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Abstract 12 

Estimating pesticide leaching risks at the regional scale requires the ability to completely 13 

parameterise a pesticide fate model using only survey data, such as soil and land-use maps. 14 

Such parameterisation usually rely on a set of lookup tables and (pedo)transfer functions, 15 

relating elementary soil and site properties to model parameters. The aim of this paper is to 16 

describe and test a complete set of parameter estimation algorithms developed for the 17 

pesticide fate model MACRO, which accounts for preferential flow in soil macropores. We 18 

used tracer monitoring data from 16 lysimeter studies, carried out in three European countries, 19 

to evaluate the ability of MACRO and this ‘blind parameterisation’ scheme to reproduce 20 

measured solute leaching at the base of each lysimeter. We focused on the prediction of early 21 

tracer breakthrough due to preferential flow, because this is critical for pesticide leaching. We 22 

then calibrated a selected number of parameters in order to assess to what extent the 23 

prediction of water and solute leaching could be improved.  24 

Our results show that water flow was generally reasonably well predicted (median model 25 

efficiency, ME, of 0.42). Although the general pattern of solute leaching was reproduced well 26 

by the model, the overall model efficiency was low (median ME = -0.26) due to errors in the 27 

timing and magnitude of some peaks. Preferential solute leaching at early pore volumes was 28 
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also systematically underestimated. Nonetheless, the ranking of soils according to solute loads 29 

at early pore volumes was reasonably well estimated (concordance correlation coefficient, 30 

CCC, between 0.54 and 0.72). Moreover, we also found that ignoring macropore flow leads to 31 

a significant deterioration in the ability of the model to reproduce the observed leaching 32 

pattern, and especially the early breakthrough in some soils. Finally, the calibration procedure 33 

showed that improving the estimation of solute transport parameters is probably more 34 

important than the estimation of water flow parameters. Overall, the results are encouraging 35 

for the use of this modelling set-up to estimate pesticide leaching risks at the regional-scale, 36 

especially where the objective is to identify vulnerable soils and ‘source’ areas of 37 

contamination. 38 

 39 

1 Introduction 40 

Pesticide fate modelling for estimation of leaching risks over large areas is a challenge. It 41 

requires taking into account complex non-linear processes such as water movement, pesticide 42 

sorption and degradation in soils, and it requires estimating numerous model parameters. 43 

Indeed, it is technically impossible to measure these parameters over large areas, so most – if 44 

not all – of them must be estimated from agro-environmental information about soils, 45 

landscape features, pesticide properties, crop rotations and climate that are easier to obtain 46 

from survey data such as soil maps. Both class and continuous statistical models can be used 47 

to relate elementary agro-environmental conditions to model parameters (Wösten et al., 1999; 48 

Schaap et al., 2001). These estimation procedures – referred to here as 'parameter estimation 49 

algorithms' - are generally called 'pedotransfer functions' (PTFs) when they concern soil 50 

properties. The survey data used to obtain agro-environmental conditions are derived from 51 

measured point data, or remotely sensed spatial data, and are therefore only estimations of 52 

their 'true' spatio-temporal variations. So estimating pesticide leaching risks over large areas 53 

necessarily relies on a complete parameter inference system (Wagenet and Hutson, 1996; 54 

Soutter and Pannatier, 1996; Tiktak et al. 2002; Leterme et al. 2007), linking data and 55 

information on scarce measurements of agro-environmental conditions to fully parameterize a 56 

pesticide fate model. In such complex inference systems, sources of error are numerous 57 

(Dubus et al., 2003;Deng et al., 2009;Boesten, 2000;Heuvelink et al., 2010; Leterme et al. 58 

2007): (1) errors or uncertainties in the estimations of the agro-environmental geographic 59 

information system, (2) errors in the parameter estimation algorithms, (3) failure of the model 60 



 3 

to accurately reproduce the processes, also called structural errors and (4) errors arising from 61 

choices made by the modeller. Despite these possible sources of uncertainty, inference 62 

systems for estimating pesticide leaching risks are expected to become increasingly important 63 

tools for supporting work aimed at reducing the diffuse pollution of water bodies by 64 

pesticides. Indeed, the European 'Thematic Strategy on the Sustainable use of Pesticides' 65 

(Commission of The European Communities (CEC), 2006) is expected to reinforce the need 66 

for tools allowing users to estimate where in the landscape a given pesticide, or pesticide 67 

program, may pose a risk. It is thus essential to have a clearer idea of the reliability of these 68 

inference systems. 69 

Inference systems can be evaluated in different ways. Their ability to predict model parameter 70 

values can be directly tested against databases of measured data (Vereecken et al., 2010). 71 

However, the number of parameters that needs to be tested is large, and there can be 72 

important scale differences between the processes described in the model and the samples 73 

used to test the inference system. Alternatively, the inference system can be tested together 74 

with the model for its ability to reproduce measurements of water and solute transport in soils. 75 

This ‘functional’ approach (Finke et al., 1996) also implicitly accounts for parameter 76 

sensitivity: errors in the estimation of the most sensitive parameters will affect the predictions 77 

more than errors in the estimation of less sensitive parameters. 78 

Including a given process into pesticide risk assessments not only requires being able to 79 

model the process at stake, but also being able to estimate the parameters of the model related 80 

to this process with sufficient precision. For example, processes such as kinetic sorption are 81 

generally not considered, because little is known about how the parameters can be estimated 82 

from survey data. Until recently, this was also the case for preferential flow in soils. Despite 83 

an increasing amount of experimental evidence proving that preferential flow occurs quite 84 

frequently (Jarvis, 2007), and despite a large body of literature on preferential flow modelling 85 

(Gerke, 2006; Šimůnek et al., 2003), the process has not been considered in regional 86 

modelling of pesticide leaching risks. The recently completed FOOTPRINT EU-FP6 project 87 

made significant progress regarding our understanding of the agro-pedological factors 88 

triggering preferential flow in soil (Jarvis, 2007), methodologies for predicting the extent of 89 

macropore flow (Jarvis et al., 2009;Lindahl et al., 2009) and the estimation of macropore flow 90 

parameters in the dual-permeability model MACRO (Jarvis et al., 2007). 91 
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This paper presents the parameter estimation algorithms in the FOOTPRINT inference 92 

system, including those for macropore flow, and evaluates the ability of MACRO to predict 93 

solute leaching breakthrough when parameterised in this way. Our aim was to assess the 94 

ability of the MACRO model to predict solute leaching in soils when only basic site, soil and 95 

crop properties are available and model parameters are estimated from estimation algorithms 96 

