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Abstract

The data based mechanistic (DBM) approach for identifying and estimating rainfall to
level, and level to level models has been shown to perform well for flood forecasting
in several studies. The DELFT-FEWS open shell operational flood forecasting system
provides a framework linking hydrological/meteorological real-time data, real-time fore-5

cast models, and a human/computer interaction interface. This infrastructure is used by
the UK National Flood Forecasting System (NFFS) and the European Flood Alert Sys-
tem (EFAS) among others. The open shell nature of the FEWS framework has been
specifically designed to make it easy to add new forecasting models written as FEWS
modules. This paper shows the development of the DBM forecast model as a FEWS10

module and presents results for the Eden catchment (Cumbria UK) as a case study.

1 Introduction

New and useful real-time flood forecasting research can be made operational by taking
advantage of the DELFT-FEWS open shell framework. The FEWS modular design al-
lows the modeller to concentrate on producing an effective forecasting algorithm which15

can later be converted to a FEWS module. The FEWS framework provides tried and
tested code for accessing real-time hydrology/meteorology data to drive the model and
permit data assimilation, together with graphing facilities to produce a user-friendly
interface for the end user. This paper presents the Data Based Mechanistic method
for real-time flood forecast modelling incorporating data assimilation as described by20

Young (2002). The method is used to form a representation of the Eden catchment
network with a termination node at Carlisle (Cumbria UK); a location prone to flooding
(Archer et al., 2007). We then describe the structuring of this model in a format suitable
for inclusion within the DELFT-FEW (and by extension the UK’s NFFS).
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2 The DBM flood forecasting model

A DBM catchment model for real-time flood forecasting can contain one or more nodes.
When several nodes are connected together in a network the DBM model becomes
semi-distributed. While a semi-distributed model adds complexity, it also provides the
attractive properties of accounting for spacial variability in the rainfall field, the provision5

of forecasts at intermediate sites, and a degree of robustness should one or more data
streams fail. A number of studies have shown good results using this approach (see for
example Romanowicz et al., 2006; Leedal et al., 2009; Alfieri et al., 2011). The DBM
approach models the relationship between an upstream level or rainfall as input and
the downstream level. By choosing level as the model output, it is no longer possible to10

interpret results according to principles of mass balance; however, this choice provides
a number of advantages: (1) it remove the reliance on a rating curve transformation
which will generally introduce additional uncertainty; (2) given present sensor technol-
ogy, the observation of level is generaly more accurate (and cheaper) than measures
of flow; (3) level is often the variable of interest when choosing whether or not to issue15

a warning; and (4) the relationship between rainfall/upstream level and downstream
level is generally closer to linear, and therefore easier to model using the DBM method
(at least during the in-bank phase of an event).

The fundamental component of a DBM node is the system transfer function. This is
represented in the discrete time case by Eq. (1).20

yk =
B(z−1)

A(z−1)
uk−δ + ξk (1)

where B(z−1) and A(z−1) are polynomials of order m and n, respectively such that
B(z−1) = b0+b1z

−1+. . .+bmz
−m and A(z−1) = 1+a1z

−1+. . .+anz
−n; z−1 is the discrete

time backwards shift operator i.e., z−iuk = uk−i ; δ is an integer value representing the
time lag of the system i.e., output (y) at time k is a response to the input stimulus (u)25

applied at time k −δ; ξk is a noise input representing all the stochastic components of
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the system not accounted for by the model. The model orders (values for m and n) and
the value of the polynomial coefficients are identified and estimated from time series
data. A large collection of algorithms for identifying, estimating and processing this
type of model have been collected together in the Captain™ toolbox for the Matlab™

numerical programming environment (Taylor et al., 2007).5

2.1 Mechanistic interpretation

Young (1998) has writen extensively on the mechanistic interpretation of DBM models.
A key step in this process is to decompose a DBM model of order greater than one
to an equivalent assemblage of first order components and interrogate the properties
of these. A first order transfer function (B(z−1) = b0 and A(z−1) = 1+a1z

