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Abstract

Snowmelt dominated streamflow of the Western Himalayan Rivers is an important wa-
ter resource during the dry pre-monsoon spring months to meet the irrigation and hy-
dropower needs in Northern India. Here we study the seasonal prediction of melt-
dominated total inflow into the Bhakra Dam in Northern India based on statistical re-5

lationships with meteorological variables during the preceding winter. Total inflow into
the Bhakra dam includes the Satluj River flow together with a flow diversion from its
tributary, the Beas River. Both are tributaries of the Indus River that originate from the
Western Himalayas, which is an under-studied region. Average measured winter snow
volume at the upper elevation stations and corresponding lower elevation rainfall and10

temperature of the Satluj River basin were considered as empirical predictors. Akaike
Information Criteria (AIC) and Bayesian Information Criteria (BIC) were used to select
the best subset of inputs from all the possible combinations of predictors for a multiple
linear regression framework. To test for potential issues arising due to multi-collinearity
of the predictor variables, cross-validated prediction skills of best subset were also15

compared with the prediction skills of Principal Component Regression (PCR) and
Partial Least Squares Regression (PLSR) techniques, which yielded broadly similar
results. As a whole, the forecasts of the melt season at the end of winter and as the
melt season commences were shown to have potential skill for guiding the develop-
ment of stochastic optimization models to manage the trade-off between irrigation and20

hydropower releases versus flood control during the annual fill cycle of the Bhakra
reservoir, a major energy and irrigation source in the region.

1 Introduction

The Satluj River is one of the five main tributaries of the Indus river that traverse the
Punjab region of Northern India and Pakistan, whose name translates as “the land of25

five rivers.” The waters of the Satluj are allocated to India under the Indus Waters Treaty

8138

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/8137/2012/hessd-9-8137-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/8137/2012/hessd-9-8137-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 8137–8172, 2012

Predictability of
Western Himalayan

River flow

I. Pal et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

between India and Pakistan, and are mostly diverted to irrigation canals in India. There
are several major hydroelectric plants on the Satluj and the 1325 MW Bhakra dam at
the foothill of the Himalayas is the largest of them. The Bhakra reservoir is the lifeline for
water supply in three major states in Northern India including the India’s “Bread Basket”
Punjab state. The current total inflow to the Bhakra dam comprises of the Satluj River5

flow (65–80 %) and the flow diverted from a tributary of the Satluj, the Beas River (via
the Beas Satluj Link/BSL, 20–35 %). Melting snow and ice provides the water supply
to much of the Himalayan region during the dry months before the summer monsoon.
Snowmelt is most important in the Western Himalayas where melt-water comprises up
to about 70 % of the annual discharge of the Indus and its tributaries (Kattelmann, 1993;10

Archer, 2003). Both the Satluj and the Beas originate from the Western Himalayas.
More than 50 % of the annual flow of the Satluj River is contributed by snow and ice
melt (Singh and Jain, 2002, 2003). Forecasting seasonal melt-water mean inflows into
Bhakra has the potential to improve the operational efficiency of the hydroelectric and
irrigation projects. The information about snow accumulation in winter provides a key to15

spring total inflow with lead times of a few months (Singh and Bengtsson, 2004; Schar
et al., 2004; Stewart, 2009). However, because of limited data in this region of rugged
topography and poor accessibility, there have been few long lead prediction studies of
the Satluj and other Himalayan catchments. No published study exists for the seasonal
prediction of the mean inflow of the Bhakra reservoir.20

Previous studies have developed regression relationships between the winter snow-
covered area derived from remote sensing data and spring monthly-accumulated Satluj
runoff (Ramamoorthy and Haefner, 1991). But the limited period of data (1980–1990
with 3 yr data missing) used in that study does not provide much statistical confidence.
With an improved data network, more recent studies have simulated the “daily” flow of25

the Satluj River based on daily precipitation, temperature and snow cover information
from the satellite images (Singh and Quick, 1993; Jain et al., 1998, 2010; Singh and
Jain, 2003). While these studies have reported better results with time, these con-
ceptual rainfall-runoff models are not useful for longer term (seasonal) forecasting
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since they are based on near real time daily weather data. In addition, the relation-
ship between snow-covered areas versus stream flow can be complicated by varia-
tions of snow depth (Makhdoom and Solomon, 1986). However, snow water equiva-
lent or snow measurement information has not been considered for Satluj basin flow
prediction because such data has not been previously available. Better skill in spring5

seasonal (March-April-May-June) total inflow forecasting could be achieved through
currently available measured local winter snow information in addition to other local
hydro-meteorological data.

The size of the river basin also has an important impact: for instance, Li et al. (2009)
found that the larger the basin, the stronger the influence of initial conditions. Mete-10

orological forcings also contribute to the predictive skill of seasonal hydrological fore-
casts as total precipitation has a predominant effect on river flow (Li et al., 2009; Mate-
ria et al., 2010). Different climatic regions provide seasonal hydrological predictability
based on different variables. Real time climate data collected at nearby monitoring sites
and/or large-scale climate indices are typically used for seasonal stream flow forecast-15

ing at different regions. For example, Wedgbrow et al. (2002) analyzed dependence of
river flows on several climatic variables (as climatic indices and SST) and its useful-
ness to forecast the summer river flow for several rivers in England. Wilby et al. (2004)
carried out a seasonal forecast of the River Thames flow in England using SSTs and
other variables. In Iberian Peninsula, SST fields of Atlantic Ocean were demonstrated20

to be useful in seasonal stream flow forecast (Gamiz-Fortis et al., 2008). In Australia, in-
formation based on ENSO-stream flow teleconnection and serial correlation in stream
flow was demonstrated to help irrigators to take more informed risk-based manage-
ment decisions (Chiew et al., 2003; Wang et al., 2010). The North Atlantic Oscillation
(NAO) or the Southern Oscillation Index (SOI) was found to provide the magnitude of25

seasonal stream flow in Iran (Araghinejad et al., 2006). For the past years, quantitative
methods for short-term and seasonal hydrological forecasting are under development
for several sub-catchments of the Central Asian Rivers, which receives water through
melting of snow accumulated in the previous winter (Schar et al., 2004; Barlow and
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Tippet, 2008). Its been indicated that winter climate information from regional-scale
patterns is sufficient to capture a great deal of the variability of river flow in Central Asia
during subsequent warm season because of the reason that river drainage basins act
as a natural spatial integrator of regional climate (Schar et al., 2004; Barlow and Tippet,
2008).5

