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Abstract

The transboundary Mekong River is facing two on-going changes that are estimated to
significantly impact its hydrology and the characteristics of its exceptional flood pulse.
The rapid economic development of the riparian countries has led to massive plans
for hydropower construction, and the projected climate change is expected to alter the
monsoon patterns and increase temperature in the basin. The aim of this study is to as-
sess the cumulative impact of these factors on the hydrology of the Mekong within next
20-30yr. We downscaled output of five General Circulation Models (GCMs) that were
found to perform well in the Mekong region. For the simulation of reservoir operation,
we used an optimisation approach to estimate the operation of multiple reservoirs, in-
cluding both existing and planned hydropower reservoirs. For hydrological assessment,
we used a distributed hydrological model, VMod, with a grid resolution of 5km x 5km.
In terms of climate change’s impact to hydrology, we found a high variation in the
discharge results depending on which of the GCMs is used as input. The simulated
change in discharge at Kratie (Cambodia) between the baseline (1982-1992) and pro-
jected time period (2032—2042) ranges from —11% to +15% for the wet season and
-10% to +13% for the dry season. Our analysis also shows that the changes in dis-
charge due to planned reservoir operations are clearly larger than those simulated due
to climate change: 25-160 % higher dry season flows and 5-24 % lower flood peaks in
Kratie. The projected cumulative impacts follow rather closely the reservoir operation
impacts, with an envelope around them induced by the different GCMs. Our results thus
indicate that within the coming 20-30 yr, the operation of planned hydropower reser-
voirs is likely to have a larger impact on the Mekong hydrograph than the impacts of
climate change, particularly during the dry season. On the other hand, climate change
will increase the uncertainty of the estimated hydropower impacts. Consequently, both
dam planners and dam operators should pay better attention to the cumulative impacts
of climate change and reservoir operation to the aquatic ecosystems, including the
multibillion-dollar Mekong fisheries.
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1 Introduction

The Mekong is the largest river basin in Southeast Asia, and is shared by the six ripar-
ian countries of China, Myanmar, Laos, Thailand, Cambodia and Vietnam. Its annual
hydrological cycle is driven mainly by a monsoon climate, resulting in a very regu-
lar monomodal flood pulse from approximately July until September. The Mekong has
unique ecological values (e.g. Junk et al., 2006), high aquatic ecosystem productivity
(e.g. Poulsen et al., 2004; Lamberts, 2006), and is able to provide livelihoods for a large
proportion of the people living in the basin (e.g. Keskinen, 2006; Mekong River Com-
mission, 2010b). The high aquatic ecosystem productivity is mainly fuelled by the flood
pulse (Lamberts and Koponen, 2008). This is particularly the case for the large flood-
plains in Cambodia (Kummu et al., 2006; Lamberts, 2006; Lamberts and Koponen,
2008).

A large proportion of the basin’s population is dependent on the availability of rich
natural resources, particularly fisheries (Hortle, 2007; Dugan et al., 2010; Mekong River
Commission, 2010b). At the same time, the basin is facing rapid development related to
water resources management, including various hydropower plans and large irrigation
schemes (King et al., 2007; Mekong River Commission, 2009; Keskinen et al., 2012),
which will alter the current flow regime. On top of these developments, projected climate
change is also expected to alter the flow regime (Eastham et al., 2008; Hoanh et al.,
2010; Mekong River Commission, 2010c; Vastila et al., 2010). Hydropower operation
and climate change are among the most influential drivers of future hydrological change
in the Mekong (e.g. Keskinen et al., 2010); other drivers include, for example, land cover
change, new irrigation and water diversion schemes, and urbanisation.

Changes in the Mekong’s flow regime, especially its flood component, are expected
to have significant impacts on several key functions of the river, such as aquatic ecosys-
tem productivity (Kummu and Sarkkula, 2008; Lamberts, 2008; Lamberts and Kopo-
nen, 2008; Mekong River Commission, 2010c), riverine transport (Kummu et al., 2006),
and freshwater supply. The flow changes are also expected to have an impact on
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agriculture, including e.g. (dry season) irrigation as well as more traditional agricultural
practices such as recession rice (Mekong River Commission, 2010c). It is therefore ex-
tremely important to understand the possible impact of both hydropower operation and
climate change (separately and together) on the basin-wide hydrology of the Mekong.
The impacts of these two drivers on the Mekong’s hydrology have been the focus of
many studies (ADB, 2004; World Bank, 2004; Eastham et al., 2008; Hoanh et al., 2010;
Vastila et al., 2010). However, with the exception of Hoanh et al. (2010) and Mekong
River Commission (2010c), these assessments have only investigated one of these
two drivers.

The impacts of hydropower operation on the basin’s hydrology have mainly been
studied by the Mekong River Commission (MRC) and the Asian Development Bank
(ADB) (Adamson, 2001; ADB, 2004; World Bank, 2004; Hoanh et al., 2010; Mekong
River Commission, 2010c). All of these studies agree on the direction of change (lower
flood peaks and higher dry season flows), but the magnitude of change varies between
the studies due to different models and assumptions (Johnston and Kummu, 2012;
Keskinen et al., 2012). For example, some of the studies (World Bank, 2004; Hoanh
et al., 2010) have included considerable irrigation expansion in the basin, while others
(Adamson, 2001; ADB, 2004) have not included this in their models.