−1) can be10

characterised by steady state gain: b0/1+a1, and time constant: −∆t/ ln(a1) where ∆t
is the discrete sampling time (commonly 15 or 60 min in operational flood forecasting
applications). An important step in the DBM approach is to guarantee that a meaningful
mechanistic interpretation exists for the linkage and characteristics of each of these
first order components. This step is intended to guard against empirical over-fitting that15

could result in a poor extrapolation to system behaviour outside that described by the
calibration data.

2.2 State space formulation

It is straight forward to convert the transfer function representation of Eq. (1) to the
equivalent state space form of Eq. (2).20

xk = Fxk−1 +Grk−δ +qk

yk = hTxk + ξk (2)

where xk is a vector of internal model states; the elements of F, G, and h are de-
termined by the TF parameters; rk−δ is a vector of suitably lagged input values. For25

operational flood forecasting, these will generally be rainfall or upstream levels possibly
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transformed by a nonlinear function (see later). δ is the identified advective time delay
between input and output; qk is a vector of process noise [q1,k · · ·qn,k ]T with each ele-
ment applied to the associated n internal states; ξk is the observation noise associated
with the measurement. Here we make the simplifying assumption that the elements of
qk and ξk are zero mean, serially uncorrelated and statistically independent, normally5

distributed random variables with variance at sample k specified by q1,k · · ·qn,k and
ξk . The facility to specify variance at each sample period allows for heteroskedasticity
within the modelling framework (see later).

2.3 Input nonlinearity function

To increase the degree of linearity between the input and output of the model it is of-10

ten beneficial to apply a transform to the input. The DBM approach does not impose
a specific form for the input nonlinearity function. Instead it is left to the modeller to
choose an appropriate function. Beven et al. (2011) describe a number of methods
including power law, radial basis functions, piecewise cubic Hermite data interpola-
tion, and Takagi-Sugino fuzzy inference systems. From a code-writing perspective, any15

candidate input nonlinearity method can be hidden behind a standard function call tem-
plate thus abstracting the specific computation approach from the other components
of the forecasting algorithm. In line with best-practice in software design, this approach
encourages modularity and abstraction as a means to support robust and extensible
code; a practice which has been repeated as much as possible throughout the DBM20

FEWS module design.

2.4 Data assimilation

The state space form of Eq. (2) is well suited to data assimilation schemes using the
Kalman Filter (KF) (Kalman , 1960). Young (2002) describes a modified KF designed
for the DBM model structure. This two-stage data assimilation approach is shown in25
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Eq. (3).

Forecast:

x̂k |k−1 = Fx̂k−1 +Grk−δ

Pk |k−1 = FP k−1F
T + σ̂2

kQ

ŷk |k−1 = hT x̂k |k−15

Correction: (3)

x̂k = x̂k |k−1 +Pk |k−1h[σ̂2 +hTPk |k−1h]−1{yk − ŷk |k−1}
Pk = Pk |k−1 −Pk |k−1h[σ̂2 +hTPk |k−1h]−1hTPk |k−1

ŷk = hT x̂k10

where Pk is the error covariance matrix associated with the state estimate vector x̂k ; Q
is a square matrix with diagonal entries representing the ratio of variance of the process
to observation noise for the model states (off-diagonal entries = 0) i.e., the diagonal
elements of Q are [

q1,k

ξk
· · · qn,k

ξk
]; σ̂2

k is an estimate of the heteroskedastic observation
noise variance at sample k calculated using the empirical formula shown by Eq. (4).15

σ̂2
k = θ0 +θ1ŷ

2
k (4)

where θ0 and θ1 are hyperparameters determining the degree of inflation in observa-
tion uncertainty for increasing amplitude of the observation. The f -step forecast (where
f ≤ δ) is produced by iterating the forecast step of Eq. (3) the required number of times.
The estimate of the variance of the forecast output ŷk+f |k is calculated as shown by20

Eq. (5).

