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Abstract

Statistical methods traditionally applied for seasonal streamflow forecasting use pre-
dictors that represent the initial catchment condition and future climate influences on
future streamflows. Observations of antecedent streamflows or rainfall commonly used
to represent the initial catchment conditions are surrogates for the true source of pre-5

dictability and can potentially have limitations. This study investigates a hybrid sea-
sonal forecasting system that uses the simulations from a dynamic hydrological model
as a predictor to represent the initial catchment condition in a statistical seasonal fore-
casting method. We compare the skill and reliability of forecasts made using the hybrid
forecasting approach to those made using the existing operational practice of the Aus-10

tralian Bureau of Meteorology for 21 catchments in eastern Australia. We investigate
the reasons for differences. In general, the hybrid forecasting system produces fore-
casts that are more skilful than the existing operational practice and as reliable. The
greatest increases in forecast skill tend to be (1) when the catchment is wetting up
but antecedent streamflows have not responded to antecedent rainfall, (2) when the15

catchment is drying and the dominant source of antecedent streamflow is in transition
between surface runoff and base flow, and (3) when the initial catchment condition is
near saturation intermittently throughout the historical record.

1 Introduction

Forecasts of streamflows for a range of forecast periods and lead times are valuable20

to a many users, including emergency services, hydroelectricity generators, irrigators,
rural and urban water supply authorities and environmental managers. Forecasts of
seasonal streamflows can inform tactical management of water resources, allowing
water users and managers to plan operational water management decisions and as-
sess the risks of alternative water use and management strategies. To be useful to25
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water users and managers in assessing risks, seasonal streamflow forecasts need to
be accurate and reliably quantify forecast uncertainty.

Statistical methods are commonly used for operational seasonal streamflow fore-
casting around the world, due to their robustness and ability to reliably quantify forecast
uncertainty (Plummer et al., 2009; Robertson and Wang, 2012; Garen, 1992; Pagano5

et al., 2009). Statistical streamflow forecasting methods use predictors that describe
the two sources of seasonal streamflow predictability, the initial catchment condition
and future climate influences (Robertson and Wang, 2012; Rosenberg et al., 2011).
Climate indices, such as the Southern Oscillation Index or Indian Ocean Dipole Mode
Index, are commonly used to represent the influence of future climate on streamflows10

(Robertson and Wang, 2012). The initial catchment condition is represented by obser-
vations of antecedent streamflow, antecedent rainfall or in cold climates snow depth or
extent (Robertson and Wang, 2012; Garen, 1992). In all cases, the predictors used are
simple indices that act as surrogates for the true source of predictability in a statistical
model.15

Antecedent streamflow or rainfall totals can be crude surrogate indicators of the ini-
tial catchment condition. Robertson and Wang (2012) found that a single predictor,
selected from a pool of candidates that included antecedent streamflow and rainfall
totals for up to the preceding three months, was sufficient to characterise the initial
catchment conditions in the majority of locations and seasons. However, under some20

circumstances a second predictor could add additional independent information on the
initial catchment condition. They concluded that more refined indicators of the initial
catchment conditions could improve forecast skill.

Antecedent streamflow or rainfall totals are limited in their ability to provide a re-
fined index describing initial catchment conditions for several reasons. Conceptually,25

catchment soil moisture and groundwater storages have upper and lower bounds.
When these storages are full, streamflows (and rainfall) can continue to increase to
levels beyond those that reflect catchment moisture storage. Therefore, when ob-
served antecedent streamflow is very high, subsequent streamflow forecasts may be
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considerably higher than the actual soil moisture or groundwater storage levels would
cause. The dynamics of rainfall-runoff processes can also lead to antecedent stream-
flow or rainfall being a poor indicator of the initial catchment condition. When a catch-
ment is wetting up, antecedent streamflows do not immediately respond to antecedent
rainfall, rather soil moisture and groundwater storages are replenished first. In this cir-5

cumstance, antecedent streamflows can potentially underestimate the actual soil mois-
ture conditions and lead to forecasts that are too low.

The use of dynamic hydrological models for seasonal streamflow forecasting has
been investigated to overcome some of the limitations of statistical forecasting tech-
niques (for example, Bierkens and van Beek, 2009; Koster et al., 2010). Hydrological10

models describe the processes by which precipitation is converted into streamflow and
in doing so explicitly represent catchment soil moisture and groundwater storages as
state variables. Therefore, hydrological models can capture catchment dynamics that
the simple indices used in statistical models cannot. When used in forecasting mode,
the condition of model state variables is initialised by running the model using observed15

forcing data up to the forecast date. A streamflow forecast is then produced by forcing
the model with forecasts of rainfall and other forcing variables. Future rainfall is highly
uncertain and difficult to accurately forecast, and therefore several sources of future
rainfall have been investigated including conditional and unconditional historical cli-
mate sequences and output from seasonal climate forecasting models (Bierkens and20

van Beek, 2009; Wood et al., 2005). While these forecasts are derived from under-
standing of the hydrological processes occurring in the catchment, in many instances
the direct forecasts from hydrological models are biased and do not reliably quantify
forecast uncertainty (Shi et al., 2008).