Detailed and reliable climate change studies are scarce in the Mekong. The study
of Kingston et al. (2011) is to our knowledge the only one that uses results of several
General Circulation Models (GCMs) downscaled to the Mekong basin. Their findings
indicate high uncertainty in the direction of climate change impacts, supporting the
general findings for the Asian monsoon region (e.g. Ashfaq et al., 2009). Eastham
et al. (2008) also included results from several GCMs, but did not downscale them to
the Mekong: this may partly explain the more significant increase in wet season runoff
compared to the findings of Kingston et al. (2011). Other studies only use one GCM
to project the climate change impacts on hydrology (Hoanh et al., 2010; Mekong River
Commission, 2010c; Vastila et al., 2010); these studies both used the same GCM
(ECHAM 4), and projected that climate change will lead to more variable conditions
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and slightly increased annual runoff. Simulations carried out by Aerts et al. (2006) and
Ward et al. (2007) suggest that anthropogenic climate change in the coming century
may have as large an impact on Mekong discharge as long-term natural climate change
over the last 9000 yr.

Hoanh et al. (2010) and Mekong River Commission (2010c) are to our knowledge the
only basin-wide studies in which both climate change and basin development activities
(including hydropower) are assessed together. However, both of them used only the re-
sults of one GCM (ECHAM4) to project climate change. Yet, both regional (e.g. Ashfaq
et al., 2009) and Mekong-specific (Kingston et al., 2011) studies have shown that there
is no general consensus of the impacts of climate change on monsoon climates, as dif-
ferent GCMs show different impacts, particularly with regards to precipitation. Hence,
we see that it is essential to use multiple GCMs to provide a range of possible future
climatic conditions and consequent hydrological impacts.

The aim of our study is to assess in detail the individual and cumulative impacts of
climate change and hydropower development on the hydrology of the Mekong River.
To achieve our aim, we downscaled five GCMs that performed well in the region ac-
cording to the analyses by Eastham et al. (2008) and Cai et al. (2009). In addition,
a hydropower operation optimisation algorithm was developed to simulate the reservoir
operations of both existing and planned hydropower dams. The downscaled GCM data
for 2032—2042 AD and hydropower operation rules were incorporated in a state-of-the-
art distributed hydrological model to simulate their separate and combined effects on
river flow. The used timeframe was selected so that it would link to the on-going dis-
cussion about hydropower dams: a great majority of the planned dams are expected
to be ready by 2030 (Mekong River Commission, 2009; Kummu et al., 2010). The em-
phasis of our analysis is on computing the possible changes in discharge at Kratie in
Cambodia (Fig. 1), as the discharge there largely defines the nature of the flood pulse
in the highly productive floodplains of Cambodia and Vietnam.

We acknowledge that the considered climate change and hydropower developments
impact multiple other factors as well, but in order to maintain focus we are in our
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analyses looking only at the hydrological impacts. Moreover, although the analysed
drivers (i.e. hydropower reservoir operation and climate change) are often seen as
the most important factors for future hydrological changes in the Mekong (e.g. Kesk-
inen et al., 2010; Mekong River Commission, 2010c), those are not the only driving
forces causing changes to the hydrology and water-related resources. Others include,
for example, irrigation expansion, inter-basin water transfers, land-cover change and
urbanisation. These important factors are, however, outside the scope of this paper
and should thus be subject for future studies.

2 Study area: the Mekong basin

The Mekong River extends from the Tibetan Plateau in China to the Mekong Delta
in Vietnam. The river basin is located between latitudes 8° N and 34°N, containing
uplands with mountains over 5000 m and alpine climate in the northern part of the
basin, and large tropical floodplains in the southern part of the basin.

The lower part of the basin belongs mostly to tropical savannah and monsoon cli-
mate zones, where the year is divided into dry and wet seasons. The wet season lasts
approximately from early May to October, and the dry season from November to April.
The wet season climate is dominated by the summer monsoon, arriving partly from
the Southwest and partly from the Southeast. In addition to the monsoon, the climate
is affected by tropical cyclones coming from the east. These cyclones contribute to
precipitqation mainly during August, September, and October (Mekong River Commis-
sion, 2005). The uppermost part of the basin is located in the Tibetan plateau, where
the precipitation distribution is similar to that in the lower part of the basin, with most of
the precipitation occurring during summer. Due to lower temperatures caused by high
elevation, the precipitation during winter falls mainly as snow. In the upstream basin
areas with highest altitudes, there are also several glaciers with a combined surface
area of ca. 320 km? (Armstrong et al., 2005).
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The Mekong River basin covers an area of 795 000 km?, and has an average outflow
of 15000m3s™" (475 km?® p.a.) (Mekong River Commission, 2005). The basin is usually
divided geographically into the upper and lower parts, with the division point at Chiang
Saen, Thailand, which is close to the border with China (Fig. 1). The upper basin,
from the headwaters to approximately Chiang Saen, is steep, and falls from elevations
above 4500 m to about 500 m over a distance of 2000 km, with an average slope of
2mkm~'. In the lower basin, from Chiang Saen to Kratie, the river has a moderately
steep slope, with an elevation drop from 500 m to a few tens of meters over a course of
2000 km, or about 0.25mkm™" on average. Downstream from Kratie, on the Mekong
floodplains and delta, the river bed is more or less flat, reaching the South China Sea
after a distance of 500 km with a fall in elevation of 15m, giving this section of the river
an average slope of 0.03 mkm™" (Mekong River Commission, 2005).

Due to the monsoonal climate and the steepness of the riverbed in the upper and
lower basin, the hydrograph of the Mekong River is single-peaked, with large differ-
ences between high and low flow values. At Stung Treng, where the river enters the
Cambodian plains from Lao PDR, the average annual flow is about 13 000 m° 3‘1, while
the average annual maximum is 51 500 m>s~" and the minimum is 1700 m®s™" (com-
puted from years 1970-2002 data).

3 Data

For the basis of the distributed hydrological model of the Mekong basin used in this
study, a 5km x 5km resolution raster dataset was constructed using SRTM 90 m eleva-
tions (Jarvis et al., 2008), Global Land Cover 2000 (GLC2000, 2003), and the FAO soil
map of the world (FAO, 2003). The elevation data were first aggregated to 1km x 1km
resolution, and land cover and soil data were aggregated by reclassifying the land-
use data to nine classes, and the soil data to eight classes. After reclassification, all
raster data were aggregated to 5km x 5km resolution and cropped using the Mekong
catchment boundary (Mekong River Commission, 2010a). A 5 km flow direction raster,
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required by the hydrological model, was computed separately by calculating the mini-
mum elevation from the 1 km DEM data. The main course of the Mekong was forced
into the flow direction raster by lowering the elevation model along the river’s course.

