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This paper considers the estimation of vertical fluxes in streambeds by 1-D analysis
of temperature data under conditions of upward water flow. In particular, the authors
study the applicability of analytical solutions based on steady-state 1-D flow and either
steady-state or sinusoidal boundary conditions. The first one is recalled the Bredehoeft
and Papadopolus (1965) solution to Stallman’s (1960) equation (BP), and the second
one the Hatch et al. (2006) and Keery et al. (2007) methods (HK). The authors first
discuss a numerical test case and then switch to field data, where they calibrated a
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numerical model with time-varying boundary conditions.

1 General Comments

My overall impression is that the authors fit specific analytical solutions to (virtual) data
in cases where they are not appropriate to begin with. While I know that the literature
of stream-groundwater exchange includes many erroneous applications of analytical
expressions I don’t see a reason to continue that.

1.1 Underlying Analytical Expressions

I may remark that the following equations are not new by any means. I just recall them
to clarify matters. Let’s start with the convection-condution equation using the notation
of the authors:

∂T

∂t
+ vf

∂T

∂z
−Ke

∂2T

∂z2
= 0 (1)

with

vf = %wcwqz
%c (2)

Ke = K
%c +Dhyd (3)

subject to boundary conditions that have a steady-state, and a time-periodic contribu-
tion:

T (0, t) = Tavg +A cos
(

2πt
P

)
(4)
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lim
z→∞

T (z, t) = T∞∀t (5)

To simplify the analysis, I have replaced the fixed temperature at depth L, used by
the authors according to BP, by an auxiliary condition at the infinite-depth limit, z →∞.
This is to simplify the analysis of the sinusoidal data. Also, I have immediately switched
to the thermal front velocity vf and the effective thermal diffusivity Ke to simplify no-
tation (which is the sum of the thermal diffusivity and the hydromechanic dispersion
coefficient Dhyd). At this point, no assumption is made whether vf is positive or nega-
tive. I have also chosen the time t such that the periodic boundary condition becomes
a cosine rather than a sine. The analytical solution for this problem is:

T (z, t) = T∞ + (Tavg − T∞) exp
(

(vf−|vf |)z
2Ke

)

+A exp


 vf z

2Ke
−

sr
v4f+

64π2K2
e

P2 +v2f2

2Ke
z


 cos


2πt

P −

sr
v4f+

64π2K2
e

P2 −v2f2

2Ke
z


 (6)

That is, the steady-state and diurnal contributions are additive. Of course, Eq. (6) is
the sum of the two analytical expressions cited by the authors. Note that, if vf > 0, the
steady-state contribution becomes a constant if the lower boundary is chosen at the
infinite limit, which is not the case in the BP solution.

Eq. (6) has been known for a long period of time (and can easily be extended to tem-
perature signals of multiple frequencies). The most important assumption is that the
coefficients vf and Ke must not vary in time. Choosing the fixed-temperature boundary
at z →∞ is not a principal problem, but the resulting expression for a different location
of the boundary is ugly to read if one does not like complex expressions.
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1.2 Main Criticisms

1. The authors consider cases in which steady-state and diurnal contributions are
overlain. It does not make sense to use analytical solutions for either only steady-
state or only sinusoidal boundary conditions in such cases. This becomes evident
in the numerical example. The reported miss-fits indicate either systematic bias
(in case of the spectral approach of HK) or temporal fluctuations (in case of the
steady-state approach of BP). Of course, one has to separate the time-fluctuating
and steady-state contributions when using either of the two approaches. In the
field example, the authors implicitly remove the steady-state contribution when
applying the amplitude-dampening approach. However, they don’t try to make
use of the combined, existing analytical solution.

2. The authors make wrong statements about underlying assumptions in the analyti-
cal expressions. A prominent example is that there would be a difference whether
conductive flux is predominantly upwards or downwards. That is simply wrong.
It is important whether convection is upwards or downwards; and it is important
whether a mean temperature gradient exists. But the analytical expressions don’t
mind whether groundwater or stream water is cooler in average.

3. The key problem in the field application is temporal variability of flow. The head-
differences fluctuate on time scales of days. The estimated travel time of temper-
ature is also in the range of one day. Thus, any analysis assuming quasi steady-
state flow must be flawed. This is the true difficulty of the appliction, but the
problem is not posed that way. I highly recommend that the authors change their
virtual toy problem to something similar: A test case in which flow is transient, in
which "data" are attempted to be fitted with a solution based on steady-state flow.