(i.e. no calibration is done). Although the ultimate goal is to predict regional-scale leaching of 97 

pesticides, we focused in this study on tracer transport, since one key question is the 98 

reliability of the pedotransfer functions used to estimate transport parameters in MACRO, 99 

especially those related to macropore flow. Predictions of pesticide leaching are also very 100 

sensitive to uncertainty in sorption and degradation parameters (Vanderborght et al., 2011), 101 

which might overshadow the effects of errors in transport parameterisation. Estimating the 102 

impact of uncertainties in sorption and degradation on pesticide leaching is therefore out of 103 

the scope of this work. We compared MACRO simulations of water flow and tracer leaching 104 

from 16 different soils against measurements from cropped lysimeters containing undisturbed 105 

soils exposed to natural long-term weather conditions. In a second step, we used a simple 106 

procedure to investigate the potential for improving the simulation results by calibrating two 107 

parameters important for water flow simulations and two parameters important for solute 108 

transport. We also quantified the deterioration in model predictions that occur when 109 

macropore flow is neglected. 110 

 111 

2 Materials and Methods 112 

2.1 Lysimeter studies and weather data 113 

We collected 16 datasets describing lysimeter experiments carried out in six different studies 114 

in Sweden, France and the United Kingdom. Table 1 summarises the major characteristics of 115 

the 16 lysimeter experiments and Table 2 summarises the properties of the different soils. 116 

The first study (“Ultuna 1”) includes five soil types from southern and central Sweden 117 

included in a long-term soil fertility experiment (Ekebo, Fjärdingslöv, Högåsa, Kungsängen 118 

and Vreta soils). Detailed soil descriptions can be found in Kirchmann et al. (1999), 119 

Kirchmann et al. (2005) and Kirchmann (1991). Replicate one-meter long lysimeters were 120 

collected in 1999 (Djodjic et al., 2004). Bromide leaching experiments were conducted in 121 

these soils between mid-October 2007 and December 2008, at Ultuna, Uppsala (59.82°N, 122 
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17.65°E). The weather station was located less than a kilometre away from the lysimeter 123 

station. All lysimeters were under permanent grass during the experiment. 124 

The second study (“Ultuna 2”) comprises tracer experiments using chloride-36 conducted in 125 

1990 on one soil taken from a site in Southern Sweden (Mellby soil; Bergström et al., (1994). 126 

Chloride-36 was applied in mid-June 1990 to replicate lysimeters planted with spring barley 127 

(Hordeum distichum L.). The lysimeter station was located at Ultuna, Uppsala, and is 128 

described in detail by Bergström (1992). 129 

The third study (“Ultuna 3”) comprises tracer experiments conducted on replicate lysimeters 130 

taken from a structured clay soil (Lanna) and a sand (Nåntuna), presented in Bergström et al. 131 

(2011). Bromide was applied the 18
th

 of October 2006 to replicate lysimeters and leachate 132 

was collected during two years. All lysimeters, which were placed in the lysimeter station at 133 

Ultuna, were cultivated with spring barley, and harvested early September. 134 

The fourth study includes two lysimeters, from the same soil type, and was based on a 135 

bromide tracer experiment conducted in Villamblain, in the ‘Petite Beauce’ region, France 136 

(48.01°N, 1.55°E), between 1996 and 1998. Soils were cultivated with winter wheat, maize, 137 

and winter wheat during the experiment, and bromide was applied at the end of January 1996. 138 

It was observed in this study that bromide had a negative effect on crop growth (but the effect 139 

was not quantified). 140 

The fifth study includes replicate lysimeters of five contrasting soils, from a leaching study 141 

conducted at Silsoe (U.K., 52.0°N, 0.4°W; Cuckney, Sonning, Ludford, Enborne and Isleham 142 

soils; Brown et al., 2000). All lysimeters were sown with winter wheat. Bromide was applied 143 

in November 1994, and leaching was monitored until April 1996. 144 

The sixth study consists of one lysimeter study from the “Brimstone Farm dataset” 145 

(ADAS/IACR Rothamsted, Oxfordshire, UK; 51.65°N, 1.64°E), described by Beulke et al. 146 

(2001). This study is shorter than the others, with bromide applied in mid-December 1994, 147 

and monitored until 23 January 1995. It is also the only lysimeter study conducted with bare 148 

soil. 149 

As shown in Fig. 1, the soil horizons of the 16 different soils cover a broad range of texture. 150 

Of the USDA textural classes, only ‘silt’, ‘silt loam’ and ‘sandy clay’ are not represented. 151 

Organic carbon content in both topsoil and subsoil horizons ranges from 0 to 29%, with a 152 

median value for of 0.6% for all horizons, and 1.7% for topsoil horizons. Bulk density ranges 153 
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from 0.55 to 1.87 kg dm
-3

, with a median value of 1.45 kg dm
-3

. The mean depth of the soil 154 

profiles is 1 meter. 155 

The following data were available and were converted to a uniform format and units: date and 156 

time at which the leachate sample was collected; amount of leachate collected (mm); solute 157 

mass applied and amount leached (g m
-2

, but note that the 
36

chloride used in the Mellby study 158 

was expressed in Becquerels). For the Villamblain and the Mellby datasets, only 159 

measurements interpolated on a daily basis were available. 160 

Daily weather data were available for all four lysimeter stations (Table 1). MACRO needs 161 

rainfall [mm] and, to estimate potential evaporation with the Penman-Monteith equation, the 162 

daily minimum and maximum temperatures [°C], solar radiation [W m
-2

], vapour pressure 163 

[kPa] and wind speed [m s
-1

]. When available, the estimated potential evapotranspiration was 164 

provided directly (for "Ultuna 2", Villamblain, Silsoe and Brimstone). Internally, MACRO 165 

converts daily rainfall data into hourly rainfall data. The daily rainfall amount is converted 166 

into a single rainfall event starting at midnight, and with a constant intensity. This intensity is 167 

constant all year round in MACRO. Here the default value 2 mm h
-1

 was used, as no 168 

information was available to estimate its local value. 169 

Previous studies comparing measured and simulated water and solute transport in lysimeters 170 

were only available for Lanna clay and Nåntuna sand (Jarvis, 1991;Saxena et al., 1994). In 171 

both cases, the model used was MACRO and the model was calibrated on the measured 172 

dataset and some parameters were measured directly. Jarvis (1991) was able to successfully 173 

reproduce the measured water and solute breakthrough, and Saxena et al. (1994) also obtained 174 

good fits to the measured data, except during some weeks in winter, as a treatment of 175 

snowpack was not included in the model at that time. No goodness-of-fit statistic is available 176 

to compare with our simulations. It is worth noting that, in this study, we are using a different 177 

dataset for these two soils. Beulke et al. (2001) tested uncalibrated modelling on 178 

measurements made in Brimstone, but used a dataset of water and pesticide losses to drains at 179 

the plot scale. In their study, pesticide losses estimated by MACRO were in the same order of 180 

magnitude as the measurement. 181 

 182 
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2.2 The MACRO model 183 