3.1 Meteorological input data

Daily meteorological input data for the model were obtained from meteorological station
observations. Due to data availability and data quality reasons, the model was config-
ured to use precipitation, and daily minimum and maximum temperatures, for the soil
surface water and energy balance computation. Meteorological data were collected for
the period 1981-2005 from 151 precipitation and 61 temperature stations, the locations
of which are shown in Fig. 1. Precipitation data were mainly extracted from the MRC
hydrometeorological database (Mekong River Commission, 2011) and supplemented
with GSOD (Global Surface Summary of Day) data (NCDC, 2010) for the Chinese part
of the Mekong basin (see Fig. 1). Temperature data were taken from the same two
datasets and were supplemented with NCEP Reanalysis 2 (NOAA, 2011) data in Laos
and Cambodia (see Fig. 1). The MRC data were quality assured by the data provider
and the GSOD data were quality checked by Rasanen et al. (2012).

3.2 Discharge data

From the existing Mekong discharge gauging stations we selected six for use in the
calibration and validation of the hydrological model: Chiang Saen, Vientiane, Nakhom
Phanom, Mukdahan, Pakse, and Stung Treng (shown in Fig. 1). The discharge data
were acquired from the MRC database (Mekong River Commission, 2011). We con-
sider the Stung Treng gauging station to be the most suitable for calibration, as it is the
most downstream observation station with high quality discharge data. In Kratie, which
is located further downstream, there are some problems in discharge data, probably
induced by gradual changes in river cross-section. It was thus considered not adequate
for the calibration and validation of the hydrological model.
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3.3 Reservoirs

The reservoir data for existing, under construction and planned dams were obtained
from the MRC hydropower database (Mekong River Commission, 2009). There are
altogether 136 reservoirs in the hydropower database, with most of them being still at
planning stage. As the MRC database included only the reservoirs in the Lower Mekong
basin (excluding China), we added six reservoirs in the Chinese part of the basin based
on ADB (2004). Some reservoirs were omitted, namely: those with active storage of
less than 2 Mm3; re-regulating dams; and the Don Sahong dam (which captures only
part of the flow of the main river). This resulted in a database of 126 reservoirs that were
taken into account in our study. Many of the included reservoirs have still a relatively
small regulation capacity relative to river discharge, and thus would most likely only
have a small effect on outflows at the basin scale. Since the reservoir operation rules
are not available in the databases, we computed these for each reservoir using a linear
optimisation method presented in the Methods section.

The Lower Mekong basin reservoir locations were taken from the MRC hydropower
database (Mekong River Commission, 2009). Due to the relatively large grid size of
the model, inaccuracies in the model river network, and sparse precipitation data, the
reservoir inflow data may be biased, so that the average inflow to the reservoir may be
larger or smaller than the inflows estimated elsewhere. Summary data of the reservoirs
grouped by riparian country are shown in Table 1. When the sum of the active storage
volume is compared to main river discharge at Stung Treng, the sum corresponds to 96
days of average discharge, 602 days of driest month discharge, or 34 days of wettest
month discharge.

3.4 Climate change data

Five GCMs were selected for downscaling on the basis of their performance in the
simulation of precipitation in the 20th century in the SE Asia region (Eastham et al.,
2008; Cai et al., 2009). For the selected GCMs, the B1 (550 ppm stabilisation) and A1b
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emission scenarios (720 ppm stabilisation) were used (IPCC, 2007). Monthly average
surface temperature (tas) and monthly total precipitation (pr) output covering the 20th
and 21st century were used for the downscaling. The models have various spatial
resolutions, roughly varying between 1° to about 4° cells (Table 2).

4 Methods

We modelled the hydrology of the Mekong basin using VMod, which is a distributed
hydrological model based on a gridded representation of the modelled watershed. The
model grid is constructed from square grid cells, the side length of which may be set
from a few hundred metres up to several kilometres. VMod is a dynamic model, i.e.
the computation is started from a given initial state and advanced through the defined
computation period using time steps from 3—12 h of length. For each time step and grid
cell, the model first computes meteorological variables from the given input data, and
then proceeds to compute soil surface layer processes and vertical soil column water
balance. After all grid cell processes have been computed, the time step is completed
by calculating 2-dimensional soil water flow between the grid cells and water flow into
the river network model. A detailed description of the model computation methods and
model equations can be found in the VMod model manual (Koponen et al., 2010).

4.1 Hydrological model setup

The VMod model grid was constructed from the 5 km raster dataset, which is described
in the data section of this paper. River widths for each grid cell were obtained by esti-
mating discharge from average leaching and computed flow network. Manning’s friction
coefficients were estimated using estimated discharge and values from the literature
(Chow, 1959). The 5km x 5km cell size was used to keep the model computation time
reasonable. The model was run using a daily time step for the soil surface layer and
a 12 h time step for the soil and river modules.
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The initial model parameterisation was obtained from a previous model setup applied
in the area using different input data (Sarkkula et al., 2010). To refine the model, the
available data period was divided into a calibration period (1982—1991) and a validation
period (1993-1999). Year 1992 was not used due to possible inaccuracies in the GSOD
data in the Chinese part of the Mekong. Computation periods started on 1 April, and
finished on 31 March.