Seasonal forecasts of stream flows were issued by a number of researchers us-
ing both dynamical and statistical approaches. A range of parametric/non-parametric
statistical prediction-modeling techniques has been used globally, which exhibits var-
ious levels of skills in regional stream flow forecasting. Traditional parametric meth-
ods involve fitting a linear function, also known as linear regression that assumes10

a Gaussian distribution of data and errors, and a linear relationship between the pre-
dictors and the dependent variable. Schar et al. (2004) and Barlow and Tippet (2008)
worked on the predictability of Central Asian River flow using linear regression tech-
niques. On the other hand several nonparametric data driven approaches, which are
claimed to overcome the limitations of linear regression, are also being used in practice,15

such as kernel-based, splines, K-nearest neighbor (K-NN) local polynomials (Owosina,
1992; Rajagopalan and Lall, 1999; Souza and Lall, 2003), locally weighted polynomi-
als (Loader, 1999), etc. The KNN local polynomials and the local weighted polyno-
mial (LOCFIT) approaches are very similar. Some of these methods were also used
in conjunction with multi-model ensemble forecasting framework that helps determin-20

ing the probability of exceedences of various thresholds useful for the water resources
management (Regonda et al., 2006; Bracken et al., 2010). Existing studies also show
that multimodel ensemble forecasts tend to perform much better than a single model
forecast, particularly in short-term and seasonal climate forecast (Krishnamurti et al.,
1999, 2000; Rajagopalan et al., 2002; Hagedorn et al., 2005; Wood and Lettenmaier,25

2006; Singla et al., 2012). Other alternative statistical techniques to multiple-regression
models have also gained wider acceptance in many hydrologic applications, includ-
ing artificial neural networks (ANN), genetic algorithms, multivariate adaptive regres-
sion splines, and partial least squares (Risley et al., 2005). Unlike multiple-regression
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models, which assume a linear relationship between variables, these methods are ca-
pable of efficiently modeling nonlinear processes that typically occur in natural systems.
Canonical correlation analysis (CCA) and principal components regression (PCR) are
also alternatives that are appropriate for situations where the independent variables
are correlated with each other (Garen, 1992; Gamiz-Fortis et al., 2008; Barlow and5

Tippet, 2008).
In the current study we used basin scale winter climate information as predictors of

spring seasonal river flow. Spring seasonal stream flow distribution of Satluj River flow
was found to be Gaussian, hence we proposed to use a best subset selection technique
using AIC (Akaike Information Criteria) and BIC (Bayesian Information Criteria) from all10

variable combinations within a multiple-linear regression framework and also compare
this with Principal Component Regression (PCR) and Partial Least Square Regression
(PLSR) techniques, which will be discussed later.

2 Study region and data

The Satluj River originates from the Tibetan Plateau in the southern slopes of Mount15

Kailash at an elevation of more than 4500 m a.m.s.l. and flows generally west and
southwest entering India in Himachal Pradesh. The entire basin area in the Tibetan
Plateau experiences a cold desert winter climate and therefore the river has very low
flow until it joins its major tributary, Spiti, near Namgia in India. The Spiti catchment
(10 071 km2) experiences extensive snowfall due to westerly weather disturbances in20

the winter months that contribute to the Satluj flow in spring or in the months of March-
April-May-June (Singh and Kumar, 1997), which is of our interest. In general the max-
imum snow cover area exists in March by when most of the snowfall has occurred
(Singh and Jain, 2003).

The Satluj River is the largest among the five rivers of Himachal Pradesh. It leaves25

Himachal Pradesh to enter the plains of Punjab at Bhakra, where Asia’s second highest
gravity dam was constructed. The Bhakra dam is the major point of water supply and
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electricity generation in North India. The Satluj finally drains into the Indus in Pakistan.
The river’s total length is 1448 km and total drainage area up to Bhakra reservoir is
about 56 500 km2. For the present study, the Indian part of the Satluj River basin up
to Bhakra reservoir (area: 22 275 km2, elevation range – 500–7000 m) was selected
(Fig. 1).5

The spring season (March-April-May-June, MAMJ) flow comes mainly from the runoff
generated by snowmelt from the upper elevations in the greater Himalayas (Jain et al.,
1998). About 65 % of the Satluj basin area is covered with snow during winter and
about 12 % of the basin (2700 km2) is covered with permanent snowfields and glaciers
(Singh and Bengtsson, 2004). The glacier melt runoff in the months of July-August-10

September occurs after the contribution of seasonal snowmelt, when glaciers become
snow free (Singh and Quick, 1993). Peak values of total discharge in July and August
are essentially due to combining this with monsoon rainfall in the lower elevations.
Minimum flow is observed in winter when the base flow contribution sustains the river
flow.15

Spring seasonal inflow anomalies are found to be strongly correlated with large-scale
precipitation and diurnal temperature range in the preceding winter over the Western
Himalayas as well as adjoining North and Central Indian plains (Fig. 2), suggesting
a potentially usable predictability for reservoir managers. Winter precipitation in the
Western Himalayas and adjoining regions is mainly brought about by the mid-latitude20

jet stream leading to the formation of low-pressure synoptic systems known as Western
Disturbances (WD) and therefore the winter average precipitation over this entire region
(Fig. 2) is related. Since total spring seasonal (MAMJ) inflow to Bhakra dam is largely
contributed by the winter snow melt, winter precipitation and temperature data available
from the Indian side of Satluj basin in addition to inflow itself were used as predictors.25

Daily total inflow of Bhakra reservoir (Satluj River flow+Beas Satluj Link (BSL) di-
version) for 1963–2004, daily rainfall, snow and temperature data (Tmax, Tmin) were pro-
vided by the Bhakra Beas Management Board (BBMB) of India, the organization that
is responsible for data collection and operation of the Bhakra dam. The lower elevation
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rainfall stations and upper elevation snow stations are marked in Fig. 1. The daily snow
measurements have a complete record from 1976–2006 for 12 stations (Table 1). Daily
rainfall data had complete records for 1977–2006 for 15 stations (Table 1). Maximum
temperature data were available only for 5 stations and a complete record was found
for 1983–2005 (Table 1). Minimum temperature data was available only for 2 stations5

in the entire basin (Table 1). The elevation information for various rainfall and snow
stations indicates that snow stations are at much higher elevation. We determined av-
erage temperature (Tavg) and diurnal temperature range (DTR) by averaging Tmax and
Tmin, and subtracting Tmin from Tmax on a daily basis.