MACRO is a one-dimensional dual-permeability model of water flow and solute transport in 184 

macroporous soil. The water and solute are partitioned between two domains: micropores 185 

where equilibrium flow and transport occur, represented by Richards’ equation and the 186 

convection-dispersion equation, and macropores where non-equilibrium gravity-driven flow 187 

occurs, represented by a kinematic wave equation. Water exchange between micropores and 188 

macropores is considered as an instantaneous “discharge” when the matrix becomes over-189 

saturated, while exchange in the other direction is modelled as a diffusive process controlled 190 

by an effective diffusion pathlength, as a surrogate parameter for the geometry of soil 191 

structure (Gerke and van Genuchten, 1996). A detailed description of the model is given by 192 

Larsbo et al. (2005). We used MACRO version 5.2. 193 

 194 

2.3 Initial and bottom boundary conditions 195 

Several options to describe the lower boundary condition are available in MACRO but we 196 

only considered a zero tension seepage surface, where only downward flow is allowed, which 197 

is appropriate for the lysimeter experiments considered in this study. In all cases, the initial 198 

conditions in the lysimeter experiments were unknown, since neither water contents nor 199 

pressure heads were measured. We therefore considered water contents at the beginning of 200 

each simulation to be at equilibrium with a (virtual) water table at the bottom of the soil 201 

profile. A warm-up period of real weather data was then included between the beginning of 202 

the simulation and the time of tracer application (14 days for Brimstone, 91 days for Ultuna 2, 203 

145 days for Villamblain, 77 days at Silsoe and about a year for Ultuna 1 & 3). 204 

 205 

2.4 MACRO model parameterisation with the FOOTPRINT estimation 206 

algorithms. 207 

 208 

2.4.1 Soil 209 

Sixteen simulations were set-up in MACRO. This latest version includes a tool for calculating 210 

the FOOTPRINT PTFs for soil parameters in MACRO. These PTFs make use of basic soil 211 
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properties (particle size distribution, stone and organic carbon contents, bulk density and pH) 212 

and other information provided by the user (horizon designation according to FAO, tillage 213 

system, and land use) to estimate physical and hydraulic parameters in the model. 214 

For the soil matrix, MACRO uses the van Genuchten (1980) water retention function. The 215 

parameters of this function (the shape parameters  , n  and the saturated water content S ) 216 

were estimated using the continuous PTFs developed by Wösten et al. (1999) from the 217 

HYPRES database, considering n11m   and that the residual water content R  is zero. 218 

The saturated water content was corrected for stone content: 219 

  SS)HYPRES(SS 1.f1.          (1) 220 

where )HYPRES(S  [m
3
.m

-3
] is the saturated water content estimated with the HYPRES PTF, Sf  221 

is the volumetric fraction of stones in the soil [m
3
.m

-3
] and S  is the stone porosity [m

3
.m

-3
]. 222 

As a uni-modal function, the van Genuchten equation cannot reflect the effects of soil 223 

macropores on soil water retention. Thus, S  is not used as a MACRO parameter. Instead, 224 

this ‘nominal’ saturated water content is used together with   and n  to estimate the wilting 225 

point water content (  at a pressure potential of -150 m) and )m(S , the saturated water 226 

content in the soil matrix, when m  . The water potential defining the boundary between 227 

the micropores and the macropores, m , was fixed at -10 cm, as suggested by a review of the 228 

literature (Jarvis, 2007). The saturated hydraulic conductivity of the soil matrix )m(SK  (i.e. 229 

soil hydraulic conductivity at m ) is estimated with a new PTF: 230 

l

)m(S)m(S n..CK           (2) 231 

where C  and l  are constants derived from experimental data from Jarvis et al. (2002) and set 232 

to 0.186 mm h
-1

 and 10.73 [-], respectively. )m(S  and n  are the water contents at -10 cm and 233 

van Genuchten n  parameters as predicted using the Wösten et al. (1999) pedotransfer 234 

functions (actual measured values should not be used here). In Fig. 2, measured and predicted 235 

)m(SK  values are compared. The agreement must be considered satisfactory, considering the 236 

errors involved in predicting n  (Wösten et al., 1999) and also the errors involved in the 237 

measurement of )m(SK , not least because they were performed by ten different researchers 238 

(Jarvis et al., 2002). This is illustrated by the fact that the measurements from three of the 239 
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researchers fall consistently below the 1:1 line (Fig. 2), despite the fact that they used the 240 

same method. 241 

Parameters related to soil macropores are estimated by a combination of constants 242 

(parameters that do not vary with site or soil properties) and class- and continuous-PTFs. The 243 

volumetric macroporosity, MA , is determined with the class PTF presented in Table 3. This 244 

PTF was developed from expert judgement and is based on the USDA soil texture class, the 245 

FAO Master Horizon Designation and soil management practices. MA  is summed with )m(S  246 

to give the total soil porosity. The effective diffusion pathlength, d , that regulates exchange 247 

of water and solute between macropores and micropores and the kinematic exponent, *n , that 248 

reflects the size distribution, tortuosity and connectivity of macropores, and controls flow rate 249 

in the macropore domain are obtained from the class-PTF presented in Table 4, which 250 

distinguishes four classes of susceptibility to macropore flow. The susceptibility to macropore 251 

flow of each horizon is determined with a decision tree, described in detail and successfully 252 

tested by Jarvis et al. (2009). The decision tree is based on USDA soil textural classes, FAO 253 

Master Horizon designations, tillage characteristics (no- or reduced-tillage, conventional 254 

tillage/ploughing or harrowing) and organic carbon content. The decision tree also makes use 255 

of a subsidiary decision tree to predict the abundance of large earthworm biopores (Lindahl et 256 

al., 2009) from soil climate, land use, texture class and the presence of limiting factors (such 257 

as horizons without pedogenetic features or with coarse texture, water tables, low pH and high 258 

bulk density). The MACRO parameter values associated with each class (Table 4) were set 259 

according to expert judgement based on extensive experience from calibrating and validating 260 

the model against experimental data (e.g. Jarvis, 2007; Köhne et al., 2009a, b). 261 

A simple expression for macropore saturated hydraulic conductivity )MA(SK  can be derived 262 

from the ‘capillary bundle’ model of soil macropore hydraulic properties described in Jarvis 263 

(2008): 264 

  *

MA)MA(S n.BK           (3) 265 

where ‘ B ’ is a composite ‘matching factor’ accounting for both physical constants and the 266 

geometry of the functional macropore system, that was set to 6000 mm h
-1

. 267 

Finally, as a special case, hydraulic parameters for permeable rock substrates (R horizons, 268 

which in our study only occurred at the Villamblain site) are set to fixed values, assuming a 269 
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high potential for macropore flow (i.e. class IV), as found by Roulier et al. (2006): 270 

d  = 150 mm; )MA(SK  = 30 mm h
-1

; )m(SK  = 0.04 mm h
-1

; )m(S  = 0.1 m
3
 m

-3
; 271 

  = 0.0004 cm
-1

; n  = 1.8; *n  = 2; MA  = 0.01 m
3
 m

-3
. 272 

 273 

2.4.2 Crop 274 

Crop parameters were defined using the class estimation algorithms defined in FOOTPRINT 275 