Temperature and precipitation were interpolated for each model grid cell from the
three nearest observation locations using inverse distance weighting and elevation cor-
rections. This interpolation was used since the observation data are sparse (excluding
Thailand). Using the three nearest locations also means that the interpolation evens
out local maximum and minimum values so that a single large or small precipitation
value has less impact on the runoff. Elevation correction factors were used to modify
the observed weather data using the difference of elevation between the model grid cell
elevation and the elevation of the observation stations. For precipitation, a multiplica-
tive correction was used with multiplier 1 + 0.0002h, where h is the elevation difference
in metres. For temperature, an additive correction with addition of —0.006/ was used.
The precipitation correction factor was determined in a separate study in two small
catchments in Thailand (Sarkkula et al., 2010). The temperature correction value used
is somewhat smaller than the standard 0.0065°Cm™" temperature lapse rate. A re-
cent study (Minder et al., 2010) supports using an even smaller correction factor for
temperature.

Evaporation was computed using the Hargreaves-Samani evaporation formulation
(Hargraeves and Samani, 1982). This method estimates potential evaporation based
on measured daily minimum and maximum temperatures, latitude, and date. Evapo-
transpiration in the model also depends on leaf area index (LAI), which was computed
using a method in which the LAl increases for warm conditions when water is avail-
able and decreases in cold and/or dry conditions. LAl minimum and maximum values
depend on land-use type.
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4.2 Hydrological model calibration and validation

After setting up the model grid and the data, the model was calibrated against mea-
sured discharge for the calibration period. The whole basin was calibrated as one unit
so that grid cell parameters are dependent on land cover and soil type, but not the loca-
tion of the grid cell within the basin. The Stung Treng gauging station was used as the
main calibration point being the most downstream station with high quality discharge
data (see Sect. 3.2). The Chiang Saen gauging station was used to calibrate param-
eters that affect only the upper basin, such as snow and glacier related parameters,
whereas the other discharge gauging stations were mainly used for verification. The fit
between modelled and measured discharges was evaluated using the Nash-Sutcliffe
efficiency coefficient E (Nash and Sutcliffe, 1970; Krause et al., 2005). The validity of
the model calibration was then checked by computing the validation period using the
previously calibrated parameters, and comparing the fit from the validation period to
calibration period results (Table 3).

For the calibration period, the model agreement is better at the downstream stations
than at the upstream stations (Table 3). In the upper part of the catchment the model
somewhat underestimates dry season flows, and computed discharge peaks do not
always match measured discharge peaks (Fig. 2). At Nakhon Phanom, the location
with the lowest coefficient £, the modelled discharge is 12 % larger than the observed
discharge. The best agreement between the modelled and observed data is for Pakse
and Stung Treng (Table 3).

For the validation period, the agreement between modelled and observed discharges
is slightly worse for the two most upstream stations (compared to the calibration pe-
riod), but somewhat better for the other stations (Table 3). In the upper basin, the lower
E values can be partly explained by the operation of the Manwan dam (closed 1993)
in the Chinese part of the catchment, which is not taken into account in the model.
Generally, the agreement between observed and modelled data is good for both the
calibration and validation periods.
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4.3 Climate model downscaling

In order to assess the potential impact of climate change on hydrological processes
at the basin scale, it is essential to downscale GCM data, as the spatial resolution of
GCMs is too coarse for basin-scale hydrological modelling. The downscaling process
was carried out using a statistical downscaling method. The downscaled parameters
are precipitation, average daily temperature, minimum daily temperature, and maxi-
mum daily temperature.

To create the future daily time-series, changes observed in the monthly GCM data
between a baseline and future period were applied to the daily observed time series;
this is known as the delta or change factor method (see, e.g. Diaz-Nieto and Wilby,
2005; Choi et al., 2009). Delta factors were calculated compared to the reference period
of 1981-2005. The change was calculated over 25 yr periods in order to distinguish the
long-term trend from the GCM output, and not the (natural) annual variation. A moving
window of 25 yr was used and compared to the baseline situation for each month (i.e.
January, February, March, etc.). The delta factors for temperature were calculated as
a fraction of the standard deviation instead of an absolute increase (see Eq. 1) in order
to account for differences between observed and modelled variability. For precipitation,
the relative increase in average precipitation was calculated with the moving window
(see Eq. 2) as precipitation does not follow a Gaussian distribution, meaning that the
standard deviation is not a correct indicator of its variation.

7-series,/ - 7-ref,/
ATMP - (1)
O-ref,/

series,/

Appe = — (2)

ref,/

In Eq. (1) and (2), ?Series,,- and Eseries,,- are the (25 yr) average for month / of a par-

ticular month in the GCM time series; T ;; and P, are the (25 yr) averages for
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temperature and precipitation for the reference period 1981-2005 for month /; and
Oref,; IS the standard deviation of the monthly average temperature during the reference
period for month /.

The calculated change factors were subsequently used to perturb a daily time-series.
This time-series was created by replicating the observed 25 yr. The change factor found
for a specific month was subsequently used to adjust all daily data in that month. Tem-
peratures were increased by the amount of standard deviations denoted by the delta
factor and precipitation was multiplied with the delta factor. The average temperature,
minimum temperature, and maximum temperature were all adjusted using the delta
factor found in the GCM data for the average temperature. In other words, it was as-
sumed that no change in the diurnal cycle of temperature occurs. This was a necessary
assumption, as the monthly GCM data do not contain any information on the maximum
and minimum temperatures.

4.4 Reservoir operation rules

To define reservoir operation, a linear programming optimisation (e.g. Dantzig and
Thapa, 1997) was used to estimate monthly outflows for each reservoir separately. The
aim of the objective function was to maximise annual outflow from a reservoir through
hydropower turbines, using the reservoir active storage, estimated monthly inflows,
minimum outflow, and optimal outflow from the reservoir as parameters. An additional
term was included into the objective function to force the filling of the reservoir during
the wet season and emptying of the reservoir during the dry season. Constraints were
also required to keep the reservoir outflow constant during the dry season.