Both statistical and dynamical streamflow forecasting methods appear to have25

strengths and weaknesses. Recently, Rosenberg et al. (2011) investigated the benefits
of a hybrid seasonal forecasting system that uses the output from a physically based
hydrological model as predictors in a statistical forecasting method in a climate where
snow melt is the dominant source of streamflow. They showed that by using simulations
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of snow water equivalent instead of observations as predictors that the skill of seasonal
streamflow forecasts could be enhanced. The skill improvements were attributed to the
simulations capturing the spatial and temporal variation in snow water equivalent better
than the few sites that provide ground-based observations.

This paper also investigates a hybrid seasonal forecasting system, but in contrast to5

Rosenberg et al. (2011) we consider the problem in environments where snow melt is
not an important source of streamflow. We investigate how the output of a dynamic
hydrological model can be used to improve the representation of initial catchment
conditions for statistical streamflow forecasting. We produce forecasts of three month
streamflow totals with the Bayesian joint probability (BJP) modelling approach (Wang10

and Robertson, 2011; Wang et al., 2009) using two alternative sets of predictors to
represent initial catchment conditions. The first set of predictors represents the op-
erational practice by the Bureau of Meteorology in Australia where the predictor with
the highest Pseudo Bayes factor is selected from a pool of candidates comprising an-
tecedent streamflow and rainfall totals for up to the preceding three months (Robertson15

and Wang, 2012). The second set of predictors use simulations from a hydrological
model that represents only the influence of initial catchment condition of streamflows
for the forecast period. We compare the skill and reliability of these forecasts for 21
catchments in Eastern Australia and discuss the mechanisms by which the forecast
performance is improved.20

2 Methods

2.1 Hydrological modelling

For this study, we use a hydrological model to produce simulations that represent only
the influence of initial catchment conditions on seasonal streamflows. Hydrological
modelling is undertaken using WAPABA, a monthly water partition and balance model25

with two conceptual storages and five model parameters. WAPABA uses consumption
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curves to partition water according to supply and demand, which allow for spatial
and temporal heterogeneity of catchment process. WAPABA has been shown to out-
perform other monthly models in Australia and simulate monthly streamflow volumes
as well as daily models forced with daily data (Wang et al., 2011).

The WAPABA model parameters are calibrated by maximising a multi-objective func-5

tion modified from Zhang et al. (2008). The model fit is evaluated using a uniformly
weighted average of the Nash-Sutcliffe efficiency coefficient (Nash and Sutcliffe, 1970),
the Nash-Sucliffe efficiency of the log transformed flows, the Pearson correlation co-
efficient and a symmetric measure of bias. Model calibration is performed using the
Shuffled Complex Evolution algorithm (Duan et al., 1994).10

Using calibrated model parameters, simulations are produced that represent only the
initial catchment conditions influence on streamflow totals of the next three months. For
a given date of interest, these simulations are obtained by running the model from the
start of the historical record to the date of interest using observed forcing data, to
initialise the model state variables, and then simulating streamflows for the subsequent15

three months using monthly climatology mean forcing data. A time series of these
simulations of three month streamflow totals was produced by repeating the process
for all months in the historical record. Using this approach, variation in the simulated
three month streamflow totals for a given month is solely due to differences in the initial
conditions of the soil moisture and groundwater storages and not related to variation20

in the climate forcing. Alternatives to using the monthly climatology mean forcing data
were investigated, such as the climatology median forcing data and the mean and
median of streamflow ensembles produced using all historically observed forcing data,
but lead to final results that are no different to using the climatology mean forcing data.

2.2 Statistical streamflow forecasting25

We use the Bayesian joint probability (BJP) modelling approach (Wang and Robert-
son, 2011; Wang et al., 2009) to produce joint forecasts of three month streamflow and
rainfall totals. The BJP modelling approach assumes the joint distribution of forecast
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variables and their predictors is described by a transformed multivariate normal distri-
bution. A Yeo-Johnson transformation is for variables defined over the entire real space,
while a log-sinh transformation (Wang et al., 2012) is used for variables that are defined
for real values greater or equal to zero, for example streamflows or rainfall. Model pa-
rameters, including transformation parameters and reparameterisations of the means,5

variances and correlation coefficients of the multivariate normal distribution are inferred
using Bayesian methods.

In this study, we primarily compare statistical streamflow forecasts made using two
sets of predictors. The first set of predictors represents the existing operational practice
of the Bureau of Meteorology in Australia. Predictors representing initial catchment10

conditions and future climate influences on streamflows are selected separately using
the procedure described by Robertson and Wang (2012). The performance of a range
of candidate predictors is assessed using the Pseudo Bayes factor (PsBF), a Bayes
factor based on the cross-validation predictive density. The predictor with the highest
PsBF is selected provided that the value is greater than a threshold that reduces the15

likelihood of choosing a predictor due to chance. Candidate predictors representing the
initial catchment condition included antecedent streamflow and rainfall totals for up to
the preceding three months and these are selected on their ability to forecast three
month streamflow totals. Predictors representing climate during the forecast period
are selected from a pool of 13 monthly climate indices lagged by up to three months20

