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Abstract

We propose a simple snow accumulation-melting model (SAMM) to be applied at the
regional scale in conjunction with landslide warning systems based on empirical rainfall
thresholds.

SAMM follows an intermediate approach between physically based models and em-5

pirical temperature index models. It is based on two modules modelling the snow ac-
cumulation and the snowmelt processes. Each module is composed by two equations:
a conservation of mass equation is solved to model snowpack thickness and an em-
pirical equation for the snow density. The model depends on 13 empirical parameters,
whose optimal values were defined with an optimization algorithm (simplex flexible)10

using calibration measures of snowpack thickness.
From an operational point of view, SAMM uses as input data only temperature and

rainfall measurements, bringing the additional advantage of a relatively easy implemen-
tation. The snow model validation gave satisfactory results; moreover we simulated an
operational employment in a regional scale landslide early warning system (EWS) and15

found that the EWS forecasting effectiveness was substantially improved when used in
conjunction with SAMM.

1 Introduction

In Italy landsliding is one of the most widespread natural hazards, responsible for casu-
alties and major economical losses (Guzzetti, 2000), consequently there is a clear need20

to set up effective landslide warning systems. Physically based conceptual models rely
on a number of input parameters characterized by a spatial organization that is difficult
to correctly assess in large-scale distributed applications, therefore they are mainly
used in operational monitoring and warning systems that work at the slope (Dami-
ano et al., 2012) or catchment scale (Segoni et al., 2009; Baum et al., 2010). Con-25

versely, regional scale landslide early warning systems are usually based on simpler
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but effective statistical or empirical correlations with rainfall (Keefer et al., 1987; Aleotti,
2004; Cannon et al., 2011; Martelloni et al., 2011; Segoni et al., 2012), which is com-
monly accepted as the major cause of landslide triggering (Wieczorek, 1996). Such
methodology is widely used at regional scale because it allows considering a single
parameter (rainfall) to monitor and forecast landslide occurrence (Rosi et al., 2012).5

Despite that, in mid-latitude areas a not negligible number of landslides is commonly
triggered by the water released after rapid snowmelt (Chleborad, 1997; Cardinali et al.,
2000; Guzzetti et al., 2003; Kawagoe et al., 2009). This leads to the necessity of in-
corporating snow accumulation and melting modules into landslide regional scale early
warning systems. Unfortunately, the coupling of snowmelt models and landslide hazard10

assessments is not well established and only a few examples exist (Gokceoglu et al.,
2005; Naudet et al., 2008; Kawagoe et al., 2009). However, in other fields of research,
snow accumulation/depletion models have been implemented with various practical
aims ranging from the estimation of hydrologic runoff (Marks et al., 1999; Zanotti et
al., 2004; Garen and Marks, 2005; Li and Wang, 2011) to the study and forecasting of15

snow avalanches (Brun et al., 1989; Bartelt and Lehning, 2002; Rousselot et al., 2010;
Takeuchi et al., 2011), the related soil erosion (Ceaglio et al., 2012), and to global at-
mospheric circulation and weather forecasts (Martin et al., 1996; Bernier et al., 2011).

Depending on the scopes, the scales and the available data, several snow accumu-
lation/melting models have been proposed, and they can be grouped into two main20

categories. The most sophisticated are spatially distributed models based on equa-
tions of mass and energy balance (Bloschl et al., 1991; Zanotti et al., 2004; Garen
and Marks, 2005; Herrero et al., 2009). These models, following a mechanistic ap-
proach, account for as many as possible physical and chemical process involved in
the building and depletion of the snowpack. Such models are rather complex and re-25

quire several physical parameters including (but not limited to) topography, precipita-
tion, air temperature, wind speed and direction, humidity, downwelling shortwave and
longwave radiation, cloud cover, surface pressure. The determination of the exact val-
ues of these parameters, and their variation in space and time, is only possible for very
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well equipped experimental test sites, therefore simplified approaches as temperature-
index methods are also widely used (Kustas et al., 1994; Rango and Martinec, 1995;
Hock, 1999, 2003, Jost et al., 2012). These models use air temperature as an index
to perform an empirical correlation with snowmelt and require only a few parameters
(e.g. precipitation, air temperature, snow covered area). Temperature index methods5

are more simplistic than the aforementioned physical models, nevertheless they can
be used with good results and it has been shown that only little additional improvement
in model performance is achieved when adopting an energy balance approach (Hock,
2003).