The monthly inflows for each reservoir, which are required in the optimisation, were
estimated from computed 24-yr time series (April 1981-April 2005). Inflows to a spe-
cific reservoir were computed taking into account the optimal operation of all the up-
stream reservoirs. The resulting operation rules aim to overestimate the reservoir us-
age and find an upper limit to the possible effect of reservoirs on Mekong discharges.
Normal reservoir operation rules are often more careful and aim to make certain that
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the reservoir is filled up to full capacity each year. A more detailed description of the
method can be found in Sect. S1 in the Supplement.

We performed the reservoir optimisation procedure first for the baseline conditions.
To ensure correct operation of the reservoirs also under the climate change scenarios,
the reservoir use was optimised separately for each climate change scenario set-up
(i.e. model run).

5 Results

The effects of climate change, reservoirs, and the combination of these on Mekong dis-
charge were assessed using the downscaled GCM results as input to the hydrological
model, and comparing the computation results to the baseline result. The performed
hydrological model runs with associated GCM, emission scenario, and reservoir con-
figuration are listed in Table 4.

5.1 Effect of climate change on temperature and precipitation

The temperature and precipitation of different model runs for the years 2032—-2042
were compared to the baseline data for the years 1982-1992 (Fig. 3; Table 5). Daily
average temperature for the whole catchment, computed as the mean of minimum and
maximum temperature, increased by 0.8°C—1.4°C in the model runs using the A1b
emission scenario, and 0.6 °C—1.3°C in the runs using the B1 scenario. The spatial
distribution of annual average temperature increase is similar for all runs using the A1b
emission scenario: the increases are greater in the southern and northern parts of
the basin when compared to the middle part, and the largest temperature increases
are found in the south-eastern part and in the narrow mid-north part of the catchment
(Fig. 8). For the runs using the B1 emission scenario, the temperature changes show
a similar pattern compared to the runs using the A1b scenario, but the magnitude of
change is smaller in the former.

6583

Jodeq uoissnosiqg | Jadeq uoissnosig

| Joded uoissnosiq |

Jaded uoissnosiqg

HESSD
9, 6569-6614, 2012

Future changes in
Mekong River
hydrology

H. Lauri et al.



http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/6569/2012/hessd-9-6569-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/6569/2012/hessd-9-6569-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

For precipitation, all but one of the hydrological model runs (cnA) project an increase
in annual average precipitation (Table 5). Compared to temperature change, the spatial
distribution of precipitation change differs much more between the model runs (Fig. 3).
In the runs using the A1b scenario, two different precipitation patterns can be identified:
in the first pattern, the middle part of the catchment receives the largest increase of
precipitation (ccA, mpA and ncA), and in the second pattern the largest increases are
in the northernmost and southern parts of the catchment (cnA and giA) (Fig. 3). In the
model runs using the A1b scenario, the precipitation increase ranges from 2.5% to
8.6 %, while in the runs using the B1 scenario the increase ranges from 1.2 % t0 5.8 %
(Table 5).

5.2 Effect of climate change on main river discharge

For the model runs using the A1b emission scenario, the wet season discharges at
Kratie have more variation between the different runs than the dry season discharges
(except for December) (Fig. 4; Table 6). For the wet season, computed monthly dis-
charges show a consistent increase for two runs (ccA, ncA), a varying decrease or
increase for two runs (giA, mpA), and a consistent decrease for one run (cnA). The
increase of discharges is most pronounced at the end of the wet season/beginning of
the dry season in September, October and November. Remarkably, even the direction
of the change induced by climate change differs: the annual discharge change ranges
from a 13.4 % increase to a 10.4 % decrease in Kratie for the A1b runs (Table 5). In
Chiang Saen, there is somewhat more variation between the different runs compared
to Kratie (Fig. 4; Table 5).

In the runs using the B1 emission scenario, the increase at Kratie in September-
October compared to baseline is smaller than in the runs using the A1b scenario (Fig. 4;
Table 6). There is also a decrease in monthly average discharge during June and July,
which is not present in the runs using the A1b scenario. The range of annual discharge
change for the runs using the B1 scenario is from —6.9 % to +8.1 % (Table 5). At Chiang
Saen, the average monthly discharge decreases throughout almost the entire year in
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most of the runs using the B1 scenario, staying at the baseline level only during May
and June (Fig. 4; Table 6). The largest decrease takes place in August.

5.3 Effect of reservoirs on main river discharge

To investigate the effect of reservoirs on the Mekong’'s discharge (without climate
change), the model was run using baseline input data and reservoirs (BL + rv run). The
resulting discharges at Chiang Saen, Vientiane, Pakse, and Stung Treng are shown
in Fig. 5. When compared to the baseline run (BL), the reservoirs cause a clear in-
crease in monthly average dry season (December—May) discharges (by 25-160 % in
Kratie and 41-108 % in Chiang Saen), and a decrease in wet season (June—October)
discharges (by 524 % in Kratie and 3-53 % in Chiang Saen). The largest relative de-
crease is at the beginning of the wet season in July (24 % in Kratie and 53 % in Chiang
Saen) when the reservoirs are filling up after the dry season. During the wettest month,
September, the discharge decreases by 8 % in Kratie and 13 % in Chiang Saen. The
relative increase of discharge during the dry season is largest in the most downstream
section of the catchment at Kratie, whereas the relative decrease during the wettest
month is largest at the upstream part of the catchment at Chiang Saen (Fig. 5).

5.4 Effect of climate change and reservoirs on main river discharge

To examine the cumulative impact of climate change and reservoirs, the climate change
model runs discussed in Sect. 5.2 were computed with reservoirs in the hydrological
model. For the model runs using the A1b emission scenario and reservoirs in Kratie,
the dry season and early wet season discharges are defined mostly by reservoir oper-
ation (Fig. 6). Similarly to the baseline with reservoirs (BL + rv) model run (Fig. 5), there
is an increase in January—May discharge, and a decrease in June—August discharge.
During September, the discharge varies highly between model runs. From October to
December, both the reservoir operation and climate change increase discharges, re-
sulting in higher than baseline discharge values. The model runs using the B1 scenario
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and reservoirs display similar behaviour to the model runs using the A1b emission sce-
nario and reservoirs, but with lower wet season discharges and less variation between
the different GCMs (Fig. 6).