and these are selected on their ability to forecast three month rainfall totals. At most
two predictors are selected, one to represent the initial catchment condition and one
to represent the climate during the forecast period. Forecasts of three month totals
of streamflow and catchment average rainfall are made jointly. Separate models are
established for each season and location to allow for inter-annual variations in climate25

and hydrological processes.
The second set or predictors used to make forecasts for this study replaces the

selected predictors representing the initial catchment condition with the WAPABA sim-
ulations described in the previous section and total streamflow for the month preceding
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the forecast (lag-1 streamflow). The previous month’s streamflow is included as a form
of model updating to provide a real-time measure of the “true” condition of the catch-
ment leading up to the forecast. The selected predictors representing climate during
the forecast period are the same as in the first set of predictors.

2.3 Cross-validation for assessment of forecast performance5

The hydrological and statistical modelling processes described in the preceding sec-
tions require observations to infer model parameters. For real-time forecasting applica-
tions, all available historical data of the appropriate quality may be used to infer model
parameters. However if these model parameters are to be used to assess the perfor-
mance of the forecasting methods for historical events, the forecast skill and reliability10

will be inflated. Therefore, it is necessary to assess forecast performance on data that
has not been used for parameter inference and predictor selection. Traditionally, the
skill of statistical forecasting models is assess using leave-one-out cross validation and
this provides a realistic assessment of performance because the temporal sequence
of data records is not preserved in model parameter inference. However, in this study15

we are also using a hydrological model which preserves and uses the temporal se-
quence of data records in model parameter inference, due to the presence of state
variables in the model which carry information from one time step to the next. There-
fore, forecast performance measures assessed using leave-one-out cross validation
may be artificially inflated, because forecasts may not be independent of the data used20

for parameter inference. To limit this inflation of forecast performance measures we
adopt a leave-one-plus-x-years-out cross validation approach. Ideally, the value of x is
as small as possible to allow the data use to infer model parameters to reflect opera-
tional conditions in terms of available data length, while it needs to be sufficiently long
to minimise any artificial inflation of forecast performance measures. For this study, we25

adopt leave-one-plus-four-years-out cross validation to assess forecast performance.
To make a cross-validation forecast for a year of interest, that year and the four sub-

sequent years were removed from the data set used for model parameter inferences.
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Hydrological model parameters were obtained by running the model for the entire
record using all available forcing data, but omitting the observed streamflows for the
year of interest and four subsequent years in the evaluation of the objective function.
Simulations representing the initial catchment condition were produced for all years in
the historical record and used in the statistical model to produce a forecast for the year5

of interest.
For selected predictors used in the statistical models, the predictors for the year

of interest was selected using the PsBF computed using all events except the year
of interest and the four subsequent years. Once model parameters were obtained,
forecasts were made for the year of interest only and the process was repeated for all10

events in the historical record.

2.4 Forecast performance measures

There are many ways to assess the performance of streamflow forecasts. We assess
the skill and reliability of the cross validation forecasts. Forecast skill is a measure of the
quality of a set of forecasts relative to a baseline or reference set of forecasts (Jolliffe15

and Stephenson, 2003). We use skill scores that assess the percentage reduction in
forecast error scores relative to the error scores of a reference forecast. For this study
we assess forecast error using two scores; the root mean squared error in probability of
the forecast median (RMSEP) (Wang and Robertson, 2011) and the continuous ranked
probability score (CRPS). The reference forecasts used to compute the skill scores are20

the cross-validation distribution of historically observed (climatology) streamflows. The
two skill scores adopted assess different aspects of the forecast distribution. The RM-
SEP skill score gives all forecast events similar opportunity to contribute to the overall
assessment of forecast skill, but only considers the median of the forecast distribution.
The CRPS skill score assesses the reduction in error of the whole forecast probability25

distribution, and can be sensitive to a few events with large forecast errors.
Forecast reliability measures assess the statistical consistency of the forecast proba-

bility distributions and the observed frequency of associated events (Toth et al., 2003).
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For this study we use histograms of probability integral transforms (PIT) to assess the
average reliability of the forecast probability distributions for all locations and seasons.

3 Catchments and data

In this study, we investigate the performance of forecasts made using the two differ-
ent sets of predictors representing the initial catchment condition for 21 catchments in5

Eastern Australia that experience a range of climatic and hydrological conditions (Fig. 1
and Table 1). We use the observed monthly streamflow data obtained from various wa-
ter resource management agencies and the Bureau of Meteorology. For most catch-
ments, with the exception of some in Queensland and Victoria, the data are available
from 1950 to 2008 (see Table 1). The monthly catchment average rainfall and potential10

evapotranspiration for each catchment are calculated from 5 km gridded data available
from the Australian Water Availability Project (Jones et al., 2009). The monthly values
of the 13 climate indices are obtained from the Bureau of Meteorology and described
in Appendix 1.