Var(ŷk+f |k) = σ̂2
k +hTPk+f |kh (5)
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2.5 Hyperparameter optimisation

The hyperparameters in Eqs. (3) and (4) are multiplicative and can not be optimised
directly. Smith et al. (2012a) have shown that an optimisation up to proportionality is
possible if θ0 from Eq. (4) is fixed at 1 and optimisation is limited to θ1 and the diag-
onal element of Q. This provides a ratio for the distribution of process noise between5

internal state variables; together with θ1, the degree of inflation of observation noise
variance for increasing observation level. Adopting this approach means that during
the optimisation process Eq. (4) is replaced by:

σ̂2
k = cscale(1+θ1ŷ

2
k ) (6)

If we then make the simplifying assumption that the model residuals are normally dis-10

tributed, cscale can be approximated using Eq. (7).

yk − ŷk
q̂k |k−f

∼ N(0,cscale) (7)

In the case study described below, the model identification and estimation were per-
formed using the RIV, RIVID and SDPfunctions from the Captain™ toolbox described
earlier. The hyperparameter optimisation uses the Matlab™ lsqnonlin function.15

2.5.1 Forecast uncertainty

It is significant that the KF algorithm operates as an estimator for the probability distribu-
tion of the state estimates. The online updating of the state estimate error covariance
matrix Pk and by extension the estimate of the f -step ahead forecast error variance
provides important information about the properties of the forecast produced by the20

DBM node and therefore an estimate of the range within which the future observations
will fall. The estimate of uncertainty is dependent on the underlying statistical assump-
tions of the KF, the KF hyperparameters, and the heteroskedastic variance model. All
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of these assumptions will be simplifications of the true nature of the system; however,
it is straight forward to test the performance of the forecast uncertainty estimates as
part of the model calibration process and as an ongoing performance measure during
operation.

The ability to provide an estimate for the forecast uncertainty is an increasingly im-5

portant component of operational flood forecasting (for an extended discussion of this
topic see Beven, 2012, 289–311). As an example of the general move towards gener-
ating probabilistic forecasting within FEWS see Weerts et al. (2011) who describe the
quantile regression method applied to deterministic forecasting models. The estimation
of forecast uncertainty can be displayed in a clear fashion alongside the mean forecast10

using the FEWS data visualisation mechanism.

2.6 Adaptive gain

Finally, we include an adaptive gain mechanism such that the true output (yk) is as-
sumed to be a product of a deterministic, time-varying scalar gain term (gk) and the
model estimate (ŷk). The gain operates independently of the main data assimilation15

scheme and is designed to account for long term bias in the equilibrium response of
the catchment such as seasonal variations or gradual adjustments to channel geom-
etry. The time variation in the gain term is modelled as a random walk process again
employing a KF algorithm to update the gain state on-line in response to long-term
mismatch between observed and forecast level. Although the adaptive gain estimator20

generates a distribution for gk , the approach taken for the DBM FEWS module is to
collapse this distribution to the mean and use this as a deterministic scalar. The un-
certainty estimate in this term is therefore discarded. While this may result in a loss
of information, it greatly simplifies the implementation and optimisation of the forecast
model by removing the requirement of treating the interaction between the adaptive25

gain and the state estimate uncertainties. A justification for this simplification is that the
time frame for adjustment in the adaptive gain term is very much longer than that of the
state vector adjustment.

