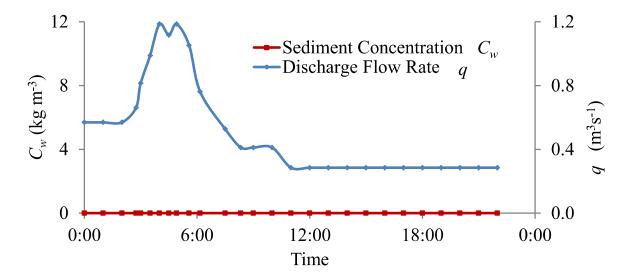
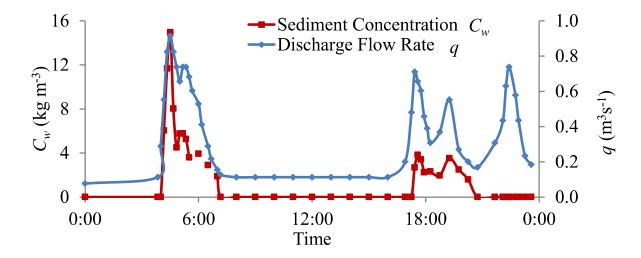
Auxiliary Material

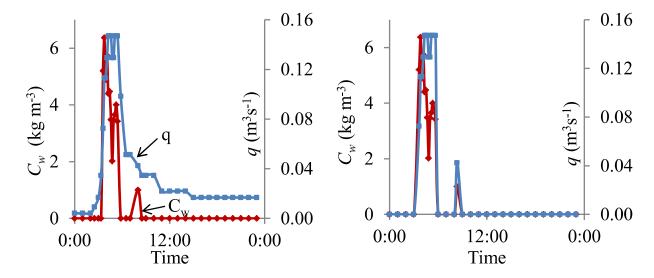
1 2


- Fig. A1. Measurement of suspended sediment concentration (C_w in kg m⁻³; primary Y-axis) for
- 4 Andit Tid on 7 August 1992. Figure shows instance where discharge measurements (q in m³s⁻¹;
- 5 secondary Y-axis) were available and where sometimes suspended sediment concentration data
- 6 was not available.
- 7 **Fig. A2.** Measurement of suspended sediment concentration (C_w in kg m⁻³; primary Y-axis) for
- 8 Anjeni on 28 July 1993. Figure shows instances where discharge measurements (q in m³s⁻¹;
- 9 secondary Y-axis) were available and where sometimes suspended sediment concentration data
- was not available.
- Fig. A3. Measured instantaneous suspended sediment concentration (C_w in kg m⁻³; primary Y-
- 12 axis) and discharge (q in m³s⁻¹; secondary Y-axis) for storms in the Andit Tid watershed on 16
- July 1992 showing total daily measured flow (left) and total storm measured flow only (right).
- 14 Using this method, for a storm event of size 23 mm day⁻¹ in the beginning of the kremt rainy
- season in Andit Tid would change from a daily storm average sediment concentration of 1.5 kg
- 16 m⁻³ (a) to 3.9 kg m⁻³ (b), due to its use of only storm discharge.
- Fig. A4. Measured instantaneous suspended sediment concentration (C_w in kg m⁻³; primary Y-
- axis) and discharge (q in m³s⁻¹; secondary Y-axis) for storms in the Andit Tid watershed on 2
- 19 September 1992 showing total daily measured flow (left) and total storm measured flow only
- 20 (right). Similar to Fig. A1, for a precipitation storm event of a comparable size 23 mm day⁻¹
- 21 toward the late part of the kremt rainy season, the daily storm average concentration at a daily
- 22 time scale would change from 0.5 kg m⁻³ (a) to 2.1 kg m⁻³(b).

23


24

25


26

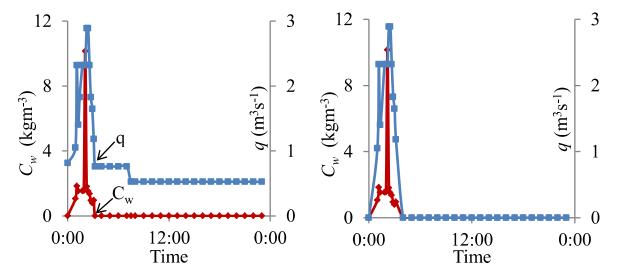

Fig. A1. Measurement of suspended sediment concentration (C_w in kg m⁻³; primary Y-axis) for Andit Tid on 7 August 1992. Figure shows instance where discharge measurements (q in m³s⁻¹; secondary Y-axis) were available and where sometimes suspended sediment concentration data was not available.

Fig. A2. Measurement of suspended sediment concentration (C_w in kg m⁻³; primary Y-axis) for Anjeni on 28 July 1993. Figure shows instances where discharge measurements (q in m³s⁻¹; secondary Y-axis) were available and where sometimes suspended sediment concentration data was not available.

Fig. A3. Measured instantaneous suspended sediment concentration (C_w in kg m⁻³; primary Y-axis) and discharge (q in m³s⁻¹; secondary Y-axis) for storms in the Andit Tid watershed on 16 July 1992 showing total daily measured flow (left) and total storm measured flow only (right). Using this method, for a storm event of size 23 mm day⁻¹ in the beginning of the kremt rainy season in Andit Tid would change from a daily storm average sediment concentration of 1.5 kg m⁻³ (a) to 3.9 kg m⁻³ (b), due to its use of only storm discharge.

Fig. A4. Measured instantaneous suspended sediment concentration (C_w in kg m⁻³; primary Y-axis) and discharge (q in m³s⁻¹; secondary Y-axis) for storms in the Andit Tid watershed on 2 September 1992 showing total daily measured flow (left) and total storm measured flow only (right). Similar to Fig. A1, for a precipitation storm event of a comparable size 23 mm day⁻¹ toward the late part of the kremt rainy season, the daily storm average concentration at a daily time scale would change from 0.5 kg m⁻³ (a) to 2.1 kg m⁻³(b).