As mentioned earlier, total Bhakra inflow is a joint contribution from Satluj River flow10

and BSL diversion that came into effect in November 1977. Consequently, the Bhakra
total inflow data has a step jump since that time. To avoid this step change, we con-
sidered the flow data from 1978–2004. This study only considers the flow component
in the spring/MAMJ (March-April-May-June) season. Since station temperature data
was available only since 1983 and also had poor spatial coverage (few stations in low15

elevations), we compared this data with the data available from other sources. The
comparison of station temperature data with the Indian Meteorological Department
(IMD) 1-degree gridded daily temperature data (Srivastava et al., 2008) for the Satluj
basin (30.5–33.5◦ N and 75.5–79.5◦ E) indicated that they have similar variability on
average at monthly time scales for the study region. Therefore, given their longer pe-20

riod of record (1969–2004) and better spatial coverage, IMD gridded temperature data
were used here for the Satluj basin region. In addition, since IMD rainfall data (Ra-
jeevan et al., 2005) also have a good spatial and temporal (1-degree, daily) coverage
for the basin region and pose a similar variability with the station data (not shown),
we tested the prediction performance of both the rainfall datasets separately combined25

with station snow and IMD temperature data in this study.
Table 2 summarizes the cross-correlations of average December-January-February-

March (DJFM) climate data and spring seasonal flow from 1978–2004. The table indi-
cates that average measured snow in winter in the high elevation is positively correlated
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with the lower elevation rainfall, which was true both for the IMD and station rainfall
(0.65 and 0.71, respectively). IMD rainfall is very highly correlated with the station rain-
fall (0.84). Winter precipitation (both rainfall and snow) is negatively and highly corre-
lated with Tmax and Tavg. Since Tavg is the simple average between Tmax and Tmin, the
correlations between Tavg and Tmax and Tmin are very high (>0.8).5

Figure 3 shows the average seasonality of the inflow and Satluj River basin clima-
tology (mean monthly over 1978–2004). The figure suggests that the basin snow and
rainfall (IMD) patterns are masked by each other in different seasons. The figure also
depicts that the flow starts increasing continuously from February relative to the in-
crease in temperature. Therefore one might expect that warmer winters contribute pos-10

itively to the melt in the months following that. Temperature has a peak in June when
the snowmelt contributed flow usually reaches its peak. In July and August when the
flow is highest, it is driven by a combination of monsoon rain at lower elevations and
glacier melt (Singh and Quick, 1993). On the other hand, since Tmax showed a strong
and significant negative correlation with the spring inflow (Table 2), winter Tmax might15

just be a reflection of concurrent precipitation amount.
Considering different redundancies in the data we considered prediction of spring

flow at different lead times using two meteorological data combination settings:
Setting 1: Combining IMD rainfall and temperature data with station snow data.
Setting 2: Using station precipitation (snow and rainfall) data as the predictors and20

omitting temperature data. We considered this for three reasons; (i) station temperature
data has a shorter length (1983 onwards) and poor spatial coverage (2–5 stations);
(ii) to avoid the multi-collinearity issue i.e. high correlations between precipitation and
temperature, as in Table 2; (iii) since there are difficulties associated with obtaining
meteorological data from the IMD in a real time basis (particularly the gridded data25

sets used in this study), we want to demonstrate the predictability of the spring inflows,
based entirely on the BBMB network so that they can utilize the data in a near real time
for making the best use of the prediction schemes developed here for any decisions
they plan to initiate.
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3 Predictor(s) selection

Selection of appropriate predictors is required for forecasting stream flows. Poorly de-
signed predictor selection procedures can result in poor forecasts for independent
events. Best predictors vary with location and forecast date. This section discusses
the potential predictor(s) selection (most influential variables) for forecasting the spring5

seasonal total inflow into Bhakra dam, determined using the “bestglm” technique at
different lead times and for both settings stated above (McLeod and Xu, 2010). The
“bestglm” tool is freely available to download for the publicly available statistical soft-
ware “R”. This method provides a flexible framework to describe how a dependent vari-
able can be explained by a set of predictors. Fitting a single model is not satisfactory in10

all circumstances (Rajagopalan et al., 2002, 2005). In particular, this assumes that the
model used is true or at least optimal in some sense. Hence the resulting inference is
conditional on this model. A special case of this general problem is variable selection in
the multi model and multiple regression framework (Miller, 2002). The usual method to
select a model is stepwise – backward or forward selection approach based on signif-15

icance tests. However, backward and forward approaches are not generally expected
to converge to the same model (Venables and Ripley, 1997; Grafen and Hails, 2002).
Several model selection techniques have been developed to avoid these pitfalls. One
of these techniques is based on an information criterion (IC) that compares all possible
candidate models and ranks them based on their IC values. This method ensures that20

the “best” model (according to the IC) is identified, whereas stepwise explorations do
not. Most importantly, this method allows one to assess model-selection uncertainty
or to perform multi-model inference, rather than using one and only one best model
(Buckland et al., 1997; Burnham and Anderson, 2002; Johnson and Omland, 2004).

The step by step procedure of bestglm technique is shown in Fig. 4 as a flowchart.25

While we usually consider the linear model of Y on p inputs, X1, . . . ,Xp; in many cases,
Y can be more parsimoniously modeled and predicted using just a subset of m< p
inputs, Xi1, . . . ,Xim (i = 1, . . . ,n). When n > p, the best subset problem is to find out
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all the possible 2p regressions (subsets) and the best fit (subset) according to some
goodness-of-fit criterion, as in Fig. 4. When p ≤ 25 or thereabouts (in our case max-
imum p = 21), this technique has proved to be very efficient but problems with large
enough p such as p > 100, cannot be solved by this method (McLeod and Xu, 2010).
Other high dimensional optimization algorithms such as genetic search and simulated5

annealing are recommended for that case (cross references from McLeod and Xu,
2010).