(Jarvis et al., 2007). These estimation algorithms classify crops into nine groups of annual 276 

crops and three groups of perennial crops. The lysimeter studies were conducted under either 277 

bare soil, wheat, barley, maize or grass, which represent only three of these groups (Table 5). 278 

The crop parameters were chosen according to FOCUS (2001), except for parameters related 279 

to drought tolerance, which were chosen according to Allen et al. (1998). In the FOOTPRINT 280 

inference system, the crop-specific maximum rooting depth is reduced by the presence of 281 

limiting soil factors, namely ‘C’ or ‘R’ FAO master horizon designations, pH  4.5, USDA 282 

sand and loamy sand texture classes with less than 0.2% organic carbon, a stone content 283 

larger than 20% or a bulk density larger than 1.65 kg dm
-3

 in the subsoil. The remaining crop 284 

parameters concern crop development stages. In FOOTPRINT, they are set according to a 285 

database of crop development stages available for each of sixteen climate zones in Europe. In 286 

this study, however, crop development stages such as emergence day and harvest day were set 287 

according to the observed dates in each lysimeter study.  288 

 289 

2.4.3 Solute 290 

Apart from the effective diffusion pathlength, solute transport parameters were set to 291 

constants (identical for all soils). The diffusion coefficient in water was set to 1.9 10
-9

 m
2
 s

-1
, 292 

the mixing depth which controls routing of solutes into macropores at the soil surface, was set 293 

to 1 mm. Anion exclusion was not considered. The matrix dispersivity was set to 3.4 cm, 294 

which is the mean value for a sub-set of 116 samples taken from the Vanderborght and 295 

Vereecken (2007) database, for experiments carried out at steady flow rates of less than 296 

1 mm h
-1

, which should exclude the influence of dispersion due to macropore flow. As 297 

macropore flow is explicitly accounted for in MACRO, and results in a higher apparent 298 

dispersivity, it is necessary to exclude its influence when estimating matrix dispersivity. 299 
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Finally, the fraction of solute taken up by crop roots with the water was set to 1 (i.e. 300 

completely passive uptake). 301 

 302 

2.5 Analyses of modelling results 303 

2.5.1 Bulking replicated measurements 304 

Water outflow and solute leaching were in most cases measured in several replicate lysimeters 305 

of the same soil. However, only one set of average physico-chemical properties was available 306 

for each soil type. Thus, only one set of MACRO parameters, and one prediction could be 307 

obtained for each soil type. As a consequence, the measurements include a local variability 308 

that simulations cannot reflect. To overcome this, we bulked the replicated measurements for 309 

each soil type and calculated average measured water and solute outflows to allow sound 310 

statistical comparisons of measurements and simulations. 311 

Before any analysis of the results, the amount of water drained at the outlet of lysimeters was 312 

transformed into pore volumes. This non-dimensional unit allows comparing the amount of 313 

water leached in soil profiles with different properties. Stricto sensu, pore volumes should be 314 

calculated as the amount of water drained divided by the product of water content and soil 315 

profile height. As no information was available on soil profile water contents, we have instead 316 

considered pore volumes as the amount of water drained divided by the product of porosity 317 

and soil profile depth. The porosity of each horizon was calculated from the horizon bulk 318 

density and an estimated particle density. 319 

2.5.2 Statistical measures of model ‘goodness of fit’ 320 

We assessed the agreement between measured and simulated water flows with the Nash-321 

Sutcliffe model efficiency (Schaefli and Gupta, 2007;Nash and Sutcliffe, 1970): 322 

 

 












n

1t

2

t,obst,obs

n

1t

2

t,simt,obs

xx

xx
1NSE        (4) 323 

where t,obsx  and t,simx  are the t
th

 observed and simulated values, respectively. 324 

In contrast to tracers, pesticides are degraded. Because of this, we are most interested in the 325 

ability of the model to reproduce early tracer breakthrough. Accurate prediction of early 326 
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solute breakthrough is dependent on the ability of the model to accurately simulate water 327 

flows soon after solute application. This in turn requires knowledge of the initial hydrological 328 

conditions which in our case were unavailable. We have thus compared simulated and 329 

measured accumulated amounts of solute leached (expressed as a fraction of the applied 330 

amount) at 0.1, 0.2 and 0.3 pore volumes (PV) of water drained. These values were chosen 331 

because (1) not all lysimeter experiments had more than 0.3 pore volumes drained (2) peak 332 

solute leaching occurs before 1 pore volume of drainage in soils exhibiting preferential flow 333 

or large dispersion and (3) the half-lives of most registered pesticides are much shorter than 334 

the time required for 1 pore volume of water to pass through a one-meter soil profile, even in 335 

relatively wet climates. Preferential solute leaching is ‘event-driven’, which makes the Nash-336 

Sutcliffe model efficiency very sensitive to even slight errors in timing. Nolan et al. (2009) 337 

proposed a 'refined lack-of-fit statistic' that measures the ability of a model to predict peak 338 

concentrations and takes into account possible shifts in time (and scale). It is unfortunately 339 

not easily applicable here, as not all our simulations exhibit clearly defined solute leaching 340 

peaks. We therefore assessed the agreement between measured and predicted accumulated 341 

solute loads at 0.1, 0.2 and 0.3 PV with the Concordance Correlation Coefficient (Lin, 1989), 342 

referred to here as CCC, an estimator that takes into account both scale and location departure 343 

from the one-to-one measured versus predicted line (i.e. a systematic bias or a high 344 

dispersion, respectively). We have used the CCC calculation implemented in the R package 345 

epiR (Stevenson et al., 2009;R. Development Core Team, 2011). The formula of the CCC for 346 

two variables x  and y  is: 347 

 22

y

2

x

xy

C

yxSS

S.2
ˆ


         (5) 348 

with     y,xj,jj.n1S
2n

1i i

2

j   
 and      


n

1i iixy yy.xx.n1S  and n  the number 349 

of samples. 350 

The ability of the model to accurately predict water outflow and solute loads is particularly 351 

important in the context of registration and risk assessment, because the leachate 352 

concentration is a key ‘end-point’. For risk management, an alternative criterion to the 353 

absolute concentration would be whether the model correctly identifies the sources of diffuse 354 

pollution in the landscape (i.e. to identify appropriate mitigation measures). It is then not any 355 

more the absolute values that are important, but rather the ranking of soil types with respect to 356 
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solute leaching. We have thus also computed the ranking of each soil according to the 357 

measured and predicted accumulated solute loads at 0.1, 0.2 and 0.3 pore volumes and 358 