4 Results15

4.1 Forecast skill improvements

Forecasts made using WAPABA simulations and lag-1 streamflow as predictors to rep-
resent initial catchment conditions generally have greater skill than forecasts made
using selected predictors (Fig. 2). The average forecast skill score for forecasts made
using the WAPABA simulations and lag-1 streamflow as predictors is 2.7 % greater for20

both the RMSEP and CRPS skill scores than for forecasts made using the selected pre-
dictors. While this average improvement appears to be small the range of changes in
both skill scores extends from −10 % to +25 %. The greatest increases and decreases
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in forecast skill tend to occur for those locations and seasons where the skill of fore-
casts made using selected predictors is less than 10 %.

Figure 3 presents the increase in forecast skill that is achieved by replacing the se-
lected predictors by the WAPABA simulations and lag-1 streamflow arranged by catch-
ment and season. Increases in both skill scores are most pronounced in the Queens-5

land catchments (at the top of Fig. 3) and for the MJJ, JJA, NDJ and DJF seasons in the
Central Victorian and Upper Murray catchments. Decreases in forecast skill are most
evident for the MAM and AMJ seasons in Central Victorian and Upper Murray catch-
ments. The seasons where there is the greatest increase in skill tend to be those that
cover the steepest rise or fall of the annual hydrograph and therefore this suggests that10

the selected predictors are unable to adequately capture the inter-annual variations in
the dynamics of catchments wetting and drying.

Figure 4 presents the skill scores of cross validation forecasts by catchment and
season. There is a distinct seasonal pattern in forecast skill, particularly for the catch-
ments in the Upper Murray, Central and Southern Victoria. The highest skill forecasts15

tend to be for seasons that cover the period when the annual hydrograph is falling,
while the lowest skill forecasts tend to be for seasons that cover the period when the
annual hydrograph is rising. The Tasmanian catchments have low forecast skill year
round because these catchments tend to remain near saturation all year, streamflows
are strongly related to concurrent rainfall, and seasonal rainfall is difficult to forecast.20

The Queensland catchments are in tropical and sub-tropical environments with pro-
nounced wet and dry seasons. Forecast skill tends to be highest for the dry seasons
and lowest for seasons covering the wettest months (November to March). Skill also
tends to be low for seasons and catchments where frequently rivers cease to flow. In
these circumstances the forecast error, particularly the RMSEP error, of a climatology25

forecast is small and therefore it is difficult to further reduce forecast error.
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4.2 Forecast reliability

Replacing the selected predictors representing initial catchment conditions with WA-
PABA simulations and lag-1 streamflow produced little change in the reliability of
streamflow forecasts. Figure 5 presents histograms of the PIT values for forecasts of
made using both sets of predictors. The differences between the two histograms are5

small and the general pattern of the histograms is similar. Perfectly reliable forecasts
will produce a PIT histogram that is a uniform distribution. Figure 5 suggests that when
viewed collectively the forecasts are not necessarily reliable, with the most obvious
deviations from uniformity occurring in the highest and lowest bins of the histogram.
However when the reliability is assessed for each season and catchment separately,10

deviations from uniformity are within the range expected by sample variability.

4.3 Reasons for improvements in forecast skill

The improvements in forecast skill occur under three main sets of conditions: (1) when
the catchment is wetting up but antecedent streamflows have not responded to an-
tecedent rainfall; (2) when the catchment is drying and the dominant source of an-15

tecedent streamflow is in transition between surface runoff and base flow; and (3) when
the initial catchment condition is near saturation intermittently throughout the historical
record. Here we examine some examples of how replacing the selected predictors with
WAPABA simulations and lag-1 streamflows influences cross-validation forecasts and
improves forecast skill.20

4.3.1 When the catchment is wetting up

The selected predictors are either antecedent streamflow or rainfall totals for the pre-
vious month. When the catchment is wetting up, antecedent streamflows are primarily
base flow and have not necessarily responded to antecedent rainfall. Therefore, an-
tecedent streamflow does not necessarily represent the wetness of the catchment well.25
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Where antecedent rainfall totals have been insufficient to saturate the catchment, they
will primarily reflect the surface moisture conditions of the catchment.

Figure 6 provides an example of forecasts made for this situation for March-April-May
forecasts for Kiewa River inflows to the Murray River. For this example, replacing the
selected predictor representing initial catchment conditions with WAPABA simulations5

and lag-1 streamflow increases the RMSEP skill score from 9 % to 18 % and the CRPS
skill score from 1 % to 10 %. The selected predictor representing initial catchment con-
ditions is predominantly total streamflow for January and February, which will provided
an indication of base flow conditions. Overall the forecast quantile ranges for a given
forecast median are similar using both sets of predictors, however forecast medians are10

rearranged. By replacing the selected predictors with WAPABA simulations and lag-1
streamflow the forecast error is reduced, particularly for forecasts associated with ob-
servations in the upper and lower quartiles of the historical distribution (light grey shade
in Fig. 6). The primary reason for the difference between the forecasts produced using
the two sets of predictors is due the WAPABA simulations being more strongly corre-15

lated to streamflows during the forecast period than any of the candidate predictors
representing initial catchment conditions used for predictor selection. The correlation
between the WAPABA simulations and streamflows during the forecast period is also
better preserved for independent cross validation events. This suggests that the WA-
PABA simulations provide a better representation of the process of catchment wetting20

up than any of the candidates.