In Chiang Saen, during the dry season and early wet season the model runs using
A1b scenario and reservoirs follow the BL + rv results closely, except for the cnA +rv
run, which has lower than average discharges (Fig. 6). During August and September,
there is a large variation between GCMs, with an average that is similar to BL + rv run
results. October and November discharges for the model runs using A1b scenario and
reservoirs are higher than those for the BL + rv model run. The model runs using the
B1 emission scenario show similar discharge patterns to the A1b runs, but in the B1
runs the wet season discharge is lower, and there is less variation between the GCMs
(Fig. 6).

5.5 Interannual variation of the cumulative impacts of climate change and
reservoir operation

The effect of climate change and reservoirs on discharges has been investigated above
using monthly average changes. In addition, it is important to assess the impacts of
projected climate change on extremes, for example very dry or very wet years. Due to
the change factor downscaling approach used in this study, specific effects of climate
change on extremes (differing from the average change) cannot be assessed. However,
it is possible to estimate the effect of average climate change on dry and wet years.
The computed monthly discharges for the driest and wettest years of the simulation
period for the model runs using the A1b emission scenario, with and without reservoirs,
are shown in Fig. 7. In the simulations without reservoirs there is a small absolute
increase in April-June discharges and a larger increase of discharges for the period of
August—October for both the dry and wet year. The addition of reservoirs to the system
for the dry year leads to a decrease in discharges in July—August and evens out the
flood peak during September. For the wet year, the reservoirs reduce the discharge
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during June and July, but are already full during the largest flow in September and
therefore do not decrease the peak discharge.

5.6 Impact of climate change and reservoir operation on flood pulse parameters

The Mekong river flood pulse at Kratie was characterised using three parameters com-
puted from the river discharge time-series: annual peak discharge, day of peak dis-
charge, and flood volume. The annual peak discharge was computed as the average
discharge of five days around the highest discharge of the year. The peak discharge
day is the day of the year on which the peak discharge occurs. The flood volume was
computed as the cumulative flow during the flood season, i.e. from the start of June to
the end of December.

The flood pulse parameters for all model runs are shown in Table 7. In the climate
change simulations without reservoirs, the flood peak discharge increases 2 % to 20 %
in the runs using the A1b emission scenario and 0 % to 13 % for the ones using the B1
emissions compared to baseline. The flood volume changes by —17% to +7 % in the
runs using the A1b scenario and —13% to +1% in the runs using the B1 scenario. In
the runs with both climate change and reservoirs, the average peak discharge changes
by —15% to +7 % in the A1b + rv runs, and 0 % to —15% in the B1 + rv runs, compared
to baseline. The flood volume decreases by 2% to 25 % in the A1b +rv runs and by
7% 10 22 % in the B1 +rv runs. The large volume reduction is caused partly by the
reservoirs storing water during the wet season and releasing it during the dry season,
and partly by climate change.

The statistical significance of the change in the flood parameters was tested using
a paired two-sided t-test between average parameter values computed from the sce-
nario and baseline data (indicated in Table 7). The test showed the changes in flood
volume to be significant in almost all model runs. The change of peak discharge is
statistically significant for some GCMs, and not for others. We found no statistically
significant changes in the flood peak discharge timing, except for model run mpB.
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6 Discussion

We hope that our assessment of the cumulative impacts of climate change and reser-
voir operations on the Mekong’s basin-wide flow regime will deepen the understanding
of the possible flow changes occurring in the Mekong, and thus also help the planning
of future hydropower dams. Next, our findings are discussed and compared with those
of other existing assessments (Sects. 6.1-6.3), followed by more general discussion
about the remaining challenges and, consequently, future research themes.

6.1 Comparison: impact of climate change on hydrology

On a global scale, climate change is projected to lead to an increase in both evapora-
tion and precipitation (IPCC, 2007). Changes in runoff at the local scale depend then
on the relative change of precipitation compared to the change in evaporation. Accord-
ing to the downscaled results of the GCMs used in this study, annual precipitation in
the Mekong region is generally projected to increase in the future, leading to increases
in river discharges. However, the five GCMs used in this study show large differences
in how the Mekong’s hydrology will change (Fig. 6, Table 7), indicating high uncertainty
in even the direction of hydrological change due to climate change. This will naturally
present a challenge for the assessments focusing on the impacts of hydropower de-
velopment (which is the focus of majority of the assessments in the region), increasing
their long-term uncertainty.

In terms of the impacts of climate change on discharge, our findings and those of
Kingston et al. (2011) both show that there are significant uncertainties in the direction
and magnitude of the change; the variation in simulated discharge between individual
GCMs is relatively large in both studies. Moreover, both studies suggest that the largest
flow changes in the lower Mekong basin, in terms of volumes, occur during August and
September.

There are large differences between our results and those of Eastham et al. (2008)
in terms of the results for the range of different climate change scenarios. Our results
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indicate more moderate impacts on hydrology due to climate change than the latter
(Fig. S2 in the Supplement). Our results from 5 GCMs (A1b scenario) indicate changes
in the discharge at Kratie ranging from —12 % to +16 % with a median of +7 %, whereas
Eastham et al. (2008) projected a change ranging from —2 % to 82 % with a median of
22 % using 11 GCMs (A2 scenario) for year 2030. These differences are likely to orig-
inate from the selection of different sets of GCMs and different scenario assumptions.
Furthermore, Eastham et al. (2008) did not downscale the GCM results to the Mekong.
However, both studies agree that the largest increases of flow occur during the first
(May—June) and last months (September—October) of the monsoon season.