calculated the CCC on these ranks. 359 

 360 

2.5.3 Benchmarking: does macropore flow matter? 361 

Statistical measures of the agreement between measured and simulated time series variables, 362 

such as the Nash-Sutcliffe model efficiency, may be difficult to interpret. Seibert (2001) 363 

recommended ‘benchmarking’ predictions against a simpler model, to assess the relative 364 

improvement provided by a more complex model. In this study, we compare predictions of 365 

the full model with MACRO simulations parameterized in such a way that macropore flow is 366 

eliminated. This is done by setting the effective diffusion pathlength to 1 mm, which ensures 367 

extremely rapid equilibration between the two flow domains. This effectively reduces the 368 

dual-permeability model to a single-domain flow and transport model (Richards’ equation 369 

coupled to the advection-dispersion equation). In this way, we can test whether the 370 

uncertainty in estimating macropore flow parameters by pedotransfer functions outweighs the 371 

errors in model predictions introduced by neglecting macropore flow. 372 

 373 

2.6 Calibration 374 

A simple way to assess parameterisation errors is to perform a calibration of the model 375 

parameters, by testing different parameter sets and comparing them to the measured values 376 

(inverse modelling). The extent to which calibrated parameter sets improve the modelling, as 377 

compared to non-calibrated simulations gives us an idea of how good or bad the base 378 

parameterisation is. It helps us to know which parameters should be better predicted to 379 

achieve better simulations. The strategy is nevertheless somewhat limited because, (a) due to 380 

resource limitations, it was not possible for us to calibrate all the important MACRO 381 

parameters, (b) several parameters may have similar impacts on water flow or solute 382 

transport, which leads to equifinality (Beven, 1993). 383 

The calibration procedure was conducted in two steps. Two parameters were calibrated in the 384 

first step to improve water flow modelling, and two other parameters were calibrated in the 385 

second step to improve solute transport modelling. 386 
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 387 

2.6.1 Calibrating crop parameters that impact the water balance 388 

A first analysis of the results revealed that simulations of water outflows could be improved 389 

with a better parameterisation of some crop parameters. The maximum root depth maxR  and 390 

the uptake compensation factor   which reflects crop drought tolerance were optimised, 391 

because of their expected impact on the overall water balance (i.e. because they are both 392 

sensitive and uncertain). When   is 1, there is no water uptake compensation, and when   is 393 

0, there is a complete compensation. Five values of maxR  were tested, from 0.30 to 1.10 m (or 394 

to the lysimeter depth if the lysimeter was shorter), and five values of   (from 0 to 1), giving 395 

25 different parameter combinations. 396 

Additional changes were made to the parameterisation of the “Ultuna 1” lysimeters. For 397 

practical reasons, the FOOTPRINT estimation algorithms consider grass as a perennial crop. 398 

This means that, for the non-calibrated simulations, the root depth and leaf area are constant 399 

all the year round, and MACRO simulates crop transpiration as soon as temperatures rise 400 

above zero. But grass growing in Nordic countries (and elsewhere) is affected by winter frost 401 

burns, and its green leaf area gradually decreases in the autumn, and gradually increases in the 402 

spring, when temperatures are above six degrees (Persson, 1997). For this reason, in the 403 

calibrated simulations, the grass in the Ultuna lysimeters has been considered as an annual 404 

crop, with an annual cycle of leaf area development (emergence on day 364, a linear increase 405 

of leaf area until day 90, maximum leaf area on day 180 and ‘harvest’ on day 363). 406 

The optimal parameter combination was chosen as the one with the best Nash-Sutcliffe model 407 

efficiency. This was calculated on accumulated water outflow rather than outflows for each 408 

sampling period, since the results were then less sensitive to periods where some water flow is 409 

predicted by MACRO while the measured water flow is zero, or vice versa. 410 

 411 

2.6.2 Calibrating solute transport 412 

Based on the calibrated simulations of water outflow, a second optimisation was conducted 413 

for solute transport. Preliminary tests showed that the extent of solute uptake by the crop was 414 

an important determinant of the overall tracer balance. In a few cases, we also noted that, 415 
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while the water balance was well simulated, the simulated bulk matrix solute transport was 416 

apparently slower than the measured (see Sect. 3.1). For this reason, we also optimised the 417 

anion exclusion factor in the model ( ae ). Internally, MACRO defines a "mobile water 418 

content", )m(mi  that is calculated as aemi)m(mi    if miae   , and 0)m(mi   if miae    419 

(Larsbo and Jarvis, 2003, p. 29). Anion exclusion is not the only process that can explain fast 420 

solute transport in the matrix. The presence of immobile water and heterogeneous flow in the 421 

matrix may produce similar effects. To some extent, it should be possible to account for this 422 

by calibrating the matrix dispersivity, but the lack of resident concentration data and thus the 423 

likelihood of equifinality persuaded us to keep the analysis simple and focus only on anion 424 

exclusion. Five values of the solute uptake concentration factor (from 0 to 1) and ten values of 425 

the anion exclusion factor were tested (from 0 to the water content at wilting point). This gave 426 

50 different parameter combinations. The optimal parameter combination (from the 50 tested) 427 

was chosen as the one with the best model efficiency on time series of accumulated solute 428 

leaching. 429 

 430 

3 Results and discussion 431 

3.1 Uncalibrated modelling 432 

Model Efficiencies for water flow are given in Table 6. For uncalibrated simulations, the 433 

median efficiencies are 0.42 for water outflows and 0.67 for the accumulated water outflows 434 

respectively, but large differences existed between lysimeters. Fig. 3 gives an example of an 435 

experiment that is rather well simulated (Cuckney), and one that is rather poorly simulated 436 

(Fjärdingslöv). In the supplementary materials, Table S1 presents the total rainfall amount, 437 

percolation and evapotranspiration for each non-calibrated simulation, and Figs. S1 to S16 438 

present their simulated and measured water and solute flow. While most English soils were 439 

well simulated, the Villamblain soil and some Swedish soils were not. Model efficiencies 440 

were low in Högåsa and Mellby soils, for instance, but very good for Enborne and Brimstone. 441 

Visual examination of the bulked simulation results for each soil type (see the supplementary 442 

materials) revealed that the model sometimes failed to reproduce the first peak of water 443 

outflow, especially for the experiments conducted at Silsoe, but also for some of the Swedish 444 

soils (e.g. Fjärdingslöv, see Fig. 3). This is probably due to the lack of measured data to 445 

identify the correct initial condition in the simulation (Zehe et al., 2007). In other cases 446 
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(Vreta, Mellby), the total drainage was sometimes overestimated, presumably due to an 447 

underestimation of transpiration. For the Isleham peaty soil and Kungsängen, the water flow 448 

was accurately modelled the first year, but not the second year. 449 

Fig. 4 shows measured versus simulated solute leaching at 0.1 and 0.2 pore volumes, 450 

expressed in absolute terms and as ranks, respectively. The trends observed at 0.3 pore 451 

volumes are similar to those seen at 0.2 pore volumes (although comparisons are made for 452 

only 11 soils) and are therefore not shown. It is striking that the simulated solute load leached 453 

at 0.1 and 0.2 pore volume was systematically underestimated (CCC = 0.33 and 0.35, 454 

respectively). Although not as strongly underestimated, solute load was still not well 455 

simulated at 0.3 pore volumes (CCC = 0.50). If the comparison is made on rankings, the 456 

results are much better (Fig. 4), although still far from being perfect (CCC = 0.54, 0.72 and 457 