7278

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/7271/2012/hessd-9-7271-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/7271/2012/hessd-9-7271-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 7271–7296, 2012

DBM real-time flood
forecasting

D. Leedal et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

In operation, the adaptive gain is fixed during the f -step forecast period as observa-
tions are not available. The modified scalar Kalman Filter proposed by Young (2002) is
used for the adaptive gain:

pk |k−1 = pk−1 +qg

pk = pk |k−1 −
p2
k |k−1ŷ

2
k

1+pk |k−1ŷ
2
k

(8)5

ĝk = ĝk−1 +pk ŷk{yk − ĝk−1ŷk}

where pk is the error variance term associated with the gain estimate (ĝk); qg is a noise
variance ratio that determines how quickly the gain is allowed to adjust; ŷk is the esti-
mate of level prior to applying the adaptive gain; and yk is the observed level.10

In the Eden example described later the qg terms were tuned manually taking values

between 1×10−2 and 1×10−5 depending on the characteristics of the node. This value
was then held constant during the optimisation of the hyperparameters in Eqs. (3) and
(6). Ongoing research is taking place to include the hyperparameters of the adaptive
gain mechanism together with the main KF hyperparameters and optimise both to-15

gether. As stated above, this is challenging due to interaction among the parameters in
an unconstrained optimisation.

The adaptive gain component of the DBM FEWS module is not limited to the DBM
modelling scheme and can be used as a simple data assimilation mechanism applied
to the output of alternate model schemes. Smith et al. (2012b) describes the use of20

adaptive gain in a number of real-time flood forecasting examples.

3 DBM FEWS module

The preceding section outlined the required components of a typical DBM model node.
The identification, estimation and optimisation of a node is not part of the FEWS
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framework (any computational environment could be used to generate the node). The
necessary requirements for inclusion of a node as a FEWS module are shown in Ta-
ble 1. Within the FEWS open shell framework it greatly aids licensing and therefore dis-
semination if the module can be written in an open source language. The R language
(GNU General Public License version 2) proved an ideal language for implementing5

the FEWS DBM module (R Development Core Team, 2008).

3.1 Overview of FEWS

The FEWS open shell framework provides a central database of hydrological and
meteorological time series together with a set of sophisticated modules, utilities, and
adapters to providing a linkage between this and an extensible inventory of forecasting10

models, external databases, and an interface to the user (Werner, 2008). FEWS delib-
erately stores data in a model agnostic format, and handles data using a generic XML
schema. In this way FEWS avoids the limitation of being a model-specific utility and
can instead interface with a range of present and future forecast models.

The FEWS database access module and module adapters can perform sophisti-15

cated merging of time-series data. This allows a forecast model to request a segment
of time-series processed such that observations take precedence followed in order by
forecasts from the least distant temporal index (Deltares, 2012). This is essential for
multi-node DBM forecasting where the downstream nodes will themselves generate
forecasts based on a cascade of upstream forecasts.20

3.2 Main function logic

The DBM FEWS module has been designed to be flexible, extensible, and as clear as
possible for future code collaboration. We have produced a data specification sheet that
describes the format of the data to extract from the central hydroinformatic database.
It is then straightforward for the FEWS DBM model adapter to be configured such25

that at each forecast cycle the correctly formatted data segment can be collected and
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passed to the DBM module. The data segment contains a header line that identifies
the required catchment node. This segment is placed in the catchment’s work folder
and the catchment’s main R script is then called with command line arguments iden-
tifying the data file to operate on. The main script moves the operating system to the
required catchment node sub-directory and sequentially calls the node’s functions. The5

functions that make up each node are called with a uniform function template. The pa-
rameters of the node that are incorporated into the function computations (i.e., those
described in Table 1) are loaded from file each time the forecast cycle is invoked and
saved back to file upon exit from the forecast cycle. This provides a robust form of state
persistence. The actual computation method operating on the node parameters and10

data can vary between nodes provided the input and output conform to the template.
Following the sequential execution of each node function the main script then deposits
the output data in the catchment’s work folder for collection by the FEWS adapter and
eventual storage in the central hydroinformatic database. The high level flow control for
a single forecast cycle is shown in Fig. 1. The directory structure for a catchment model15

is shown in Fig. 2.