In this paper an intermediate approach between physically based models and empir-10

ical temperature index models is used to develop a simple snow accumulation/melting
model (SAMM henceforth), to be integrated into a regional scale early warning system
based on statistical rainfall thresholds for the occurrence of landslides.

The main objective of SAMM is not an actual distributed modelling of the snowpack,
but the development of a methodology to modify the rainfall measurements used as15

input data in landslide warning systems so as to take into account snow accumulation
and depletion.

The paper first presents an overview of the study area, the landslide warning sys-
tem, the quantity and quality of available experimental data. Then the snow accumu-
lation/melting model is presented with emphasis on the adopted calibration procedure.20

The results of the calibration are presented and validated, then the application to the
SIGMA landslide warning system (Martelloni et al., 2011) is shown and discussed.

2 Materials and methods

2.1 Case study

Emilia Romagna (22 446 km2) is an Italian region (Fig. 1), which is highly prone to land-25

sliding. Its hills and mountains (Northern Apennines) are interested by both shallow and
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deep seated landslides: the first are usually triggered by short and exceptionally in-
tense rainstorms and the latter are influenced by moderate but exceptionally prolonged
rainfalls (Martelloni et al., 2011).

To manage the hazard related to both kinds of landslides, the Emilia Romagna Civil
Protection Agency uses, among the others, a warning system called SIGMA (Sistema5

Integrato Gestione Monitoraggio Allerta, “Integrated service for managing and monitor-
ing alerts”) (Martelloni et al., 2011). The system is based on a series of statistical rainfall
thresholds, which are compared with two different periods of cumulative rainfall: daily
checks of the 1 day, 2 days and 3 days cumulative rainfall are related to the occurrence
of shallow landslides; a series of daily checks over a longer and variable time window10

(up to 243 days, depending on the seasonality) is related to the activation or reacti-
vation of deep seated landslides in low-permeability terrains. A decisional algorithm
combines different thresholds (corresponding to rainstorms with increasing severity)
and issues a warning level in accordance with the regional civil protection guidelines.
SIGMA combines in the decisional algorithm rainfall forecasts and the hourly rainfall15

measurements received from an automated regional network. The hilly and mountain-
ous territory of Emilia Romagna is partitioned into 19 Territorial Units (TUs), which have
a typical areal extension of a few hundred squared kilometres and can be considered
quite homogeneous from a geomorphological and meteorological point of view (Fig. 1).

All TUs have a pluviometric regime characterized by rainy autumns and springs and20

dry summers, but the average precipitations are very different (Fig. 2). In most part of
TUs, snow is an exceptional phenomenon and when it occurs the snowpack is likely
to melt in a few days. On the contrary, in a few TUs characterized by a high-mountain
territory, winter snow is recurrent and it may lead to the building of consistent and long-
lasting snowpacks that melt away in spring.25

Each TU has a reference rain gauge and a set of individually calibrated rainfall
thresholds, therefore the warning system is able to issue independent alert levels for
each TU. Further details on the SIGMA warning system and on the study area can be
found in Martelloni et al. (2011).
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Unfortunately, during the test phase of SIGMA, it was observed that a consistent
part of the errors committed by the warning system could be related to snow accu-
mulation and depletion. In case of solid precipitations (i.e. snow), heated rain gauges
automatically provide the system with a measure of the snow water equivalent, which
is not distinguished from rainfall. It was observed that this occurrence leads to several5

false alarms: the thresholds can be overcome without any landslide occurrence, since
water actually accumulates in the snowpack and it is not transferred to the soil. On the
other side, several missed alarms were observed during snow melting: the released
water triggered some landslides during the days with scarce or absent rainfalls (thus
threshold were not exceeded).10

To overcome these problems, a simple snow accumulation/melting model (SAMM)
was developed and integrated within the SIGMA early warning system.

Given:

1. the scale of the analysis (regional scale);

2. the aforementioned characteristics of the adopted warning system (statistical rain-15

fall thresholds developed for a network of rain gauges each pertaining to a territory
with a typical areal extension of few hundreds km2);

3. the limitation of experimental data (only snow thickness, air temperature and rain-
fall amount are measured and recorded at few discrete points, mainly correspond-
ing with the rain gauge stations);20

SAMM is intended to be an operative computational module to adjust the rainfall mea-
surements provided by the rain gauges when snow-related phenomena are present.