The bestglm model selection method includes a variety of IC. The information cri-
teria include the usual AIC (Akaike Information Criteria) and BIC (Bayesian Informa-
tion Criteria) as well as two types of extended BIC. All the information criteria those10

might be considered in the bestglm technique are based on a penalized form of the
deviance or minus the log-likelihood. In the multiple linear regression the deviance
D = 2logL, where L is the maximized log-likelihood, logL = −(n/2) logS/n, where S
is the residual sum of squares. Akaike (1974) showed that AIC = D+2k, where k is
the number of parameters, provides an estimate of the entrophy. The model with the15

smallest AIC is preferred. While many other criteria (e.g. final prediction error crite-
rion), which are essentially equivalent to the AIC criteria, have also been suggested,
in practice, with small n, all those criteria often select the same model. The BIC crite-
rion is derived using Bayesian methods. If a uniform prior is assumed of all possible
models, the usual BIC criterion may be written, BIC = D+k log(n). The model with20

the smallest BIC corresponds to the model with maximum posterior probability. The
difference between these criterions is in the penalty. When n > 7, the BIC penalty is
always larger than for the AIC and consequently the BIC will never select models with
more parameters than the AIC. In practice, BIC often proved to be selecting more par-
simonious models than the AIC (McLeod and Xu, 2010). In large p problems (p > 25)25

a modified BIC criteria called BICg is suggested that considers a prior that is uniform
of models of fixed size instead of all possible models (as with the original BIC case).
On the other hand, BICq is another modified version of BIC that is derived by assum-
ing Bernoulli prior for the parameters. Each parameter has a priori probability of q of
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being included, where q = [0,1]. With this prior, the resulting information criteria can
be written, BICq = D+k log(n)−2k logq/(1−q). When q = 1/2, BICq is equivalent to
BIC, while q = 0 and q = 1 correspond to selecting the models with k = p (full model)
and k = 0 (no parameters), respectively. Moreover, if q is within 0.01 and 0.51, it gives
results equivalent to the AIC. Having a small dataset (only 27 data points) we used AIC5

and BIC criteria in this paper and also compared them in terms of their robustness for
the best models and the prediction skills, as mentioned in Fig. 4.

While bestglm technique has various advantages over many linear regression tech-
niques, as discussed above, it is not clear how this technique handles the multi-
collinearity issue, which is a common redundancy with the hydro-meteorological data10

and true here too, as Table 2 points out. Multi-collinearity might create highly sensitive
parameter estimators with inflated variances, and improper model selection. Regres-
sion techniques such as principal component regression (PCR) or partial least squares
regression (PLSR) reduce the redundancy due to multi-collinearity. Therefore, we also
compared the prediction skills of best subset multiple regression to that of PCR and15

PLSR considering all variables.
We considered the prediction of mean MAMJ (total) inflow on 1 December, 1 January,

1 February, 1 March and AMJ inflow on 1 April. All the possible predictors at those lead
times and corresponding Pearson correlation coefficients with average MAMJ inflow
are listed in Table 3. Predictors corresponding to the correlation coefficient within ±0.1020

were neglected. As stated earlier, March is a very important month since the maximum
snow cover occurs during this time. Therefore, incorporating March data as a predictor
is expected to show higher skills as also depicted in correlations in Table 3. In addition,
∼90 % of the volume of MAMJ inflow on an average occurs in AMJ alone. Therefore,
we also considered a 1 April prediction for AMJ inflow. As the subsets are unknown,25

various possible monthly combinations were considered in order to choose the best
predictors at different lead times, as shown in the table. As Table 3 reveals, all the
correlations for the first three lead times are very poor. This is because much of the
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snow accumulated in November/December/January usually melts away before March,
usually starting in late January and early February (Pal et al., 2012).

The distribution of predictand (MAMJ flow) was close to Gaussian based on Lillifor’s
test, and scatter plots between predictors and predictand revealed nearly linear struc-
tures. Therefore the link function used in this method is linear and Gaussian; and the5

models turned to be multiple linear regressions. We also checked the linear relationship
using LOCFIT or local weighted polynomial approach and Generalized Cross Valida-
tion (GCV) estimates for each fit between the predictors and predictand to determine
the optimum window width used for the local regression that corresponds to the mini-
mum GCV (Loader, 1999), as recommended by Rajagopalan et al. (2002, 2005). In all10

the cases we got α = 0.9–1.0 where α is the fraction of the total data length. Therefore,
we used bestglm with much confidence.

4 Prediction results and skills

Variable selection, measurement and comparison of the model performance at differ-
ent lead times were done in K = 3 leave-out cross-validation. This method leaves three15

randomly selected observations in turn, determines the best subset from the remaining
training data points and the best multiple linear model fit. The dropped points form the
testing set against which the goodness of fit of the estimated points are measured. This
is repeated 100 times. PCR and PLSR were also applied in K = 3 leave-out cross vali-
dation mode considering all the p variables at a time. Figure 5a–d shows the bar charts20

of the total frequency of the variables selected in different lead times in 100 iterations
corresponding to AIC and BIC criteria. Different variables within the different settings
are given the names of V1 to Vp for the convenience in plotting them, where p = total
number of variables used at certain lead time. For example, in the first panel of Fig. 5a
total 7 variables were used for 1 December prediction, namely November flow (NQ),25

November rainfall (NR), November snow (NS ), November Tmax (NT max), November Tmin
(NT min), November Tavg (NTavg) and November DTR (NDTR). Likewise, the variables
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corresponding to other lead times in other setting were also named V1 to Vp. As men-
tioned above, BIC chooses the best models more parsimoniously than the AIC, which
is also evident in the figure. However, the orders with which the variables are selected
are the same for both the criteria. Table 4 indicates those variables, which were consis-
tently chosen (>80 % of the times) or chosen for the maximum number of times (e.g. 15

December) and the final linear models using those best-chosen subsets corresponding
to the AIC. As noticed in Table 4, the variables selected for 1 December and 1 Febru-
ary predictions were the same for both the settings. For the setting 1, temperature data
was important for 1 January, 1 March and 1 April predictions.

To verify the cross-validated forecast model performance for three techniques con-10

sidered (bestglm, PCR, PLSR) we divided both observed and predicted inflow time
series into tercile categories (below normal/normal/above normal) and determined the
joint distribution of them – characterized as 3×3 contingency table (Wilks, 2006). We
used 300 discrete random predictions (K = 3, 100 iterations) and corresponding ob-
servations. Due to the fact that we have a small sample size and high dimensional ver-15

ification situation ((3×3)−1 = 8), we opted for traditional scalar approaches such as
(a) accuracy or Proportion Correct (PC), (b) forecast skill score i.e. Heidke Skill Score
(HSS) and Peirce Skill Score (PSS). Accuracy refers to the average correspondence
between individual forecasts and the events they predict. Therefore, PC measure will
summarize the overall quality of a set of forecasts in a single number determining the20

proportion of correct forecast (Wilks, 2006). On the other hand, forecast skill scores will
be interpreted as a percent improvement over the reference forecasts. While a large
number of such scores are in use, one of the most frequently used skill score is the
Heidke Skill Score/HSS. A perfect forecast receives HSS=1, forecast equivalent to
the reference forecasts receive zero scores, and forecasts worse than the reference25

forecasts receive negative scores. The reference accuracy measure in the HSS is the
proportion correct that would be achieved by random forecasts that are statistically
independent of the observations (Wilks, 2006). Another equivalent and popular skill
score is the Peirce Skill Score/PSS. The PSS can also be understood as the difference
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between the hit rate and the false alarm rate. Perfect forecast receives a score of 1,
random forecast receives a score of zero, and forecasts inferior to the random forecasts
receive negative scores (Wilks, 2006).