0.65 for PV = 0.1, 0.2 and 0.3, respectively). The systematic underestimation of the amount of 458 

solute leached at 0.1 and 0.2 pore volumes may be explained by an underestimation of 459 

macropore flow intensity by our parameterisation algorithms. It may also be explained by the 460 

internal conversion of daily rainfall data into hourly rainfall data. The default average rainfall 461 

intensity we have used (2 mm h
-1

) may be inappropriate, as intense rainfall events are more 462 

likely to generate preferential flow, and thus early solute breakthrough (McGrath et al., 2009). 463 

 464 

3.2 Effect of calibration 465 

Table 6 shows, as expected, that calibrating two parameters controlling water uptake by crops 466 

improved significantly the simulations of water flows for those cases where results were poor 467 

without calibration (e.g. the Fjärdingslöv, Högåsa, Kungsängen and Vreta soils in Sweden and 468 

Cuckney, Sonning and Ludford soils in the U.K.). In the case of Ekebo and one of the 469 

Villamblain lysimeters, the simulation of water flow became worse after the calibration 470 

(Table 6). This is because the best parameter combination was chosen according to the model 471 

efficiency calculated on accumulated water outflows. It is also quite clear that modelling grass 472 

as an annual crop rather than a perennial (the default in the crop estimation algorithms) better 473 

corresponds to Swedish conditions. In several cases, improving the simulation of water 474 

outflows also improved the simulation of solute leaching (Table 6). But in other cases, the 475 

simulations became worse. Figures 5 and 6 show the effect of the calibration procedure on the 476 

concordance correlation coefficients between measured and simulated solute loads and ranked 477 
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solute loads at 0.1, 0.2 and 0.3 pore volumes. It is clear from these figures that calibrating the 478 

two crop parameters only marginally improved the modelling of solute transport. 479 

 480 

Calibration of both water uptake and solute transport parameters improved the simulation 481 

results for absolute loadings (Fig. 5), but only marginally improved the predictions of the 482 

ranking of soils according to the fraction of solute leached at different pore volumes (Fig. 6). 483 

The predicted ranking is even slightly worse at 0.3 pore volumes. This is due to the fact that 484 

the calibration was done on the complete breakthrough curve, and not just on the solute load 485 

at a given pore volume. 486 

 487 

3.3 Significance of calibration 488 

Calibrated values for maxR  were significantly smaller than the values estimated from the 489 

lookup tables for nine lysimeters (from 0.3 to 0.5 m instead of 1.1 m), and slightly smaller 490 

(around 0.8 m instead of 1.1 m) for four lysimeters. We do not know whether or not this 491 

reflects a real problem with the estimation of maxR , an artefact due to the experimental setting, 492 

or that calibrated values compensate for errors in other parameters that are important for water 493 

flow. The change in maxR  does not appear related to soil properties. The calibrated   494 

parameter was higher than the values estimated from the lookup tables in nine lysimeters 495 

(from 0.5 to 1 instead of 0.2), and lower in seven (0 instead of 0.2). Again, no relationship 496 

was found between this change and soil properties, or with the change in maxR , despite the 497 

fact that   and maxR  may have similar effects on the water balance. 498 

In nine lysimeters, solute transport was improved if the fraction of tracer taken up by the crop 499 

was decreased (to 0.5 or 0), but this finding could not be related to any soil properties. The 500 

results are more interesting for anion exclusion, which was set to zero in the parameter 501 

scheme without calibration. Most simulations were improved when the excluded water 502 

content was increased (less than 10% for seven soils, and more than 10% for eight others, 503 

with a maximum value of 20%). The estimated ‘optimal’ values of the excluded water content 504 

were strongly correlated with clay content ( PearsonR  = 0.86) and the estimated water content at 505 

wilting point ( WILT ; PearsonR  = 0.90), with an average value equal to 0.55 WILT . Although we 506 
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had bounded the range of possible values for the excluded water content between 0 and WILT , 507 

we think this result reflects a real trend of either faster bulk transport of the tracer in soils with 508 

more clay (and thus a higher WILT ) due to anion exclusion or mobile-immobile preferential 509 

flow in the soil matrix. Alletto et al. (2006) found, for example, rather large immobile water 510 

contents  im  (up to 90%) in soils very similar to those of Villamblain. 511 

 512 

3.4 Does macropore flow matter? 513 

Figures 5 and 6 clearly show that, despite the additional uncertainties involved in simulating 514 

macropore flow, neglecting this process leads to worse predictions, especially at 0.1 PV 515 

without calibration. This result is worth noting considering that not all soils may be prone to 516 

preferential flow. Overall, the effect of preferential flow is significant, despite the fact that it 517 

may be negligible in some lysimeters. Additionally, not all weather data series include rainfall 518 

events likely to trigger preferential flow, especially in the critical period soon after solute 519 

application (McGrath et al., 2009). The results also show that calibration of water uptake and 520 

solute transport parameters can partly compensate for neglecting macropore flow at later 521 

times (PV = 0.2 and 0.3, see Figs. 5 and 6).  522 

 523 

4 Conclusions 524 

Predicting solute transport, and especially early solute breakthrough due to preferential flow, 525 

without measuring any model parameters and without calibration, is a challenge. Nonetheless, 526 

although model efficiencies were quite low, we consider our results promising, considering 527 

how variable and non-linear water and solute transport can be, especially in the presence of 528 

macropore flow. Overall, our results show that we generally strongly underestimate the 529 

amount of solute leached in the first 0.3 pore volumes drained. We cannot say whether this is 530 

due to model structural errors or parameter errors, but previous experience with MACRO has 531 

not indicated any systematic tendency to underestimate the strength of macropore flow 532 