2.2 Snow accumulation-melting model (SAMM)

In this model three different terms of mass are identified: the mass accumulated in the
snowpack ms, the input flow mass min

s , and the output flow mass mout
s . They can be25
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expressed by the following equations:
ms = ρs ·A ·Hs

min
s = ρso ·A ·H in

mout
s = ρs ·A ·Hout

(1)

where ρs, ρso are respectively the densities of the snowpack and of the newly fallen
snow, A is the considered section and Hs the snow height or snowpack thickness. For
the principle of mass conservation, the mass variation in the snowpack dms/dt is due5

by the difference between the input mass flow Qin and the output mass flow Qout.

dms

dt
=Qin −Qout. (2)

Equation (2) can be expressed in terms of discrete time variable t:

ρs (t1) ·Hs (t1)−ρs (t) ·Hs (t) = ρso ·H in (t)−ρs ·Hout (t) (3)

where t1 = t+1.10

Hs(t1) is then given by:

Hs (t1) =
ρs (t)
ρs (t1)

·Hs (t)+
ρw

ρs (t1)
·Hw (t)−

ρs (t)
ρs (t1)

·Hout (t) (4)

where H in has been expressed as a function of the amount of rain Hw, considering the
respective water and snow densities ρw and ρs0:

ρw
ρso

=
m

Hw ·A
m

H in ·A
= H in

Hw
⇒ H in =

ρw

ρso
·Hw (5)15

In Eq. (4) the average density of the snowpack ρs and output term Hout are not known.
The variation in time of the average snowpack density has been considered using
empirical equations (see the accumulation module below). Hout(t) has been taken into
account using empirical equations for depletion process (see melting module below).
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2.2.1 Accumulation module

The discrimination between liquid and solid precipitation is essentially played by the
temperature of the air Ta. The density of the new fallen snow ρs0 depends largely on
wind and Ta (Pahaut, 1975) (Fig. 3).

Since only Ta data were available, ρs0 was approximated by an exponential equation5

depending on two empirical parameters (kρ0 and kexp).

ρs0(t1) = kρ0 ·exp
(
kexp · (Ta(t1)− T0)

)
, (6)

where T0 is a threshold temperature under which the precipitation can be considered
solid, and the values of the parameters kρ0 and kexp are obtained by the model calibra-
tion (Sect. 2.3).10

Equation (6) provides a good approximation for temperature values higher than −5 ◦C
(Fig. 3): this result is due to the typical temperature values experimentally observed in
the study area and represented in the dataset used for the model calibration.

The average density of the snowpack ρs is a function of time, and is expressed as
a weighted average of the density in the previous time interval and the density of new15

fallen snow,

ρs(t1) =
Hs(t)

(
ρs(t)+kρ1

Hs(t)
kρ2+Hs(t)

kρ
kρ+ρs(t)

)
+Hw(t1)ρw

Hs(t)+ Hw(t1)ρw
ρ0(t1)

(7)

where

kρ1
Hs(t)

kρ2 +Hs(t)
·

kρ
kρ +ρs(t)

(8)

represents the term of compression due to snowpack weight. Using the terminology20

from chemical kinetics, in Eq. (8) the snowpack depth Hs is a limiter (compression is
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favoured by large H values due to a greater quantity of matter), while the density acts
as an inhibitor of the compression process (since a high density tends to oppose to the
process of gravitational compression). In Eq. (8), kρ1, kρ2, kρ are empirical parameters.

A limiter X and an inhibitor Y are respectively defined in a kinetics process as the
ratios rl and ri :5

rl =
X

k +X
ri =

k
k + Y

(9)

They play complementary roles: the process goes at full speed (rl and ri → 1) for large
values of X and for small values of Y , and slows down towards stability (rl and ri → 0)
for small X values and large Y values.

A third equation gives the height of the mantle as a function of time, taking into10

consideration the conservation of mass:

Hs(t1) =
1

ρs(t1)
(Hs(t)ρs(t)+Hw(t1) ·ρw) (10)

2.2.2 Melting module

Concerning the melting process, the equation of snowpack density can be expressed
as15

ρs(t1) = ρs(t)+kρ1
Hs(t)

kρ2 +Hs(t)

kρ
kρ +ρs(t)

Ta(t1)

kt + Ta(t)
(11)

Unlike Eq. (7), Eq. (11) is not a weighted average, because there is a net variation
of mass due to melting. In this process the temperature acts as a limiting factor, be-
cause as a result of the melting process itself, water percolates in the snowpack and
causes an additional effect of compression. This process, increasing with temperature,20

is expressed by the term:

Ta(t1)

kt + Ta(t1)
(12)
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where kt is an empirical parameter.
The melting process depends on several factors. In this model we take into consider-

ation the temperature, the rain and the amount of mass. The influence of temperature
∆T ∗ is introduced as a power term expressed by the difference between air temperature
and the threshold T0:5

∆T ∗ = (Ta(t)− T0)k1 (13)

The rain, if present, contributes to the snow melting. Consequently the term α is intro-
duced as a limiter:

α =
Hw(t1)

kw +Hw(t1)
(14)

Finally, to simulate the possible effects of refreezing that increases with density and10

height of the mantle, the amount of mass (expressed as the product of height Hs and
density ρs) is considered an inhibitor of the dissolution process and can be expressed
as the factor

β =
ks1

ks1 +Hs(t)ρs(t)
(15)

The Eq. (13), and α and β factors (Eqs. 14 and 15) are then combined in the final15

equation, which expresses the amount of thawed mass Hww per unit area:

Hww(t1) = (k2∆T
∗ +k3α)β (16)

At each time step, through Eq. (22) the height of the snowpack is updated by subtract-
ing the amount of melted snowpack (Hww):

Hs(t1) =
1

ρs(t1)
(Hs(t)ρs(t)−Hww(t1)) (17)20

In the Eqs. (13), (14), (15) and (16), k1, k2, k3, kw, ks1 are empirical parameters.
SAMM was conceived to work at hourly time steps, corresponding to the maximum

temporal resolution of data at our disposal.
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2.3 Parametric identification of the model

The depth of the snowpack measured by a network of instrumented sensors (Fig. 1)
was used to calibrate the model: Hs is determined by the temperature, the rainfall, the
variable state ρs, and the 13 constants of the model P = p1,p2, . . .,p13 ∈ <13, whose
values are determined by the calibration process.5

The functional error E (P ) is expressed by:

E (P ) =
1
N

N∑
i=1

wiε
2
i =

1
N

N∑
i=1

wi

(
Hexp
i −Hmod

i (x,P )
)2

(18)

where Hexp
i and Hmod

i represent the experimental and the modelled snowpack height,
respectively; N is the number of data; wi is the weight of error εi . An optimization
algorithm (Flexible Optimized Simplex) (Nelder and Mead, 1965; Himmelblau, 1972;10

Marsili-Libelli, 1992) was used to estimate the values of the parameters which minimize
the functional error E (P ) (Eq. 18). This heuristic search algorithm is based on the
definition of a simplex, which can be defined as a n-dimensional polytope with the
smallest possible number of vertices (n+1): given the domain of the functional error, in
our case the simplex is 13-dimensional (14 vertices). Once defined an initial simplex (by15

assigning an initial condition to each parameters), the algorithm updates the simplex
step by step, replacing the worst point, i.e. the point with the higher functional error.

The simplex flexible is an effective approach with several points of strength: it is
effective in finding the absolute minimum as it does not stops when relative minimum
points are found; it can manage parameters values with different order of magnitude20

(problems with “high curvature” and “narrow valleys”); the computations are not time-
demanding as the algorithm requires a limited number of functional assessments.

The algorithm stops the research process when all vertices of the simplex have the
same functional error (flatness test of simplex).
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3 Results and discussion

3.1 Results of calibration and validation

The calibration of the model was performed using the dataset of measures recorded
by the Doccia di Fiumalbo rain gauge station during the year 2009. Those data were
provided by ARPA (“Agenzia Regionale Prevenzione e Ambiente” – Regional Agency5

Prevention and Environment).
For comparison, in addition to the aforementioned Flexible Optimized Simplex

(Sect. 2.3), another calibration process of SAMM was performed using another
methodology: the SIMPSA (Cardoso et al., 1996), which is an optimization model
based on the combination of a non-linear simplex and simulated annealing algorithms.10

Both optimization algorithms defined similar values of the empirical parameters (Ta-
ble 1) and only little differences could be noticed in the modelled snowpack evolution
(Figs. 4 and 5).

To assess the reliability of the snow model and to identify the best calibration algo-
rithm (and relative model configuration), a validation was carried out over an indepen-15

dent data set recoded by the Febbio station. The quality of these data was poorer than
that observed in the calibration dataset: an hourly mean and 10-day moving average
with exponential weights was used to reduce noise and to overcome the problem of
small periods of missing data (Fig. 6).