4.3.2 When the catchment is drying out

When the catchment is drying out, antecedent streamflows may be dominated by direct
surface runoff if there has been recent rain or by base flows if there has not been. Total
monthly streamflows of similar magnitude can be produced by both sources and there-25

fore antecedent streamflow may not necessarily provide the best indicator of the wet-
ness of a catchment. Figure 7 provides an example of forecasts made for this situation
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of November-December-January forecasts for inflows into Dartmouth Reservoir. For
this example, replacing the selected predictor representing initial catchment conditions
with WAPABA simulations and lag-1 streamflow increases the RMSEP skill score from
19 % to 31 % and the CRPS skill score from 17 % to 28 %. The selected predictor rep-
resenting initial catchment conditions is predominantly total streamflow for September5

and October. Like the previous example when the catchment is wetting up, the forecast
quantile ranges for a given forecast median are similar using both sets of predictors
and the forecast medians are rearranged. However, in contrast to the previous ex-
ample, the skill gains are achieved by reducing the errors of the forecast median for
events corresponding to observations in the central quartiles (mid grey shade in Fig. 7)10

of the historical observations rather than in the outer quartiles. It is for these moder-
ate events that antecedent streamflows could be sourced from either surface runoff or
base flow and the WAPABA simulations can distinguish the dominant source, whereas
the candidates used in predictor selection cannot. As with the previous example the
WAPABA simulations are more strongly correlated to streamflows during the forecast15

period than any of the candidate predictors representing initial catchment conditions
used in the predictor selection.

4.3.3 When the catchment is intermittently saturated

The soil moisture and groundwater stores of a catchment are bounded, that is soil
can become saturated and groundwater water tables can approach the surface. How-20

ever, the antecedent streamflow and rainfall totals used as candidate indicators of the
catchment condition in predictor selection are theoretically unbounded, that is they
continue to increase when the soil moisture and groundwater stores are full. When
the soil in a catchment is saturated and groundwater stores are near capacity in the
month preceding a forecast, antecedent streamflow and rainfall are poor indicators of25

the condition. For a given forecast period, a catchment may be saturated consistently
or intermittently throughout the historical record. For much of the year, the Tasmanian
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catchments considered in this study provide examples of consistently saturated catch-
ment conditions throughout the historical record. For these locations and seasons the
forecast skill is close to zero and replacing the selected predictors with WAPABA sim-
ulations and lag-1 streamflow results in little change in forecast skill.

When the catchment is intermittently saturated through the historical record, replac-5

ing the selected predictors with WAPABA simulations and lag-1 streamflows can im-
prove the skill of streamflow forecasts. Figure 8 provides an example of when the
catchment is intermittently saturated through the historical record using forecasts of
July-August-September inflows into Upper Yarra Reservoir. For this example, replacing
the selected predictor representing initial catchment conditions with WAPABA simula-10

tions and lag-1 streamflow increases the RMSEP skill score from 5 % to 17 % and the
CRPS skill score from 3 % to 12 %. The selected predictor representing initial catch-
ment conditions is predominantly total streamflow for April, May and June. Like the
previous examples, the forecast quantile ranges for a given forecast median are similar
using both sets of predictors and the forecast medians are rearranged to more closely15

match to the observations. The skill gains are achieved by reducing errors in the fore-
cast median for all events throughout the entire range of historical observations. This is
due to streamflows during the forecast period being more strongly correlated with the
WAPABA simulations that any of the candidate indicators of initial catchment conditions
considered in the predictor selection process.20

The relationship between streamflow during the forecast period and the WAPABA
simulations is approximately linear. The relationship between streamflows during the
forecast period and other variables used as candidates for predictor selection ap-
pears linear for low values of the candidate predictor and deviate from linearity above
a threshold value. This two part relationship suggests that for low values the candidate25

predictors are reasonable indicators of the initial catchment conditions, but at higher
values they are not. Examining the initialised state variables of WAPABA used in pro-
ducing the simulations that represent initial catchment conditions suggests that when
the antecedent streamflows exceed this threshold the soil moisture store is at or near
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capacity and the groundwater store level is very high. Therefore, the improvements in
forecast skill arising from replacing the selected predictors with WAPABA simulations
and lag-1 streamflow can be attributed to a better representation of the catchment
process when the catchment intermittently becomes very wet.

5 Discussion5

In this study, selected predictors representing initial catchment conditions were re-
placed by a combination of simulations from a dynamic hydrological model and lag-1
streamflows. Lag-1 streamflows were included as a form of model updating to provide
a real-time measure of the actual catchment condition leading up to the forecast. How-
ever, as lag-1 streamflow is not always a good indicator of the catchment condition10

and its inclusion may moderate some of the benefit of using the WAPABA simulations.
Figure 9 presents the increases in forecast skill arising from using lag-1 streamflows
as well as WAPABA simulations to represent the initial catchment condition. In general,
including lag-1 streamflow to provide a real-time measure of the actual catchment con-
dition has little impact on the forecast skill. In some instances including lag-1 stream-15

flow increases forecast skill for a small number of seasons and locations, but most
importantly it does not degrade forecast skill. Therefore, it appears that including lag-1
streamflows as a form of model update is appropriate.