Other basin-wide studies related to climate change impacts on the hydrology of the
Mekong (Hoanh et al., 2010; Vastila et al., 2010) used only one GCM (ECHAM4) as
input to the hydrological model, and therefore we compare solely our ECHAMS re-
sults to their findings. It should be noted that for these studies, the time horizons of
the projections are different, and for climate change also relatively short-term: Hoanh
et al. (2010) projected to 2010-2050; Vastila et al. (2010) to 2030—-2049; and our study
to 2032-2042. Nevertheless, the estimates from our study and Hoanh et al. (2010)
show good agreement in terms of the overall direction of flow changes, but the magni-
tude of change differs (Fig. S3 in the Supplement). The results of Hoanh et al. (2010)
at Kratie suggest a 5-11 % increase in June—November flows and a 19-23 % increase
in December—May flows, whereas our results suggest a 2—6 % increase and a 4-13%
increase in flows for the same months. The total annual flow increase at Kratie based
on the findings of Hoanh et al. (2010) is 7-13 %, whereas our results suggest a 2—
7 % increase. The estimates of Vastila et al. (2010) show better agreement with our
results on the direction and magnitude of the change (Fig. S3c in the Supplement).
Vastila et al. (2010) suggest a 7 % increase in June—November flows, an 8 % decrease
in December—May flows, and a 10 % increase in annual flows at Kratie. All three stud-
ies thus seem to agree on the direction of June—November and annual flow changes
although magnitudes differ. More detailed comparison of the climate change impact
assessments can be found in Sect. S2.1 in the Supplement.
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6.2 Comparison: impact of reservoir operation on hydrology

The overall effect of reservoirs on monthly average flows is similar at all presented
locations, with only the magnitude differing between them. The dry season flow in the
baseline with reservoirs (BL + rv) model run increases by 100-200 %, but peak flow
during the wet season decreases by 20-35 % with respect to the baseline (BL). The
relative increase of dry season flow is larger at the downstream locations, while the
decrease in wet season flow is larger in the upstream locations, due to larger reservoir
storage compared to average flow in the upstream part. The outflow depends strongly
on how the reservoirs are used, i.e. on the operation rules. The presented scenario
results are believed to be near the maximum reasonable reservoir utilisation.

Our results indicate similar changes in Upper Mekong basin (UMB) hydrology com-
pared to other existing studies (Adamson, 2001; Hoanh et al., 2010; Rasanen et al.,
2012). However, the magnitudes of the changes do vary rather significantly between
the studies (Fig. S4a in the Supplement). On a seasonal scale, our findings agree well
with three other studies (Fig. S4b in the Supplement). The differences in the Chiang
Saen results most likely originate from two factors; the studies use different baseline
data periods and different methods for the estimation of reservoir operations. Despite
these underlying differences in the methodologies, all four studies agree well on how
the dam operations will change the downstream flows on the monthly and seasonal
scale.

In Kratie, our findings for the directions of flow changes are also in line with those of
other basin-wide studies (ADB, 2004; Hoanh et al., 2010). The magnitude of change
between the studies differs, however, more than in the UMB case (see Figs. S4 and
S5 in the Supplement). Our results are well in line with the results of ADB (2004) on
both the monthly and seasonal scale. The comparison on seasonal scale shows that
although the direction of change is similar in all three studies, Hoanh et al. (2010)
suggest significantly smaller changes for the December—May months than ADB (2004)
or our study. A reason for this difference is most likely that Hoanh et al. (2010) include

6590

HESSD
9, 6569-6614, 2012

Future changes in
Mekong River
hydrology

H. Lauri et al.

Title Page
Abstract Introduction
References

Conclusions

Tables Figures

1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/6569/2012/hessd-9-6569-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/6569/2012/hessd-9-6569-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

a significant increase in irrigation in their basin wide analyses whereas the two other
studies do not.

6.3 Comparison: cumulative impacts of climate change and reservoir operation
on hydrology

In terms of policy relevance, among the most important findings of our study is that
reservoir operations appear to have a larger impact on the hydrology of the Mekong’s
hydrology than climate change, at least in the near future studied in this paper (2032—
2042). This is especially the case during the dry season. However, our projections
including climate change show a large envelope between different GCMs, indicating
high uncertainty in the future flow regime, especially during the wet season.

The comparison of our results of cumulative impacts of dam operation and climate
change on flow regime with the findings Hoanh et al. (2010) and Mekong River Com-
mission (2010c) is not straightforward for two reasons. Firstly, both Hoanh et al. (2010)
and Mekong River Commission (2010c) incorporated irrigation development in their
study, while we did not take that into account. Secondly, while we used multiple GCMs,
both Hoanh et al. (2010) and Mekong River Commission (2010c) used only one
(ECHAM4). Some level of comparison between these studies is, however, available
in the Supplement.

6.4 Remaining challenges and future research themes

The scope of this paper is to assess hydrological impacts, which forms one of the
first steps in impact assessment processes related to water development or to climate
change. In order to understand the broader environmental, social, and economic im-
pacts, further work is needed to assess the impact of the possible hydrological changes
on ecosystems and water-related resources, and consequently, to people and their
livelihoods and food security. For example Mekong River Commission (2010c) pro-
vides already a promising step forward in this regard. It is also important to notice that,

6591

HESSD
9, 6569-6614, 2012

Future changes in
Mekong River
hydrology

H. Lauri et al.

Title Page
Abstract Introduction
References

Conclusions

Tables Figures

1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/6569/2012/hessd-9-6569-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/6569/2012/hessd-9-6569-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

as pointed out e.g. by Lamberts (2008), even relatively small hydrological alterations
in the flood pulse system may have significant impacts on ecosystem productivity. Our
results could be further used to quantify these flood pulse changes in the most im-
portant floodplains in the basin, and thus to estimate possible implications for aquatic
productivity.

