(%)	(%)	(%)	(%)
Phase1:1964- 1989	-5.7	-0.8±5.3	-4.8±5.3	-5.5	-0.8±5.2	-4.7±5.2	3.7
Phase2:1990- 1998	-4.2	9.2±4.8	-13.3±4.8	-4.0	8.9±4.7	-12.9±4.7	15%
Phase3:1999- 2009	9.7	48.4±4.3	-35.5±3.9	0.4	46.9±4.1	-34.4±3.8	35%

936 Table 4 Annual mean flow deviation and its components in different phases

937 Q: Average annual mean flow from 1964 to 2009 (103.3 mm)

940 Table 5 The relative contributions of forest disturbance and climate variability on annual

941 mean flow variation

Period	$\Delta Q (mm)$	Rf (%)	Rc (%)	ECA (%)
Phase1:1964-1989	-4.1	15.1	84.9	3.7
Phase2:1990-1998	-4.2	40.9	59.1	15%
Phase3:1999-2009	9.7	57.7	42.3	35%

 $R_{f}=100*|\Delta Q_{f}|/(|\Delta Q_{f}|+|\Delta Q_{c}|); R_{c}=100*|\Delta Q_{c}|/(|\Delta Q_{f}|+|\Delta Q_{c}|)$

946 Figures

947	Figure 1 Location of the study watershed in the central interior of British Columbia,
948	Canada
949	
950	Figure 2 Long-term (1964 to 2009) mean monthly temperature (°C) and precipitation
951	(mm)
952	
953	Figure 3 Average monthly flow in the Baker Creek watershed
954	
955	Figure 4 Equivalent clear-cut area (ECA) coefficients for the Baker Creek watershed
956	
957	Figure 5 a) annual area disturbed by different forest disturbances from 1961 to 2009; b)
958	Cumulative equivalent clear-cut area (ECA) from 1961 to 2009
959	
960	Figure 6 Modified Double mass curve of accumulated annual mean flow (Q_a) and
961	accumulated annual effective precipitation (Pae)
962	
963	Figure 7 a) Annual mean flow deviation attributed to forest disturbance in $mm(\Delta Q_f)$; b)
964	Annual mean flow deviation attributed to forest disturbance in percentage(${\bigtriangleup}Q_{f}\!/Q)$
965	
966	
967	
968	
969	
970	
971	
972	Figure 1 Location of the study watershed in the central interior of British Columbia,
973	Canada (See the attached figure)
974	

Figure 4 Equivalent clear-cut area (ECA) coefficients for the Baker Creek watershed

1022Figure 5 a) annual area disturbed by different forest disturbances from 1961 to 2009; b)1023Cumulative equivalent clear-cut area (ECA) from 1961 to 20091024

Figure 6 Modified Double mass curve of accumulated annual mean flow $\left(Q_a\right)$ and

accumulated annual effective precipitation (Pae)