For the majority of catchments and seasons the skill of forecasts is due to the knowl-
edge of the initial catchment condition. Figure 10 illustrates the contribution of the cli-20

mate indices to forecast skill. When the points are in Fig. 10 are located on the 1 : 1
line the climate indices make no contribution to the skill of streamflow forecasts, while
points below the 1 : 1 line suggest that climate indices improve forecast skill. The contri-
bution of climate indices to streamflow forecast skill tends to be largest for catchments
in Queensland, where there is the strongest evidence for using climate indices to fore-25

cast seasonal rainfall (Schepen et al., 2012; Wang et al., 2011).
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The points above the 1 : 1 line in Fig. 10 indicate that forecasts made without se-
lected climate indices are more skilful that those made with climate indices. This sug-
gests that while there is evidence for using climate indices to forecast rainfall during
a fitting period, the fitted relationship does not perform well for independent forecasts.
The approach to assessing forecast skill used in this paper is designed to expose cir-5

cumstances where this occurs and assess the true skill of the predictor selection and
forecasting approaches by using cross validated predictors as well as cross-validated
model parameters. Where the predictors are not cross validated, it is likely that the
reported forecast skill is artificially inflated and will not be maintained in operational
applications (Michaelsen, 1987; DelSole and Shukla, 2009).10

For this study, we adopted leave-one-plus-four-years-out cross validation to assess
forecast performance. We adopted this approach to limit the potential for forecast per-
formance to be artificially inflated due to the state variables in WAPABA carrying infor-
mation from one time step to the next and resulting in forecasts that are not indepen-
dent of data used for parameter inference. We tested the assumption that leave-one-15

plus-four-years-out was sufficient to create independent forecasts by also assessing
forecast skill using leave-one-plus-one-years-out and leave-one-plus-nine-years-out. In
the assessment, we fixed the climate predictors so that variations in the forecast perfor-
mance measures were solely due to the different periods omitted from the data used
for parameter inference. The differences between the forecast skill scores produced20

using the different cross validation methods tended to be within the range of sample
variability (not shown). Where there were differences there was no clear pattern to the
best or worst performing cross validation approach and therefore the adopted approach
appears appropriate.

The climate indices used to represent the future climate influences on streamflow in25

this study are surrogates for the true source of climate predictability. The true source
of climate predictability arises from understanding of the initial conditions of the ocean,
atmosphere and land surface and the processes by which these conditions evolve
and interact. Many dynamic coupled ocean–atmosphere models have been developed
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to produce seasonal climate forecasts (for example: Alves et al., 2002). These mod-
els simulate the dynamic evolution of chaotic ocean and atmospheric processes from
estimates of the ocean, atmosphere and land surface initial conditions. Forecasts of
rainfall, or other atmospheric variables, produced by these models may provide bet-
ter indicators of future climate influences on seasonal streamflows than simple climate5

indices because they integrate a wide range of initial conditions. They also provide
the opportunity for the use of concurrent relationships, which tend to be stronger than
lagged relationships. However, comprehensive analysis of dynamic climate model out-
put is necessary to better understand the quality of the forecasts and which variables
are useful for streamflow forecasting. Future work will investigate the use of such out-10

put for seasonal forecasting of streamflows in Australia using statistical models and
rainfall-runoff models.

WAPABA simulates monthly streamflow totals in validation periods using monthly
forcing data as well as daily rainfall-runoffs models forced with daily data (Wang et al.,
2011). However, the skill of raw WAPABA simulations representing the initial catchment15

condition was considerably poorer than the forecasts resulting from using the WAPABA
simulations as a predictor in the BJP modelling approach. The poor skill of the raw WA-
PABA simulations representing initial catchment condition is primarily due to variation
in seasonal biases that overall forecast performance measure do not diagnose (not
shown). The BJP modelling approach was able to extract information from the biased20

WAPABA simulations and produce skilful forecasts with minimal biases.
The water balance model used in this study is a relatively simple, lumped monthly

model. Situations may exist where such a model may not necessarily provide sufficient
spatial, temporal or process resolution to adequately describe the catchment condition
at the forecast time. In these situations, more sophisticated models may be warranted25

to describe to describe the catchment conditions. Simulations from more sophisticated
models can also be included as predictors in the BJP modelling approach using the
process described in this paper.
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6 Conclusions

Forecasts of seasonal streamflows are valuable to a wide range of users. Traditionally,
these forecasts are produced using statistical methods with observations of antecedent
streamflows or rainfall as predictors to represent the condition of the catchment at the
forecast date and with climate indices as predictors to represent the influence of fu-5

ture climate. These predictors are surrogates for the true source of predictability and
can potentially have limitations. Dynamic hydrological models have also been used for
streamflow forecasting, but often require statistical post-processing to remove biases
and correct the reliability of forecast probability distributions. This study has investi-
gated whether a hybrid seasonal forecasting system that uses the output of a dynamic10

hydrological model as a predictor in a statistical forecasting approach can lead to more
skilful forecasts. Forecasts of three month streamflow totals were made using two alter-
native sets of predictors to represent initial catchment conditions: predictors selected
using the method employed in the operational practice by the Bureau of Meteorology
in Australia; and the combination of simulations from a monthly water balance model15

that represents the influence of initial catchment condition of streamflows and lag-1
streamflow. The skill and reliability of streamflow forecasts made using these sets of
predictors were compared for 21 catchments in Eastern Australia and insights into the
reasons for any differences investigated.