Furthermore, reservoir construction is only one of the many development aspects in
the Mekong causing changes to the river system. Others include, for example, irrigation
expansion, inter-basin water transfers, land use changes, and urbanisation. For exam-
ple the impact of expanded irrigation, if realised as planned, might have significant
impacts on the flow (Hoanh et al., 2010; Mekong River Commission, 2010c). Conse-
quently, the cumulative impacts of different development plans and climate change —
including estimates derived from several GCMs — should therefore be subject to further
studies, building on and extending already existing studies (see e.g. Hoanh et al., 2010;
Mekong River Commission, 2010c).

Reservoirs have also various other impacts on river ecosystems than altered hydrol-
ogy. For example, in the Mekong River, reservoirs have been estimated to block migra-
tion routes of various migrating fishes (Dugan et al., 2010; Ziv et al., 2012) as well as
to trap significant amounts of sediments (Kummu and Varis, 2007; Kummu et al., 2010)
that are important nutrient sources for the aquatic ecosystem. All of these aspects to-
gether are likely to have very significant impacts on the Mekong ecosystem, and more
detailed studies are therefore needed to investigate what are the combined effects
of expected flood pulse change, sediment trapping, and blocking migration routes on
aquatic productivity and to the fisheries in particular.

As our study and the review of earlier climate change studies have shown, there are
uncertainties in the magnitude and even in the direction of flow change assessments.
However, there are also other factors that should be considered together with the cli-
mate change studies based on GCMs. For example Delgado et al. (2010, 2011) report
an increased likelihood of extreme floods and increase in hydrological variance in the
flows of Mekong towards the end of 20th century. But whether the changes in variance
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are climate change related is still not known. The Mekong’s hydrology is also influenced
by several climate variables such as El Nino-Southern Oscillation (ENSO) (Yongqin and
Chappell, 2009; Ward et al., 2010). These factors have been less covered by climate
studies and they are therefore important future research areas. Furthermore, paleo-
climatological studies would increase the understanding of the Mekong’s hydrological
character in the longer historical context.

Our study included hydropower reservoirs that are existing, under construction and
planned, with majority of the studied reservoirs being still at the planning stage (Mekong
River Commission, 2009, 2010c). Hence, the estimated impact of the reservoir oper-
ation represents a kind of ultimate case, and the actual number of reservoirs — and
their consequent hydrological impact — may end up being much smaller. At the same
time, the location of a dam and the related reservoir may have a remarkable effect on
the impacts it is causing, particularly in terms of fish migration. For meaningful and
well-informed hydropower planning, it would thus be beneficial to look at the impacts
of hydropower reservoirs also in a more step-wise manner so that the impacts of dif-
ferent “dam blocks” (e.g. each tributary separately, and mainstream divided into parts)
would become visible. While some studies have already included this kind of step-wise
assessment — most notably Mekong River Commission (2010c), the “dam blocks” have
to our knowledge been divided largely based on their construction timeframes, and not
according to their geographic location.

Finally, our analysis has shown that the VMod model is able to simulate Mekong dis-
charges of the Lower Mekong basin with relatively good accuracy. At Stung Treng, the
simulated monthly averages show good agreement with the measured data, and for
daily discharges the Nash-Sutcliffe efficiency coefficient is greater than 0.9 for both the
calibration and validation periods. Yet, there is always room for further development.
Improvements in the model accuracy would be possible by increasing the model grid
resolution, by using more dense precipitation data, or by modifying the evapotranspira-
tion computation method if the required data for a more accurate computation method
could be obtained.
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7 Conclusions

In this paper we assessed the impact of climate change and reservoir operation on
hydrology of the Mekong River within next 20—30 yr. Although the Mekong River basin
is facing rapid hydropower development, little is known about how the combination of
projected climate change and planned hydropower reservoir operation would alter the
discharge of the main river. We aimed to fill part of this knowledge gap with state-of-
the-art hydrological modelling, using multiple downscaled GCMs and novel reservoir
operation optimisation algorithms, and then looking at the impacts of climate change
and reservoir operations both separately and together.

We found that within the timescale used in our study (2032-2042), climate change
is likely to increase basin precipitation and average temperature. The range between
GCMs is, however, relatively large in both. We also found that under the two used
emission scenarios, A1b and B1, there is a large variation in results between the model
runs using different GCMs. In some cases even the direction of climate change impacts
to Mekong discharges remains uncertain, We see that this highlights the importance of
using multiple GCMs — instead of just one GCM as has so far been mainly the case —
when estimating the possible climate change impacts to the Mekong discharge.

Our study also shows that, at least within the studied timeframe, the impacts of the
reservoir operations are clearly larger than the effects of climate change, resulting in
higher dry season flows and lower flood peaks in Kratie and particularly affecting the
dry season flow. The cumulative impacts of climate change and reservoir operations
are similar to the impacts of the reservoir operations alone, but contain an envelope
of change around the altered flow regime by reservoir operation alone. Hence, climate
change increases the uncertainty of the estimated hydropower impacts, emphasising
the importance of looking at these impacts in a cumulative manner.

The impact of reservoir operation on hydrology depends largely on the applied oper-
ation rules and, naturally, on the actual number and location of the dams. Consequently,
collaboration with dam planners and dam operators to minimise the reservoirs’ impacts
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on aquatic ecosystems should be high on the political agenda of the countries sharing
the Mekong basin. Furthermore, as the projected climate change impact on flow varies
remarkably between the different GCMs, planners and decision-makers need to take
this uncertainty into account in both water management and climate change adaptation
activities.

Supplementary material related to this article is available online at:
http://www.hydrol-earth-syst-sci-discuss.net/9/6569/2012/
hessd-9-6569-2012-supplement.pdf.
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