Table 5 lists different cross-validated prediction performance measures on the two
data settings considered and for all the three techniques (bestglm, PCR, PLSR). The5

table shows that PC usually improves from 1 December to 1 April gradually for all the
cases. The best prediction skills corresponding to each lead-time is marked with a*.
The table shows that for 1 January, 1 March and 1 April predictions corresponding
to setting 1, bestglm performed better than the other techniques with AIC as well as
BIC yielding more or less similar prediction skills. While 1 February and 1 December10

prediction skills were improved when PCR was used for setting 1, 1 December skills
were still negative. For setting 2, bestglm showed the best performance for 1 January
and 1 March, on the other hand, PCR showed best performance for 1 February and 1
April.

While the PC measurement corresponding to bestglm was better for setting 2 as15

compared to setting 1 for the 1 December, 1 January and 1 March forecasts, setting 1
prediction was improved for 1 April with 64 % of the forecasts fell into the correct cate-
gory while for the setting 2 it was 48 %. When PCR was used in setting 2, PC jumped
to 64 % but other skills did not improve from bestglm. Song and Kroll (2011) pointed
out that for small sample size, PCR or PLSR decrease the variance of the watershed20

hydrologic parameters only when the true model is known (i.e. known subset) and do
not improve model predictions compared to linear regression models. This might be
holding true in our case too since we just have 27 data points.

Furthermore, correlation coefficients in Table 5 were better for setting 1 for 1 January,
1 March and 1 April forecasts corresponding to bestglm (AIC). HSS and PSS estimates25

yielded the same estimates all the times indicating that the forecasts exhibit little bias
(Wilks, 2006). Like PC, HSS/PSS scores corresponding to bestglm were better for
setting 2 for the 1 March forecast. However, the 1 April forecast was much better when
setting 1 was used. This might be because the 1 April forecast is highly temperature
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dependant. Therefore, even if the temperature information is not available, only the
station precipitation information could be used to produce real time forecasts of spring
inflow with positive categorical skills. The availability of reliable station temperature
information and inclusion in setting 2 might improve the categorical forecast skills for 1
April too.5

Figure 6 shows the range of cross-validated prediction square error and average ab-
solute residual errors for each setting corresponding to bestglm technique. These were
done after finding out the median forecast value of spring inflow for each year from the
ensemble of (random) forecasts generated in 100 iterations. The figure depicts that the
error is substantially reduced for 1 March predictions from the previous lead times for10

both settings but the spread increases for 1 April again, which is true for both AIC as
well as BIC best models. Figure 7 shows the (median) predictions made on 1 March
and 1 April from the ensemble predictions after 100 iterations, with corresponding 5 %
and 95 % prediction intervals. Prediction intervals take into account uncertainty about
mean prediction and uncertainty associated with the error term. 1 March nicely pre-15

dicts all the years for setting 1 except a few in early 1980s, 1996, 2003 and 2004,
which are better predicted on 1 April. For setting 2, 1 April prediction is worse than 1
March, which is also reflected in the errors in Fig. 6 and forecast skill in Table 5. With
high error (average absolute 18 %), 1 December prediction was the worst possible
forecast for spring inflow while the correlation coefficient was also negative (Table 4).20

All these results suggest that as far as pre-planning is concerned, the 1 March pre-
diction would give us the most accurate estimate of spring inflow before the season
commence; however, with the incorporation of the March data (i.e. forecast issued on 1
April) would also be useful for AMJ inflow as well. Furthermore, while setting 1 dataset
is more recommended for spring seasonal inflow prediction, setting 2 could be used25

interchangeably when IMD dataset is not available albeit with little lesser precision.
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5 Summary and discussion

The research presented the potential predictability and the merits of different predic-
tion models of melt dominated inflow into the Bhakra dam using the flow data and
local winter climatology at the basin scale from 1978–2004. Several candidate meth-
ods for multiple linear regression were explored in a situation where the short data5

length is a challenge. We used basin level winter climatology to find the predictability of
spring seasonal stream flow. Given the direct physical link between winter precipitation
and snowmelt driven river flow, the spring inflow was found to be positively correlated
with the high elevation winter snow and corresponding rainfall in the lower elevations
and is negatively correlated with the basin-averaged winter temperatures. The positive10

significant correlations of spring inflow with winter precipitation also suggest that the
winter atmospheric circulation patterns driving these climate variables are also related
to spring inflow (Pal et al., 2012), as was also consistent with Schar et al. (2004), Tippet
et al. (2004), and Barlow and Tippet (2008), who showed spring and summer time river
flow fluctuation due to winter climate patterns at regional scale in Central and South15

Asia.
The predictors and predictand relationships were found to be linear according to

LOCFIT method (Loader, 1999), a suggested technique by previous researchers (Ra-
jagopalan et al., 2002, 2005), as well as the predictand distribution was Gaussian as
per Lilifor’s test. Therefore, the utility of the “bestglm” technique in multiple linear re-20

gression scenario based on selective information criteria was skillfully used to forecast
spring seasonal stream flow at the upstream of Bhakra dam over Satluj River at dif-
ferent lead times. We compared the forecasts to PCR and PLSR, which were more
widely used for the Central and South Asian rivers (Schar et al., 2004; Tippet et al.,
2004; Barlow and Tippet, 2008) and also in the US (Regonda et al., 2006). We find25

that overall, the proposed method is equally (and more) skillful to existing operational
models while tending to better predict seasonal stream flow 1–4 months in advance.
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The results as a whole suggest that winter climatology and inflow data allow a skillful
forecast of the volume of MAMJ/AMJ flow in late winter or when the spring season com-
mences. Inclusion of gridded rainfall data with station snow information enhanced the
forecast skill scores possibly because of the reason that rain gauge stations have poor
coverage within the basin (in particular the mountains) and/or systematic rain gauge5

biases (wind losses during snowfall), as speculated by Schar et al. (2004) while demon-
strating the predictability of the Central Asian River flow. Overall the above results in-
dicate that the IMD rainfall and temperature data along with station snow information
is able to credibly represent the variations of the spring seasonal Satluj River flow,
while it probably misses smaller-scale features associated with the complex structure10

of the topography. An analysis was also undertaken to look at the ability of precipitation
data from local meteorological stations to represent observed interannual variability of
stream flow of Satluj River, which was satisfactorily skillful. This is consistent with Schar
et al., 2004, who also demonstrated that precipitation data in winter alone is sufficient to
skillfully predict the next seasonal river flow in Central Asia. Despite the low resolution15

of IMD precipitation data and poor coverage of station meteorological data, the results
appeared highly promising. In most years the models provided excellent predictions on
1 March and 1 April, and only a few years (includes 2004) had a departure from the
prediction interval (based on a p = 95 % prediction interval, one would expect at least
one miss in a 15-yr series, according to Schar et al., 2004). The 1 March and 1 April20

models also enabled forecasts that represent an improvement in comparison with the
climatological forecast.