4 Eden case study

The Eden catchment is located in Cumbria, North West England. It has an area of ap-
proximately 2400 km2. The principle rivers are the Eden, Eamont, Irthing, Petteril and
Caldew. The key runoff generating regions are the Central Lake District peaks (includ-20

ing Skiddaw and Helvellyn) to the West, the Pennine moors to the East, and the Kielder
Forest to the North East. The high rainfall and steep terrain result in a fast catchment
response. Flood warning lead times beyond six hours are difficult without recourse to
numerical weather predictions. The catchment is well instrumented by the UK’s En-
vironment Agency with some 31 level and 16 rainfall telemetered gauges. Figure 325

shows the Eden catchment together with the location of the gauge sites used by the
DBM model network.
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The demonstration Eden DBM FEWS module uses a network of 6 model nodes. The
configuration of the nodes is shown in Fig. 4. The name of the Environment Agency
gauge sites supplying input (rain or level) and output (level) for the nodes is also shown.

4.1 Results

4.1.1 Calibration5

The calibration data set ran from 9 September 2003 to 10 March 2005. This period
included the unprecedented 8 January 2005 event (see Mayes et al., 2006; Archer
et al., 2007; Roberts et al., 2009). The results of the DBM model at 2, 4, 6 and 7 h
forecast lead times are shown in Fig. 5.

4.1.2 Testing10

A flood event of significant magnitude (though still in-bank) occurred in November 2009.
This event occured four years after the end of the calibration data period. The perfor-
mance of the DBM FEWS module at lead times of 2, 4, 6 and 7 h for this event is shown
in Fig. 6.

A summary of the probability of detection (POD) and false alarm rate (FAR) per-15

formance of the Eden DBM module over 57 threshold crossing events for the testing
period is shown in Table 2. Table 3 shows the Nash-Sutcliffe efficiency score for the
50th percentile forecast using (1) all data and (2) the subset above 3m depth. The
table also shows the percentage of observations that fell outside the one and two stan-
dard deviation ranges. It is clear from subset (2) that very good global performance20

statistics can be somewhat misleading; providing an over-optimistic impression of the
forecast performance at the high-flows relevant to flood risk management (this is not an
issue confined to the DBM FEWS model). A more realistic investigation of forecast skill
is best obtained from a visual investigation of performance for significant flood events
such as those provided by Figs. 5 and 6.25
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A description of POD and FAR calculation is given in Environment Agency (2006).
The POD and FAR results show the ability of the forecast to track observations – this is
greatly aided by the data assimilation process. As expected, the number of false alarm
events increases as FAR is calculated for percentiles above the mean. The calculation
of forecast uncertainty could be used to provide warnings based on a given percentile5

appropriate to the sensitivity of individual sites, or allow ranked or continuous probabil-
ity score statistics to be calculated and used for cost benefit decision support analysis
(Murphy, 1970) (see also Jones et al., 2003, for a review of model performance mea-
sures including probabilistic methods).

The uncertainty estimate provides a valuable model evaluation that would not be10

available were the forecast purely deterministic.

5 Conclusions

This paper demonstrates that, consistent with previous studies (Lees et al., 1994; Ro-
manowicz et al., 2006, 2008), the DBM method can produce effective semi-distributed
catchment models for real-time flood forecasting. The data assimilation process is15

based on the KF and is therefore an inherently probabilistic estimator of the river level.
This allows the DBM module to provide not only a mean forecast but also an indication
of the uncertainty associated with the level forecast in the form of an heteroskedastic
normal distribution. The user then has a useful indication of the scale of spread for
the forecast period. Communicating this information to the user is performed by the20

FEWS software via flexible data visualisation tools. The default configuration for the
DBM module renders the mean forecast (the 50th percentile value) for both past val-
ues and forecast together with a coloured patch to indicate the forecast uncertainty
at the 95th percentile range. Past forecast values and observations are also viewable
together with the 95th percentile uncertainty range for a given f -step value. This al-25

lows the user to gain insight into the performance of the uncertainty estimation. Data
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visualization methods for communicating probabilistic flood forecasting data is an ac-
tive area of flood risk management research (see Leedal et al., 2010).