(Köhne et al., 2009a, b), which suggests that the latter probably dominated. Also, we cannot 533 

completely exclude the influence of measurement errors. For example, some side-wall flow 534 

may have occurred in some lysimeters and disturbance to the structure caused during their 535 

extraction may have accelerated transport. Root development may also be limited or 536 
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influenced by the lysimeter wall and the bromide tracer may also be toxic to crops when 537 

applied at high concentrations (Flury and Papritz, 1993; Observations on Villamblain 538 

lysismeters). Despite the fact that preferential flow was not expected in all soils and climate 539 

series, we show that not accounting for this process strongly and negatively affects the 540 

modelling results. Clearly, ignoring preferential flow can lead to strong biases in spatial 541 

patterns of solute leaching predicted at large scales. This conclusion stresses the importance 542 

of preferential flow in soils, and the need for improved pedotransfer functions to estimate 543 

preferential flow parameters. Finally, although the absolute values of solute leaching were 544 

poorly predicted by the model, the ranking of soil types according to this variable was 545 

generally much more reliable and was not greatly improved by calibration. This finding 546 

shows that the results from blind parameterisation of the MACRO model can be used to 547 

assess the relative vulnerability of soils to solute leaching in catchment and regional-scale 548 

assessments. 549 
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Table 1. Characteristics of the lysimeters experiments used for assessing MACRO and FOOTPRINT estimation algorithms 710 

Experiment location Experiment reference from-to Duration Soils (number of replica) 

  [year] [days]  

Ultuna 1 (Sweden) Larsbo M, unpublished. Soils 

from Dojdjic et al. (2004) 

2007-2008 311-434 Ekebo (5), Fjärdingslöv (5), Högåsa (5), 

Kungsängen (5), Vreta (4) 

Ultuna 2 (Sweden) Bergström & Jarvis (1993) 1989-1990 307 Mellby (2) 

Ultuna 3 (Sweden) Bergström et al. (2011) 2006-2008 711 Lanna (4), Nåntuna (4) 

Villamblain (France) Vachier P., unpublished. 1995-1998 975 Villamblain (2 soils, 1 rep. each) 

Silsoe (UK) Brown et al. (2000) 1994-1996 529 Cuckney (2), Sonning (1), Ludford (2), 

Enborne (2), Isleham (2)  

Brimstone (UK) Beulke et al. (2001) 1994-1995 38 Brimstone (2) 

 711 

712 
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Table 2. Characteristics of the different soils. Texture classes are given according to the USDA system (‘Cl’ = ‘Clay’, ‘Si’ = ‘Silt’ or 713 

‘Silty’, ‘Sa’ = ‘Sand’ or ‘Sandy’ and ‘Lo’ = ‘Loam’ or ‘Loamy’). Texture, organic carbon, bulk density and stone content values are 714 

the average values of the different layers concerned weighted by their thicknesses 715 

Name Soil type Topsoil 

texture  

Subsoil 

texture 

Toposil 

OC 

Bulk 

density 

Stone 

content 

Profile 

depth 

Number of 

horizons in profile 

    [%] [kg.dm
-3

] [%] [m] [-] 

Ekebo Oxyaquic Eutrocept
1
 Lo Lo 2.4 1.45 6 1.0 6 

Fjärdingslöv Oxyaquic
1
 SaLo SaLo 1.3 1.69 3 1.0 5 

Högåsa Humic Dystrocryept
1
 LoSa Sa 1.7 1.42 0 1.0 6 

Kungsängen Typic Haplaquept
1
 Cl Cl 2.1 1.31 0 1.0 3 

Vreta Oxyaquic Haplocryoll
1
 Cl Cl 1.7 1.43 0 1.0 5 

Mellby Uderic Haploboroll
1
 SaLo Sa 3.4 1.33 0 1.0 4 

Lanna Fluventic Haplumbrept
1
 SiCl Cl 2.4 1.35 0 1.1 4 

Nåntuna (unknown) LoSa Sa 1.2 1.43 0 1.1 5 

Villamblain 1 Eutric Cambisol / Haplic 

Calcisols
2,3

 

SiClLo Lo 1.4 1.16 25 1.5 4 

Villamblain 2 Eutric Cambisol / Haplic 

Calcisols
2,3

 

SiClLo Lo 1.4 1.16 18 1.5 5 
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Cuckney Argic ustipsamment
1
 Sa Sa 0.7 1.51 1 1.1 4 

Sonning Udic paleudalft
1
 SaLo SaLo 1.0 1.57 33 1.1 5 

Ludford Ultic haplustalf
1
 SaLo SaLo 1.0 1.79 0 1.1 5 

Enborne Vertic fluvaquent
1
 SaClLo SaClLo 4.0 1.12 8 1.1 5 

Isleham Terric medisaprist
1
 Lo SaLo 28.9 0.69 0 1.1 6 

Brimstone pelo-stagnogley 

Denchworth series
4
 

Cl - 3.3 1.15 0 0.3 2 

1
 USDA Soil Survey classification; 716 

2
 World Reference base for Soil Classification; 717 

3
 Soils in Villamblain present heterogeneities between and within the soil profiles; 718 

4
 UK Soil Survey Classification. 719 

 720 
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Table 3. Look-up table for estimating macroporosity in MACRO (horizon designations are FAO Master Horizon Designations). 722 

Soil Horizon 
1
Texture 

  Fine Medium Coarse 

Topsoil (mineral) 
2
Undisturbed 0.050 

3
‘AT’ 0.050 

4
‘AP’ 0.030 0.040 0.050 

Subsoil (mineral) 
5
Upper ‘B’ or ‘E’ 0.160 0.160 0.050 

6
Lower ‘B’ or ‘E’ 0.008 0.008 0.050 

‘BC’ 0.002 0.004 0.040 

‘C’ 0.002 0.004 0.030 

Organic ‘O’ or ‘H’ 0.050 

1
Fine is clay, silty clay, silty clay loam in the USDA texture triangle, Coarse is sand and loamy sand, Medium is all other classes  723 

2
 perennial crops i.e. grassland, vines, orchards, olives  724 

3
 intensively (secondary) tilled uppermost soil layer  725 

4
 ploughed but not secondary tilled  726 

5
 mid-point depth of horizon <50 cm  727 

6
 mid-point depth of horizon >50 cm 728 
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Table 4. Class pedotransfer functions for soil structure-related parameters. The preferential flow class is determined using the decision 731 

tree presented in Jarvis et al. (2009) 732 

Macropore 

Flow Class 

1
Effective Diffusion 

Pathlength, d [mm] 

Kinematic 

Exponent, n* [-] 

I (none) 1 6 

II (weak) 15 4 

III (moderate) 50 3 

IV (strong) 150 2 

1
 The effective diffusion pathlength (d) is set to 3 mm in the uppermost intensively tilled layer in arable soil independent of class. 733 

 734 
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Table 5: Crop parameters in the FOOTPRINT inference system used in this study 736 