Water managers depend on seasonal forecasts of reservoir inflow volume to sup-
port operations and planning in advance. Careful planning is necessary to meet water
demands in the dry pre-monsoon season (MAMJ) under the stress of increased cli-25

mate variability. This is particularly true for the Bhakra reservoir because total volume
of MAMJ inflow into Bhakra depends largely on the highly variable winter climatology
of the Western Himalayas. The forecasting model developed here could significantly
help water resources decision-making associated with Bhakra reservoir operations.
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For reservoir operation, a key question in April, May, June is how much space to
leave for flood control and how full to keep the reservoir. Retaining water in the reser-
voir during this fill cycle allows more reliable irrigation and hydropower releases and
a better buffering capacity for the failure of the monsoon. However, it increases expo-
sure to flood risk. This trade-off is traditionally managed using a rule curve for storage5

allocation that is based on the historical climatology of the monsoon and the snowmelt
period. The innovation presented here is now being used to foster the development
of a stochastic optimization model for dynamic rule curve determination considering
the probability distribution of fill during MAMJ/AMJ, and the flows and consumptive wa-
ter demand in the subsequent monsoon season. Flood volume predictions are also10

needed to complete such an analyses, and to date very few efforts have been made
at long lead flood volume forecasting. Nonlinear or nonparametric methods are of-
ten used to address such problems effectively (Kwon et al., 2012). However, given
the short record available here with potential data quality issues these methods were
contra-indicated based on our initial exploratory analyses.15
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Table 1. Information about different meteorological stations in Satluj River basin in India.

Station Latitude Longitude Elevation
Name (N) (E) (m a.m.s.l.)

Rainfall

Berthin 31◦ 25′ 11′′ 76◦ 38′ 55′′ 668
Bhartgarh 31◦ 6′ 0′′ 76◦ 36′ 0′′ 284
Daslehra 31◦ 24′ 56′′ 76◦ 32′ 56′′ 562
Ganguwal 31◦ 24′ 76◦ 6′ 1220
Ghanauli 31◦ 1′ 33′′ 76◦ 35′ 22′′ 293
Kahu 31◦ 12′ 43′′ 76◦ 46′ 52′′ 526
Lohand 31◦ 10′ 31′′ 76◦ 34′ 14′′ 288
Naina Devi 31◦ 17′ 56′′ 76◦ 32′ 8′′ 985
Nangal 31◦ 23′ 50′′ 76◦ 22′ 21′′ 369
Rampur 31◦ 26′ 24′′ 77◦ 37′ 40′′ 987
Suni 31◦ 14′ 43′′ 77◦ 6′ 53′′ 701
Kasol 31◦ 30′ 0′′ 77◦ 19′ 0′′ 2614
Kotla 31◦ 30′ 0′′ 77◦ 15′ 0′′ 2824
Swarghat 31◦ 20′ 76◦ 45′ 1220

Snow measurement

Bahli 31◦ 22′ 17′′ 77◦ 38′ 48′′ 2285
Chitkul 31◦ 20′ 59′′ 78◦ 25′ 0′′ 3327
Giabong 31◦ 46′ 24′′ 78◦ 26′ 44′′ 2926
Jangi 31◦ 36′ 15′′ 78◦ 25′ 0′′ 2721
Kalpa 31◦ 31′ 60′′ 78◦ 15′ 0′′ 2662
Kaza 32◦ 13′ 25′′ 78◦ 4′ 11′′ 3618
Kilba 31◦ 31′ 0′′ 78◦ 9′ 0′′ 1988
Nichar 31◦ 33′ 7′′ 77◦ 58′ 34′′ 2225
Phancha 31◦ 35′ 45′′ 77◦ 43′ 54′′ 2348
Sangla 31◦ 25′ 14′′ 78◦ 15′ 44′′ 2780
Sarhan 31◦ 30′ 34′′ 77◦ 47′ 34′′ 2144
Tabo 32◦ 7′ 51′′ 78◦ 23′ 11′′ 4201

Maximum temperature

Bhakra1 31◦ 24′ 56′′ 76◦ 26′ 5′′ 554
Kasol 31◦ 30′ 0′′ 77◦ 19′ 0′′ 2614
Nangal1 31◦ 23′ 50′′ 76◦ 22′ 21′′ 369
Rampur 31◦ 26′ 24′′ 77◦ 37′ 40′′ 987
Suni 31◦ 14′ 43′′ 77◦ 6′ 53′′ 701

1 Also minimum temperature stations.
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Table 2. Cross-correlations for different hydro-meteorological variables for 1978–2004.

Flow Station IMD Station IMD IMD IMD IMD
snow rainfall rainfall Tmax Tmin Tavg DTR

Flow 1.00 0.58 0.48 0.55 −0.50 −0.02 −0.33 −0.55
Station snow 0.58 1.00 0.65 0.71 −0.44 −0.18 −0.37 −0.34
IMD rainfall 0.48 0.65 1.00 0.84 −0.67 −0.49 −0.68 −0.32
Station rainfall 0.55 0.71 0.84 1.00 −0.78 −0.38 −0.69 −0.54
IMD Tmax −0.50 −0.44 −0.67 −0.78 1.00 0.53 0.90 0.66
IMD Tmin −0.02 −0.18 −0.49 −0.38 0.53 1.00 0.84 −0.30
IMD Tavg −0.33 −0.37 −0.68 −0.69 0.90 0.84 1.00 0.27
IMD DTR −0.55 −0.34 −0.32 −0.54 0.66 −0.30 0.27 1.00

Note: the meteorological data is for winter season (DJFM) and flow data is for spring (MAMJ). DTR=diurnal
temperature range= Tmax − Tmin
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Table 3. Pearson correlation coefficients between average MAMJ inflow into Bhakra and spa-
tially average Satluj River basin climatology (showing setting 1 datasets) and inflow for 1978–
2004.