4. A core difficulty in using either only the steady-state contribution, or only the
amplitude dampening, or only the phase shift is that the temperature propagation
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behavior depends on two coefficients: vf and Ke. The effective thermal diffusivity
Ke depends on hydromechanic dispersion, porosity, and the mineral composition
of the streambed. These properties are not too well constrained. In particular
the method based on steady-state heat transport yields exclusively the thermal
Peclet number vfz/Ke rather than vf (and thus qz) itself. A combined analysis of
all three components yields, at least in theory, a handle on both vf and Ke.

2 Specific Comments

1. throughout the text: Replace "diel" with "diurnal".

2. throughout the text: There is no "flat" temperature, there is a constant one.

3. throughout the text: Use consistent notation including consistent choices when a
velocity is positive or negative.

4. page 4306, lines 3-4: I doubt that there are so few studies in which temperature
is used as a natural tracer under upwelling conditions (Conant , 2004; Schmidt
et al., 2006, 2007).

5. page 4306, line 9: add "mean" before "temperature gradient"

6. page 4306, line 15: An estimation within one order of magnitude is not good at
all.

7. page 4306, lines 17-18: I don’t think that that statement that one should consider
the physical processes to be measured before designing a measurement set-up
belongs into the abstract of any scientific paper. This is self speaking for any
scientist.

8. page 4306, line 21: "using" rather than "both"
C1430

9. page 4307, line 21: "small inverse gradients", what do the authors mean? Small
absolute values of the gradient (small ∂ |T | /∂z), which would make sense to me,
or large gradients (small ∂z/∂T )? The same phrase appears later on again, and
remains confusing.

10. page 4307, line 22: Whether groundwater temperatures are higher or lower than
stream temperatures is absolutely irrelevant for the analysis. The question at
hand is whether there is a mean gradient at all, positive or negative.

11. page 4307, line 23: replace "less" by "smaller"

12. page 4307, line 26: add "uniform" before "vertical infiltration velocity"

13. page 4308, line 1: "no mean temperature gradient" rather then just "temperature
gradient

14. page 4308, line 4: "larger" rather than "greater"

15. page 4308, line 7: Again, whether mean conduction is upwards or downwards is
absolutely irrelevant.

16. Sections 2.2 & 2.3: I highly recommend presenting the combined solution right
away. Also flipping the sign of vz does not contribute to clarity. There is no need
to stick exactly to the nomenclature of the cited articles.

17. page 4310, line 4: I have no idea what "anisothermal flow" means. Do you mean
"temperature independent flow"?

18. page 4310, line 10: Another unclear small inverse gradient

19. page 4310, line 18: "When dispersivity is neglected": Sorry, the quoted analytical
solution does not neglect dispersion/conduction at all.
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20. page 4310, following Eq. (4): Ke and vf should be introduced earlier on, where
the convection-conduction equation is discussed for the first time.

21. page 4311, lines 4-8: The authors did not understand that the steady-state con-
tribution and the sinusoidal contribution are additive. This results from the un-
derlying pde to be linear and the orthogonality of different frequencies in Fourier
analysis.

22. Section 2.4: I don’t understand the purpose of the virtual test case at all. Steady
state is steady state, and time periodic is time periodic. You must not confuse
those two. This is so obvious that there is no need to perform a numerical test.

23. Page 4314, lines 17-18: This statement is utterly wrong. Eq. (3) does not depend
on the sign of the temperature gradient. It depends on steady-state flow and
uniform coefficients.

24. Section 3.2.1: You got me lost here at some point. Please make first clear what
you are doing. Obviously, a time-varying heat-flux boundary condition is fitted to
the data. However, there are head measurements in the stream and at depth.
Thus, rather than relying on those heads, which should determine the volumet-
ric flux, the specific discharge is tweeked in such a way that some temperature
breakthrough curves fit. That implies inconsistencies with the head measure-
ments. I am not convinced that this "calibrated" model is the right reference.

25. Section 3.2.2: Taking the solution relying on steady-state flow worked OK when
considering some data tripples, but not with all of them. Again, this is inconsis-
tent. The analytical solution is for the entire profile and should thus be fitted to
all data points. If that leads to bad results, the expression is not valid. However,
you could still work with the combined steady-state/sinusoidal expression (and
maybe fit Ke while you are calibrating the model).
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Let’s assume that the good agreement with the steady-state solution is real: Does
this imply quasi steady-state behavior? If the time scales of heat transfer are
smaller than the time scales of the velocity fluctuations, the latter would not be
particularly surprising.