In general, replacing selected predictors representing the initial catchment condition20

with simulations from a monthly balance model and lag-1 streamflow increases the
forecast skill and has little impact on forecast reliability. The magnitude of the skill in-
creases varies with location and season. The greatest increases in forecast skill tend to
be for three sets of circumstances: (1) when the catchment is wetting up but antecedent
streamflows have not responded to antecedent rainfall; (2) when the catchment is dry-25

ing and the dominant source of antecedent streamflow is in transition between surface
runoff and base flow; and (3) when the initial catchment condition is near saturation
intermittently throughout the historical record. There is little change in forecast skill for
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catchments and seasons that are very dry or consistently saturated throughout the his-
torical record. Even with the skill improvements realised by replacing the selected pre-
dictors, the skill of streamflow forecasts tends to be the highest for seasons that include
the falling limb of the annual hydrograph, when seasonal streamflows are strongly re-
lated to the initial catchment condition. The skill tends to be the lowest for seasons that5

include the rising limb, when seasonal streamflows are strongly related to concurrent
rainfall. In general the contribution of climate indices used to represent the influence of
future climate to forecast skill is small but comparable to that of forecasts of seasonal
rainfall. Future work will investigate how using the output of dynamic climate models
may improve this situation.10

Lag-1 streamflow was included as a predictor in addition to the monthly water bal-
ance simulations as a form of model updating to provide a real-time measure of the
catchment condition. In general, it contributes little to forecast skill, but for some sea-
sons and location skill increases of up to 20 % are realised by its inclusion. Most im-
portantly, including lag-1 streamflow does not degrade forecast skill and therefore can15

be confidently included as a predictor for operational forecasts. The use of a more so-
phisticated hydrological model with increased spatial, temporal or process resolution
may reduce the need for model updating. The output of such a higher resolution hy-
drological model could be used as a predictor in the BJP modelling approach using the
methods described in this paper.20

Appendix A

Climate indices used as candidate predictors to represent the influence of climate dur-
ing the forecast period on streamflows (see Table A1).
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Table 1. Attributes of the 21 catchments used for the study (Res. indicates Reservoir inflow,
HES indicates inflow to hydroelectric scheme).

Mean Annual
ID Catchment Region Available Catchment annual Mean annual runoff

Record area (km2) rainfall flow (mm) coeff.
(mm)

1 Barron River Queensland 1950–2008 228 1367 605 (138 GL) 0.44
2 South Johnstone River Queensland 1974–2008 390 3128 2018 (787 GL) 0.65
3 Burdekin River Queensland 1967–2008 36260 567 76 (2765 GL) 0.13
4 Brisbane River Queensland 1950–2000 3866 846 79 (304 GL) 0.09
5 Somerset Res. Queensland 1950–2000 1366 1245 289 (395 GL) 0.23
6 Hume Res. Upper Murray 1950–2008 12184 819 227 (2764 GL) 0.28
7 Dartmouth Res. Upper Murray 1950–2008 3193 1042 279 (890 GL) 0.27
8 Kiewa River Upper Murray 1965–2008 1748 1099 248 (433 GL) 0.23
9 Ovens River Upper Murray 1959–2008 7543 963 175 (1320 GL) 0.18

10 Nillahcootie Res. Central Victoria 1950–2008 422 942 150 (63 GL) 0.16
11 Eildon Res. Central Victoria 1950–2008 3877 1104 373 (1447 GL) 0.34
12 Goulburn Res. Central Victoria 1950–2008 7166 769 188 (1349 GL) 0.24
13 Eppalock Res. Central Victoria 1950–2008 1749 630 98 (172 GL) 0.16
14 Cairn Curran Res. Central Victoria 1950–2008 1603 617 72 (115 GL) 0.12
15 Tullaroop Res. Central Victoria 1950–2008 702 633 77 (54 GL) 0.12
16 Thompson Res. Southern Victoria 1950–2008 487 1299 485 (236 GL) 0.37
17 Upper Yarra Res. Southern Victoria 1950–2008 336 1387 443 (149 GL) 0.32
18 Maroondah Res. Southern Victoria 1950–2008 129 1351 577 (74 GL) 0.43
19 O’Shannassy Res. Southern Victoria 1950–2008 127 1404 766 (97 GL) 0.55
20 Mersey-Forth HES Tasmania 1950–2008 2698 1900 793 (2141 GL) 0.42
21 King HES Tasmania 1950–2008 731 2703 1724 (1260 GL) 0.64
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Table A1. Climate indices included as candidate predictors of seasonal forecast of streamflow
and data sources.