Parameters Crop groups Parameters Crop groups Constant all 

 A (Cereals) F (Maize)  Grass Parameters groups 

LAIMax 5 5 LAIC 5 x1 1.6 

LAIHar 1 2   x2 0.3 

Drought tolerance 65% 65% Drought tolerance 65% LAIMin_sp 0.01 

β 0.2 0.2 β 0.2 LAIMin_sp 1.0 

Rmax 1.1 1.1 RDepth 0.8 RInit_sp 0.01 

CANCAP 2 3 CANCAP 2 RInit_au 0.2 

ZALP 1.0 1.5 ZALP 1.0 CRAir 0.05 

LAIMax is the maximum leaf area index; LAIHar is the green leaf area index at harvest; “Drought tolerance” is the % of extractable 737 

micropore water exhausted before reduction in transpiration occurs, and it is used to calculate the critical tension for transpiration 738 

reduction (WATEN); β is the transpiration adaptability factor; Rmax is the maximum root depth [m]; CANCAP is the maximum 739 

interception capacity [mm]; ZALP is the Ratio evaporation of intercepted water to transpiration; LAIC is the leaf area index of permanent 740 

crops; RDepth is the root depth for permanent crops. x1 and x2 are the Leaf development factor, for growth and senescence, respectively; 741 

LAIMin_sp and LAIMin_au are the leaf area index on specified day for spring and autumn crops, respectively; RInit_sp and RInit_au are the root 742 

depth on the intermediate crop development stage between emergence and maximum leaf area for spring and autumn crops, 743 

respectively; CRAir is the critical air content for transpiration reduction [m
3
 m

-3
]; 744 

745 
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Table 6. Model efficiencies of simulated Water Flow (WF), Accumulated Water volume (WC), Solute Load (SL) and Accumulated 746 

Solute load (SL), without calibration, and with 2 water-related crop parameters (β and Rmax) and 2 solute-related parameters (solute 747 

uptake concentration and anion exclusion factors) optimized. The differences in model efficiency between the 2 methods are also 748 

given. Model efficiencies were calculated after averaging replicated measurements, on the complete time series. 749 

 

No calibration Crop / water parameter calibrated Differences 

Soil profile WF WC SL SC WF WC SL SC WF WC SL SC 

Ekebo 0.41 0.97 -0.28 -0.10 0.07 0.97 -0.16 0.89 -0.34 0.00 0.12 0.99 

Fjärdingslöv -0.03 0.89 -0.68 0.55 0.81 0.98 -0.99 0.78 0.84 0.09 -0.31 0.23 

Högåsa -3.94 -1.39 -2.83 0.00 -3.66 -1.04 -2.52 0.12 0.28 0.35 0.31 0.12 

Kungsängen 0.14 0.67 -0.79 -0.36 0.15 0.86 -2.27 0.77 0.01 0.19 -1.48 1.13 

Vreta -1.12 0.90 -0.64 -0.44 -0.73 0.94 -0.33 0.82 0.39 0.04 0.31 1.26 

Mellby -1.24 -3.23 -0.40 -1.13 -1.24 -3.23 -0.65 0.68 0.00 0.00 -0.25 1.81 

Lanna 0.66 0.96 -0.02 -2.00 0.67 0.97 0.19 0.64 0.01 0.01 0.21 2.64 

Nåntuna 0.59 0.91 -0.10 0.82 0.65 0.98 0.01 0.87 0.06 0.07 0.11 0.05 

Villamblain -0.11 -0.79 -0.05 -0.99 -0.25 0.69 -0.22 0.32 -0.14 1.48 -0.17 1.31 

Villamblain -0.04 -1.08 -0.10 -1.14 0.1 0.17 -1.52 0.2 0.14 1.25 -1.42 1.34 

Cuckney 0.62 0.48 -0.01 0.59 0.75 0.79 -0.3 0.84 0.13 0.31 -0.29 0.25 
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Sonning 0.42 0.67 -0.22 0.75 0.67 0.89 -0.37 0.88 0.25 0.22 -0.15 0.13 

Ludford 0.51 0.48 -0.94 0.47 0.57 0.75 -1.32 0.68 0.06 0.27 -0.38 0.21 

Enborne 0.77 0.88 -0.24 -2.77 0.84 0.92 -1.46 -1.13 0.07 0.04 -1.22 1.64 

Isleham 0.71 0.31 -0.28 -0.62 0.71 0.31 -0.23 -0.33 0.00 0.00 0.05 0.29 

Brimstone 0.77 0.98 0.69 0.90 0.77 0.98 0.53 0.97 0.00 0.00 -0.16 0.07 

 750 

 751 
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Figure 1. Textures of the different horizons of the 16 soils used for our study, represented over 

USDA Soil Texture Triangle’s classes. ‘Cl’ means ‘Clay’ or ‘Clayey’, ‘Si’ means ‘Silt’ or ‘Silty’, 

‘Sa’ means ‘Sand’ or ‘Sandy’ and ‘Lo’ means ‘Loam’ or ‘Loamy’. 
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Figure 2. Measured and predicted saturated matrix hydraulic conductivity. Data are taken from 

(Jarvis et al., 2002), predicted values are calculated using equation 2, and θ10 and n are predicted 

by HYPRES. Solid symbols represent data obtained by three of the ten researchers. 
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Figure 3. Examples of measured versus simulated water and solute flows, for one soil which is 

‘rather well’ simulated (Cuckney) and one which is ‘rather poorly’ simulated (Fjärdingslöv). 

Solid-lines are measured values and dashed-lines are simulated values. 
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Figure 4 caption. Left part: Measured versus simulated accumulated solute loads leached at 0.1 

(upper part) and 0.2 (lower part) pore volumes (PV), expressed as a fraction of the applied solute 

[-]. Right part: soil ranks according to the same criterion. At 0.2 pore volume, Villamblain 1 and 

2 soils are not represented because neither the simulation nor the measurements reached that pore 

volume. 
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Figure 5. Concordance Correlation Coefficient (CCC) of measured versus simulated accumulated 

solute loads leached at 0.1, 0.2 and 0.3 pore volumes for different calibration methods: no 

calibration (only pedotransfer functions); after calibration of 2 water-related crop parameters; 

after calibration of 2 additional solute-related crop and soil parameters. Darker bars represent 

simulations where solute macropore flow has been ‘switched-off’, and gray bars represent 

(standard) simulations where macropore flow parameters have been parameterised according to 

the pedotransfer functions. Some soil profiles are not included in the CCC calculation at 0.2 and 

0.3 pore volumes because not all the lysimeters had this much drainage. 
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Figure 6. Concordance Correlation Coefficient of the measured versus simulated soil ranks 

according to the accumulated solute loads leached at 0.1, 0.2 and 0.3 pore volumes for different 

calibration methods: no calibration (only pedotransfer functions); after calibration of 2 water-

related crop parameters; after calibration of 2 additional solute-related crop and soil parameters. 

Darker bars represent simulations where solute macropore flow has been switched-off, and gray 

bars represent (standard) simulations where macropore flow parameters were set according to the 

pedotransfer functions. Some soil profiles are not included in the CCC calculation at 0.2 and 0.3 

pore volumes because not all the lysimeters had this much drainage. 