26. Section 3.2.3: I don’t quite see why the authors restrict themselves to analyz-
ing the amplitude dampening of the dirunal signal. The phase shift does provide
additional information, and of course one can use the combination of the steady-
state and diurnal contributions. The statement on page 4317, line 13-15, that
the majority of studies based on analyzing the periodic signal makes use of the
amplitude only may be doubted. We have always taken the time shift as pri-
mary measurement, because it is the most intuitive quantity (Vogt et al., 2010a,b,
2012). However, if possible, one should always take both the amplitude and
dampening.

27. Page 4320, line 7. I don’t quite see why a sensitivity analysis should be outside
the scope of the current study. The authors could easily drop the virtual test case.

Appendix: Derivation of the Presented Analytical Expressions

Starting point of the derivation is Eq. (1). To simplify matters even more, we consider
the deviation from T∞:

T ′ = T − T∞ (7)

leading to:

∂T ′

∂t
+ vf

∂T ′

∂z
−Ke

∂2T ′

∂z2
= 0 (8)
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T ′ (0, t) = Tavg − T∞ +A cos
(

2πt
P

)
(9)

lim
z→∞

T ′(z, t) = T ′∞∀t (10)

Fourier transformation of Eq. (8) in time yields:

2πifT̃ ′ + vf
dT̃ ′

dz
−Ke

d2T̃ ′

dz2
= 0 ∀f (11)

subject to:

T̃ ′(0, f) = (Tavg − T∞) δ(f) + A
2 δ(f ± 1P ) (12)

lim
z→∞

T̃ ′(z, f) = 0 (13)

in which f is the ordinary frequency, T̃ ′(z, f) is the Fourier-transform of T ′(z, t), i is the
imaginary number, and δ(·) is the Dirac delta function. The beauty of Fourier transfor-
mation is that - for linear problems with time-invariant coefficients - a time-dependent
problem is replaced by a sum over all frequencies, including f = 0, the steady-state
problem.

The general ansatz, to be solved for each frequency independently, is:

T̃ ′(z, f) = a1(f) exp (α1(f)z) + a2(f) exp (α2(f)z) (14)

Substitution of Eq. (14) into Eq. (11) and rearrangement yields:

(
2πif + veα1,2 −Keα

2
1,2

)
(a1 exp (α1z) + a2 exp (α2z)) = 0 (15)

which holds for all values of z only if the left bracket term equals zero. Thus, α1 and α2

must be:
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α1 =
vf +

√
v2
f + 8πifKe

2Ke
; α2 =

vf −
√
v2
f + 8πifKe

2Ke
(16)

involving square-roots of complex numbers that can be separated into real and imagi-
nary components by:

√
Re+ iIm =

√√
Re2 + Im2 +Re

2
+ i

√√
Re2 + Im2 −Re

2
(17)

Now the coefficients in the exponentials are:

α1(f) = Re1(f) + iIm1(f) (18)

Re1(f) =
vf+

rq
v4f+64π2f2K2

e+v
2
f2

2Ke
(19)

Im1(f) =

rq
v4f+64π2f2K2

e−v2f2

2Ke
(20)

α2(f) = Re2(f) + iIm2(f) (21)

Re2(f) =
vf−

rq
v4f+64π2f2K2

e+v
2
f2

2Ke
(22)

Im2(f) =
−

rq
v4f+64π2f2K2

e−v2f2

2Ke
(23)

No matter what the sign of vf , the real component of α1 will always be positive, implying
infinite growth of exp (α1z) at the limit of z →∞. Hence, a1 must be zero. (If a boundary
condition at depth L is chosen, this is not necessarily the case). By contrast, the real
component of α2 is always negative, implying limz→∞ exp (α2z) = 0, which is consistent
with the auxiliary condition.
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Also, the boundary condition at z = 0 must be met, leading to the analytical solution in
the Fourier domain:

T̃ ′(z, f) = exp



vfz

2Ke
−

√√
v4
f + 64π2f2K2

e + v2
f2

2Ke
z


×

× exp


−i

√√
v4
f + 64π2f2K2

e − v2
f2

2Ke
z



(

(Tavg − T∞) δ(f) +
A

2
δ(f ± 1P )

)
(24)

Back-transformation into the time domain, finally gives:

T (z, t) = T∞ +
∫ +∞
−∞ T̃ ′(z, f) exp(2πift)df (25)

= T∞ + (Tavg − T∞) exp
(

(vf−|vf |)z
2Ke

)

+A exp


 vf z

2Ke
−

sr
v4f+

64π2K2
e

P2 +v2f2

2Ke
z


 cos


2πt

P −

sr
v4f+

64π2K2
e

P2 −v2f2

2Ke
z
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