The validation statistics are shown in Table 2 and prove that the best configuration of20

SAMM was obtained using the simplex flexible calibration algorithm. According to Ryan
et al. (2008), an error of 8.8 cm (this value corresponds to the mean absolute error
observed for SAMM validation) is within the measurement errors of the rain gauges.

An overview of the modelling performances of SAMM is provided in Figs. 7 and 8.
A test of the robustness of the model was performed applying a static and dynamic25

sensitivity analysis.
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In the static analysis the sensitivity function S(P ) is evaluated:

S(P ) =
1
N

N∑
t=1

∣∣Ht (x,P )−Ht
(
x,P nom)∣∣ (19)

Where Ht (x , P nom) is the nominal trajectory and Ht (x , P ) represents every trajectory
obtained perturbing a parameter. The differences of every temporal step are added on
a time interval of length N.5

This analysis shows that errors are contained: for instance, Fig. 9 shows that for
a wide range of T0 (threshold temperature) and k1 values close to their nominal val-
ues, the maximum mean error is below 10 cm (corresponding to 10 mm of equivalent
rainfall).

The effects of the change of the threshold temperature T0 are displayed in Fig. 9: the10

nominal value of 0.3 ◦C is incremented up to 1.3◦ and decreased to −1.3 ◦C. The thresh-
old temperature is the most important factor of SAMM, therefore the model is sensible
to this parameter, but it also shows a good robustness: in the accumulation phase,
the increase by one degree of T0 causes negligible errors, while for the melting phase
higher errors are observed. Other models, in which the threshold temperature usually15

has values between −1 and 3 ◦C, also show that a temperature reduction leads to a
higher error (US Army Corps of Engineers, 1956; Wigmosta et al., 1994).

3.2 Integration between SAMM and SIGMA

We simulated an integrated use of SAMM and SIGMA using rainfall, temperature and
landslide data of the period 2004–2010. This integration is schematically explained in20

Fig. 11: SAMM acts like a filter depending on the thresholds temperature T0.
If T < T0 the snow accumulation module keeps the rainfall (if present) and uses it

to simulate the building of a snowpack, while a null precipitation enters the SIGMA
warning system.
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If T ≥ T0 the snow melting module returns to SIGMA the water equivalent of snow
melting (if present) and the actual raining quantity (if present).

For obvious reasons, SAMM could be implemented only in the 11 TUs equipped with
a heated pluviometer (the remaining 8 TUs are provided with standard rain gauges
since snow is uncommon). The results of this test (Table 3) show a marked improve-5

ment of the landslide forecasting effectiveness within 3 TUs. In the remaining 8 TUs,
SIGMA outputs are scarcely influenced by the correction provided by SAMM, be-
cause no consistent snowfalls were registered in correspondence of their reference
rain gauges during the test period. However, in all TUs, SAMM operates a redistri-
bution of water (coming from rainfall or from snowmelt) that positively influences the10

outputs of SIGMA in terms of false alarms: the delayed water release allows to better
constrain the actual infiltration of water into the ground and thus false alarms can be
reduced. Even if false alarms issued at the ordinary criticality level were increased by
5 %, moderate criticality level and high criticality level false alarms were reduced by
20 % and 25 %, respectively.15

4 Conclusions

We developed a snow accumulation/melting model (SAMM) aimed at improving (in
case of snowmelts and snowfalls) the performances of a regional scale landslide warn-
ing system based on statistical rainfall thresholds.

SAMM follows an intermediate approach between physically based and empirical20

temperature index models. It is based on two modules modelling the snow accumula-
tion and the snowmelt processes. Each module is composed by two equations: a con-
servation of mass equation models the snowpack thickness and an empirical equation
takes into account the snow density. The case study is affected by a relevant scarcity
of data: only air temperature and rainfall recordings could be used in future real-time25

applications. To solve the equations of the model, 13 empirical parameters were in-
troduced. Their optimum value was estimated by means of a calibration procedure in
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which the simplex flexible optimization algorithm (Nelder and Mead, 1965; Himmel-
blau, 1972; Marsili-Libelli, 1992) was used to assess the configuration that minimizes
the difference between experimental data of snowpack thickness and model outputs.
Validation, which was carried out over an independent dataset, highlighted that the
mean error of the model is contained within the rain gauge instrumental error. To a5