Prediction 1 Dec 1 Jan 1 Feb 1 Mar 1 Apr

N D ND J DJ NDJ F JF DJF M FM JFM

Flow (Q) −0.05 0.17 0.04 0.07 0.12 0.05 0.38 0.24 0.22 0.72 0.66 0.57
Snow (S) 0.24 0.13 0.22 −0.17 −0.05 0.03 0.48 0.28 0.36 0.57 0.70 0.54
Rainfall (R) 0.30 0.43 0.48 −0.10 0.12 0.19 0.64 0.29 0.40 0.44 0.58 0.42
Tmax −0.06 −0.26 −0.19 0.18 −0.06 −0.07 −0.42 −0.24 −0.31 −0.48 −0.53 −0.46
Tmin −0.04 0.16 0.07 0.08 0.18 0.11 0.12 0.11 0.19 −0.27 −0.13 −0.07
Tavg −0.06 −0.13 −0.11 0.16 0.06 0.01 −0.22 −0.08 −0.09 −0.41 −0.40 −0.33
DT −0.02 −0.29 −0.21 0.10 −0.17 −0.14 −0.64 −0.34 −0.41 −0.63 −0.71 −0.54
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Table 4. Variables selected using best-GLM with AIC criteria and the final models at different
lead times for setting 1 (combining IMD rainfall and temperature data with BBMB station snow
data) and setting 2 (using station rainfall and snow data only as the predictors and omitting
temperature).

Setting 1

1 Dec QMAMJ = 16974+43.5(NR)
1 Jan QMAMJ = −10622.4+212.9(NDR)−138.6(NDS )+2095(NDT max)−1223.6(DDTR)
1 Feb QMAMJ = 16323.8+134.7(NDJR)−54.5(JR)
1 Mar QMAMJ = 5546+47.4(FR)+18(FS )+1226.5(FT min)
1 Apr QAMJ = −2273+362(JFMQ)−135.5(JFMR)−443.7(FMQ)+244(FMR)+3.7(MQ)−

73.2(MR)+24.7(MS )+2.8×106(MT max)−2.8×106(MTavg)−1.4×106(MDTR)

Setting 2

1 Dec QMAMJ = 17037+36.7(NR)
1 Jan QMAMJ = 16327.1+52.8(NDR)
1 Feb QMAMJ = 17189+78.8(NDJR)−41.5(JR)
1 Mar QMAMJ = 13628+46.45(FR)
1 Apr QAMJ = 13995−71.4(JFMR)+135.2(FMR)+0.8(MQ)−38.4(MR)
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Table 5. Cross-validated prediction performance corresponding to different techniques.

CC HSS PSS PC

best-GLM setting 1 (AIC)
1 Dec −0.27 −0.18 −0.18 0.21
1 Jan∗ 0.37 −0.03 −0.03 0.29
1 Feb 0.18 −0.02 −0.02 0.32
1 Mar∗ 0.63 0.24 0.24 0.49
1 Apr∗ 0.72 0.47 0.47 0.64

best-GLM setting 1 (BIC)

1 Dec −0.26 −0.16 −0.16 0.22
1 Jan 0.06 −0.10 −0.10 0.27
1 Feb 0.02 −0.04 −0.04 0.31
1 Mar 0.61 0.23 0.23 0.49
1 Apr 0.70 0.39 0.39 0.59

PLSR setting 1

1 Dec −0.22 −0.14 −0.14 0.24
1 Jan −0.12 −0.12 −0.12 0.32
1 Feb 0.30 −0.01 −0.01 0.33
1 Mar 0.14 0.14 0.14 0.42
1 Apr 0.51 0.27 0.27 0.52

PCR setting 1

1 Dec∗ −0.27 −0.1 −0.1 0.27
1 Jan −0.19 −0.08 −0.08 0.28
1 Feb∗ 0.32 0.13 0.13 0.42
1 Mar 0.24 0.16 0.16 0.44
1 Apr 0.60 0.39 0.39 0.59
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Table 5. Continued.

CC HSS PSS PC

best-GLM setting 2 (AIC)

1 Dec −0.14 −0.14 −0.14 0.23
1 Jan∗ 0.21 0.12 0.12 0.41
1 Feb 0.19 −0.07 −0.07 0.28
1 Mar 0.53 0.37 0.37 0.58
1 Apr 0.52 0.21 0.21 0.48

best-GLM setting 2 (BIC)

1 Dec −0.28 −0.16 −0.16 0.23
1 Jan 0.22 −0.02 −0.02 0.32
1 Feb −0.03 −0.13 −0.13 0.25
1 Mar∗ 0.61 0.47 0.47 0.64
1 Apr 0.48 0.16 0.16 0.44

PLSR setting 2

1 Dec∗ −0.17 −0.04 −0.04 0.30
1 Jan −0.14 −0.05 −0.05 0.30
1 Feb 0.25 −0.02 −0.02 0.31
1 Mar 0.22 0.14 0.14 0.42
1 Apr 0.48 0.36 0.36 0.58

PCR setting 2

1 Dec −0.19 −0.09 −0.09 0.27
1 Jan −0.16 −0.06 −0.06 0.29
1 Feb∗ 0.28 0.05 0.05 0.37
1 Mar 0.20 0.15 0.15 0.43
1 Apr∗ 0.58 0.46 0.46 0.64

Note: CC=Pearson correlation coefficient;
HSS=Heidke Skill Score; PSS=Peirce Skill Score;
PC=proportion correct;
∗ =best performance in a setting.
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!!  
Fig 1: Indian part of Satluj River basin up to Bhakra reservoir with location of hydro-meteorological stations.! 

 

Fig 1: Indian part of Satluj River basin up to Bhakra reservoir with location of hydro-
meteorological stations (Singh and Jain, 2003).!
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Fig. 1. Indian part of Satluj River basin up to Bhakra reservoir with location of hydro-
meteorological stations.
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(a) 

 
(b) 

 
Fig 2: Pearson’s correlation fields of spring (MAMJ) seasonal total Bhakra inflow with 
preceding winter (DJF/DJFM) (a) precipitation and (b) daily temperature range over the 
Western Himalayas and adjoining north and central Indian plains (also includes part of 
Pakistan and Afghanistan) for 1978-2004. Shading indicates local statistical significance 
level at 90% confidence. 

Fig. 2. Pearson’s correlation fields of spring (MAMJ) seasonal total Bhakra inflow with pre-
ceding winter (DJF/DJFM) (a) precipitation and (b) daily temperature range over the West-
ern Himalayas and adjoining North and Central Indian plain (also includes part of Pakistan
and Afghanistan) for 1978–2004. Shading indicates local statistical significance level at 90 %
confidence.
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Fig 3: Comparison of the seasonality of total inflow and basin climatology (Q = 
Normalized inflow, R = Normalized Rainfall, S = Normalized Snow, Tmax = Normalized 
Maximum Temperature).!