The forecast probability distribution also allows the user to issue warnings at a range
of approximate likelihoods using a consistent, numerically-derived framework; for ex-
ample, supervisors of sensitive infrastructure can be issued with warnings at a lower5

level of inundation probability. However, it is still far from clear how best to use the ad-
ditional information provided by probabilistic forecast methods (see Todini, 2004, for an
overview of the issues involved).

The DELFT-FEWS framework provides a flexible and extensible mechanism for em-
bedding flood forecasting models within a wider hydroinformatic infrastructure. The10

exercise presented here provides a demonstration of how this process can be ac-
complished. Development of the DBM module for FEWS provided a test-case for the
knowledge transfer (KT) process between the research and applied fields. The ease
with which this transfer was accomplished for the Eden case study demonstrates the
strength of the FEWS philosophy and its benefits in achieving KT.15
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Table 1. The data structure for a DBM model node in FEWS. Each node also includes specific
input nonlinearity, heteroskedastic variance, and data preprocessing functions.

Data item description

x model states
ŷ estimate for output
σ̂2 estimate of variance for ŷ
p,g,qg adaptive gain parameters as defined in Eq. (8)
m order of TF numerator polynomial
n order of TF denominator polynomial
isLevel Boolean defining if input is level or rain
outOffset offset for output
inOffset offset(s) for input(s)
δ integer forecast lead time
F ,G,h,P,Q KF parameters as defined in Eq. (3)
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Table 2. Performance measures for the Eden DBM module at Sheepmount for the 6 h forecast
lead time.

Statistic mean mean+ s.d. mean+2 s.d.

POD 100 % 100 % 100 %
FAR 38.2 % 54 % 61 %
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Table 3. Summary of model performance for observations above (row 1) 0 m, and (row 2) 3 m.
Column 3 (N-S) is the Nash-Sutcliffe efficiency measure. Columns 4 and 5 show the percentage
of observations falling outside the 1 and 2 standard deviation range described by the forecast
uncertainty parameterisation. Results are for the Eden DBM module at Sheepmount for the 6 h
forecast lead time.

Depth number of N-S observations observations
(m) observations outside 1 s.d. outside 2 s.d.

0 35 007 0.98 17.3 % 5.1 %
3 334 0.45 74.2 % 34.3 %
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Fig. 1. Flowchart for the main DBM FEWS work flow.
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Fig. 2. The DBM FEWS module makes use of a file structure for organising model nodes. Each
catchment is isolated within a separate DBM <name> parent directory. Inside this, the func-
tions of each node are contained within a separate Folder<ID> directory. The main executable
script and common file processing functions are located in the Config directory. A work di-
rectory is used as the repository for input, output and log files. A states directory stores each
node’s internal state data between execution steps. Individual scripts are labelled with either F
for a function, D for a data file, T for a text file, and M for the main executable script.
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Fig. 3. The Eden catchment with location of level (�), and rain (N) gauges used by the DBM
network model.
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Fig. 4. The configuration of the nodes making up the Eden DBM FEWS module.
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Fig. 5. Results for the January 2005 event at Sheepmount (Carlisle). The dots are observed
level (at 2 h intervals), the solid line is the f -step ahead forecast (where f = 2, 4, 6 and 7 h), the
gray area is the ±2 standard deviation estimate of forecast uncertainty.
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Fig. 6. Results for the November 2009 event at Sheepmount (Carlisle). The dots are observed
level (at 2 h intervals), the solid line is the f -step ahead forecast (where f = 2, 4, 6 and 7 h), the
gray area is the ±2 standard deviation estimate of forecast uncertainty.
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