closer insight, however, in some portions of the validation timeline, the modelled snow-
pack thickness is affected by underestimation or overestimation that can reach 30 cm.
Those mismatches are probably heavily conditioned by the necessity of using only
rainfall and temperature as input parameters, without explicitly considering other very
important physical factors such as solar radiation, wind, atmospheric pressure, air hu-10

midity and so on.
The simple formulation of SAMM is conceived to be integrated with empirical land-

slide forecasting procedures: a threshold temperature (the most important among the
aforementioned 13 empirical parameters) switches between the snow accumulation
and the snow melting module and adjusts the value of the rainfall amount measured15

by the rain gauges accordingly. Experimental simulations showed that SAMM could be
fruitfully integrated into the Emilia Romagna regional early warning system: the use of
SAMM during the period 2004–2010 would have allowed forecasting 54 landslides trig-
gered by snow melting that were not detected by the conventional warning system. The
use of SAMM is particularly successful in the mountainous TUs, where solid precipita-20

tion is more recurrent, while in the hilly TUs where snow is an exceptional phenomenon
(and oftentimes is mixed with rain) the use of SAMM provides limited benefits.

However, the integrated SAMM-SIGMA system presents some advantages: the ex-
treme simplicity and rapidity of the forecasting procedure; the limited number of input
data required for calibration and for the operational use (temperature and precipita-25

tion); the possibility of exporting the procedure wherever a sufficiently organized mete-
orological network is present (after a site-specific calibration); the immediate interpre-
tation of the final output, which can be directly put in correspondence with the criticality
levels adopted by the Civil Protection Authority.
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Table 1. The optimal configuration of SAMM obtained with two different parametric identification
techniques.

Optimum value Optimum value
Parameters (Simplex) (SIMPSA)

k1 3.25031 3.3993
k2 0.000926091 0.0010
k3 15.8715 15.8889
kρ1 0.432043 0.4372
kρ2 1.40015 1.4492
kρ 0.30003 0.3267
kt 0.110011 0.1101
kw 0.0400043 0.0382
ks1 200.02 200.3407
kρ0 165.016 180
kexp 0.0490052 0.0489
kρm 94.011 160.0369
T0 0.300036 0.2757
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Table 2. Mean snow depth and errors (measured height – modelled height) for the validation
dataset.

Experimental SIMPLEX SIMPSA
data calibration calibration

Mean snow depth 41.2 cm 44.9 cm 32.9 cm
Mean absolute error
(experimental-model) – 8.8 cm 10.4 cm

9411

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/9391/2012/hessd-9-9391-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/9391/2012/hessd-9-9391-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 9391–9423, 2012

Snow Accumulation-
Melting Model

(SAMM)

G. Martelloni et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 3. Results of the simulation of an integrated use of SAMM and SIGMA (period 2004–
2010).

Landslides Landslides Improvement
Territorial identified identified (number of

Unit (SIGMA) (SAMM+SIGMA) landslides)

9 101 105 +4
12 84 112 +28
15 83 105 +22
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Fig. 1. The Emilia Romagna region. The study area is partitioned into 19 Territorial Units, each
provided with a reference rain gauge.
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Fig. 2. Pluviometric regime of the 19 territorial units of the Emilia Romagna region.
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Fig. 3. Comparison between new snow density (obtained by parametric calibration of equation
6) and the typical range of values observed by Pahaut (1975).
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Fig. 4. Calibration of the model with the event January 2009–March 2009 registered by the
Doccia di Fiumalbo station, using Simplex flexible algorithm.
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Fig. 5. Calibration of the model with the event January 2009–March 2009 registered by the
Doccia di Fiumalbo station, using SIMPSA.
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Fig. 6. Example of validation dataset: the experimental data, affected by sensor errors (above),
are filtered with a moving average to clear out the noise and to estimate missing data.
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Fig. 7. Validation test of SAMM (Simplex calibration) with the event December 2003–April 2004
registered by Febbio station.
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Fig. 8. Validation test of the SAMM (simplex calibration) with the event November 2005–
March‘2006 registered by Febbio station.

9420

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/9391/2012/hessd-9-9391-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/9391/2012/hessd-9-9391-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 9391–9423, 2012

Snow Accumulation-
Melting Model

(SAMM)

G. Martelloni et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 9. Static sensitivity analysis of the model for the parameters T0 (threshold temperature)
and kρ0.
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Fig. 10. Dynamic sensitivity analysis of the model for three different values of threshold tem-
perature.
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Fig. 11. Integrated system SAMM-SIGMA for landslides forecasting.
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