Fig. 3. Comparison of the seasonality of total inflow and basin climatology (Q = normalized in-
flow, R = normalized rainfall, S = normalized snow, Tmax = normalized maximum temperature).
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Fig 4: Flowchart showing the bestglm method. 

Y = Predictand, X1,……Xp = 
Predictors where p = total 

number of predictors 

Make all 2p combinations of 
predictors and do multiple linear 

regression 

Best subset Xi1,…….Xim (i = 
1,….n) where total number of 

subsets selected corresponding to 
least AIC/BIC criteria estimate 

Multiple linear regression 

Fig. 4. Flowchart showing the bestglm method.
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a)  
 
Fig 5(a): Number of times (in 100 iterations) the different variables were selected in setting 1 when AIC was used; Dec 1st: V1 = N_Q, 
V2 = N_R, V3 = N_S, V4 = N_Tmax,V5 = N_Tmin,V6 = N_Tavg, V7 = N_DTR; Jan 1st: V1 = ND_R, V2 = ND_S, V3 = 
ND_Tmax, V4 = ND_DTR, V5 = D_Q, V6 = D_R, V7 = D_Tmax, V8 = D_DTR; Feb 1st: V1 = NDJ_R, V2 = NDJ_Tmin, V3 = 
NDJ_DTR, V4 = J_R, V5 = J_Tmax, V6 = J_Tavg; Mar 1st: V1 = DJF_R, V2 = DJF_S, V3 = DJF_Tmax, V4 = DJF_DTR, V5 = 
JF_R, V6 = JF_S, V7 = JF_DTR, V8 = F_Q, V9 = F_R, V10 = F_S, V11 = F_Tmax, V12 = F_Tmin, V13 = F_DTR; Apr 1st: V1 = 
JFM_Q, V2 = JFM_R, V3 = JFM_S, V4 = JFM_Tmax, V5 = JFM_DTR, V6 = FM_Q, V7 = FM_R, V8 = FM_S, V9 = FM_Tmax, 
V10 = FM_DTR, V11 = M_Q, V12 = M_R, V13 = M_S, V14 = M_Tmax, V15 = M_Tavg, V16 = M_DTR. 
 

b)  
 
Fig 5(b): Same as (a) but when BIC was used. 

c)  
 
Fig 5(c): Number of times (in 100 iterations) different variables were selected in setting 2; Dec 1st: V1 = N_Q, V2 = N_R, V3 = N_S; 
Jan 1st: V1 = ND_R, V2 = ND_S, V3 = D_Q, V4 = D_R; Feb 1st: V1 = NDJ_R, V2 = J_R; Mar 1st: V1 = DJF_R, V2 = DJF_S, V3 = 
JF_R, V4 = JF_S, V5 = F_Q, V6 = F_R, V7 = F_S; Apr 1st: V1 = JFM_Q, V2 = JFM_R, V3 = JFM_S, V4 = FM_Q, V5 = FM_R, V6 
= FM_S, V7 = M_Q, V8 = M_R, V9 = M_S. 
 

d)  
 
 
Fig 5(d): Same as (c) but when BIC was used. 

Fig. 5. (a) Number of times (in 100 iterations) the different variables were selected in set-
ting 1 when AIC was used; 1 December: V1 = NQ, V2 = NR , V3 = NS , V4 = NT max, V5 = NT min,
V6 = NTavg, V7 = NDTR; 1 January: V1 = NDR , V2 = NDS , V3 = NDT max, V4 = NDDTR, V5 = DQ,
V6 = DR , V7 = DT max, V8 = DDTR; 1 February: V1 = NDJR , V2 = NDJT min, V3 = NDJDTR, V4 = JR ,
V5 = JT max, V6 = JTavg; 1 March: V1 = DJFR , V2 = DJFS , V3 = DJFT max, V4 = DJFDTR, V5 = JFR ,
V6 = JFS , V7 = JFDTR, V8 = FQ, V9 = FR , V10 = FS , V11 = FT max, V12 = FT min, V13 = FDTR; 1 April:
V1 = JFMQ, V2 = JFMR , V3 = JFMS , V4 = JFMT max, V5 = JFMDTR, V6 = FMQ, V7 = FMR , V8 = FMS ,
V9 = FMT max, V10 = FMDTR, V11 = MQ, V12 = MR , V13 = MS , V14 = MT max, V15 = MTavg, V16 = MDTR.
(b) Same as (a) but when BIC was used. (c) Number of times (in 100 iterations) different vari-
ables were selected in setting 2; 1 December: V1 = NQ, V2 = NR , V3 = NS ; 1 January: V1 = NDR ,
V2 = NDS , V3 = DQ, V4 = DR ; 1 February: V1 = NDJR , V2 = JR ; 1 March: V1 = DJFR , V2 = DJFS ,
V3 = JFR , V4 = JFS , V5 = FQ, V6 = FR , V7 = FS ; 1 April: V1 = JFMQ, V2 = JFMR , V3 = JFMS , V4 =
FMQ, V5 = FMR , V6 = FMS , V7 = MQ, V8 = MR , V9 = MS . (d) Same as (c) but when BIC was used.
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a)   
 

Fig 6(a): Cross-validated prediction square errors and average absolute errors corresponding to best-subset GLM (AIC). 

 

b)  
 

Fig 6(b): Cross-validated prediction square errors and average absolute errors corresponding to best-subset GLM (BIC). Fig. 6. (a) Cross-validated prediction square errors and average absolute errors corresponding
to best-subset GLM (AIC). (b) Cross-validated prediction square errors and average absolute
errors corresponding to best-subset GLM (BIC).
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a) !
!
!
Fig 7(a): Cross-validated prediction for Mar 1st and Apr 1st (MAMJ and AMJ inflow) corresponding to different datasets used i.e. 
setting 1 and 2 (AIC).  
 

b) !
!

Fig 7(b): Cross-validated prediction for Mar 1st and Apr 1st (MAMJ and AMJ inflow) corresponding to different datasets used i.e. 
setting 1 and 2 (BIC).!Fig. 7. (a) Cross-validated prediction for 1 March and 1 April (MAMJ and AMJ inflow) corre-

sponding to different datasets used i.e. setting 1 and 2 (AIC). (b) Cross-validated prediction
for 1 March and 1 April (MAMJ and AMJ inflow) corresponding to different datasets used i.e.
setting 1 and 2 (BIC).
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