Candidate predictors Period of record used Data source

Southern Oscillation Index (SOI) 1950–2008 Australian Bureau
(Troup, 1965) of Meteorology
NINO3 1950–2008 NCAR, ERSST.v3
(SST anomaly over 90◦ W–150◦ W, (Smith et al., 2008)
5◦ S–5◦ N)
NINO3.4 1950–2008 NCAR, ERSST.v3
(SST anomaly over 120◦ W–170◦ W, (Smith et al., 2008)
5◦ S–5◦ N)
NINO4 1950–2008 NCAR, ERSST.v3
(SST anomaly over 150◦ W–160◦ E, (Smith et al., 2008)
5◦ S–5◦ N)
ENSO Modoki Index 1950–2008 NCAR, ERSST.v3
(Ashok et al., 2003) (Smith et al., 2008)
20◦ Isotherm 1980–2008 Bureau of Meteorology
(Ruiz et al., 2006)
Indian Ocean Dipole Mode Index 1950–2008 NCAR, ERSST.v3
(Saji et al., 1999) (Smith et al., 2008)
Indian Ocean West Pole Index 1950–2008 NCAR, ERSST.v3
(Saji et al., 1999) (Smith et al., 2008)
Indian Ocean East Pole Index 1950–2008 NCAR, ERSST.v3
(Saji et al., 1999) (Smith et al., 2008)
Indonesia Index 1950–2008 NCAR, ERSST.v3
(Verdon and Franks, 2005) (Smith et al., 2008)
Tasman Sea Index 1950–2008 NCAR, ERSST.v3
(Murphy and Timbal, 2008) (Smith et al., 2008)
Southern Annular Mode 1979–2008 Antarctic Oscillation Index NOAA
(Marshall, 2003) (Mo, 2000)
140◦ E Blocking Index 1950–2008 Calculated from NCEP/NCAR
(Risbey et al., 2009) reanalysis data

(Kalnay et al., 1996)
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Fig. 1. Location of study catchments (location numbers correspond to identifiers in Table 1).
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Fig. 2. Skill scores of forecasts made using WAPABA simulations and lag-1 streamflow as pre-
dictors plotted against skill scores of forecasts made using selected predictors for the RMSEP
(left panel) and CRPS (right panel) skill scores. Each point represents the skill of forecasts for
a single location and season. Points above the 1 : 1 line indicate improvements in forecast skill.
(Green points are catchments in Queensland, red points are catchments in Tasmania, hollow
blue circles tributaries to the upper Murray River, light blue are catchments in Central Victoria
and dark blue are catchments in Southern Victoria.)
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Fig. 3. Increase in skill scores of forecasts achieved by replacing selected predictors represent-
ing initial catchment conditions with WAPABA simulations and lag-1 streamflow.
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Fig. 4. Skill scores of the cross-validation forecasts made using WAPABA simulations and lag-1
streamflow as predictors.
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Fig. 5. Probability integral transform histograms illustrating the reliability of forecasts made
using selected predictors (solid grey bars) and WAPABA and lag-1 streamflow as predictors
(hatched bars).
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Fig. 6. Forecasts of Kiewa River inflows into the Murray River for the March-April-May season.
Using selected predictors, RMSEP skill score=9 % and CRPS skill score=1 %, using WA-
PABA simulations and lag-1 streamflow as predictors RMSEP skill score=18 %, and CRPS skill
score=10 %. (1 : 1 line, forecast median; dark blue vertical line, forecast [0.25, 0.75] quantile
range; light and dark blue vertical line, forecast [0.10, 0.90] quantile range; dark grey horizontal
line, climatological median; mid gray shade, climatological [0.25, 0.75] quantile range; light and
mid gray shade, climatological [0.10, 0.90] quantile range; red dot, observed catchment inflow.)
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Fig. 7. Forecasts of inflows into Dartmouth Reservoir for the November-December-January
season. Using selected predictors, RMSEP skill score=19 % and CRPS skill score=17 %,
using WAPABA simulations and lag-1 streamflow as predictors RMSEP skill score=31 %, and
CRPS skill score=28 % (legend as per Fig. 6).
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Fig. 8. Forecasts of inflows into Upper Yarra Reservoir for the July-August-September season.
Using selected predictors, RMSEP skill score=5 % and CRPS skill score=3 %, using WA-
PABA simulations and lag-1 streamflow as predictors RMSEP skill score=17 %, and CRPS
skill score=12 % (legend as per Fig. 6).
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Fig. 9. Increase in skill scores of forecasts achieved by using lag-1 streamflow as well as
WAPABA simulations to represent the initial catchment condition.
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Fig. 10. The contribution of selected climate indices to forecast skill illustrated by plotting skill
scores of forecasts made using WAPABA simulations and lag-1 streamflow only as predictors
plotted against skill scores of forecasts made using made using WAPABA simulations and lag-1
streamflow and selected climate indices as predictors for the RMSEP (left panel) and CRPS
(right panel) skill scores (legend as per Fig. 2).
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