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Abstract

This paper considers the correction of deterministic forecasts given by a flood forecast-
ing model. A stochastic correction based on the evolution of an adaptive, multiplicative,
gain is presented. A number of models for the evolution of the gain are considered and
the quality of the resulting probabilistic forecasts assessed. The techniques presented5

offer, in certain situations, an effective and computationally efficient method for provid-
ing probabilistic forecasts based on existing flood forecasting system output.

1 Introduction

The basis of many operational hydrological forecasting systems are process based
models producing deterministic forecasts. Often significant resources have been in-10

vested in acquiring these models and users are familiar with their use and limitations.
In many situations such models produce biased or inaccurate predictions of discharge
or water level (Aronica et al., 1998; Pappenberger et al., 2007). This makes the issuing
of accurate and reliable flood forecasts challenging.

Data assimilation (DA) has been used to address this challenge in two ways: as-15

similating observations to improve the process model predictions and assimilating ob-
servations to improve the representation of the prediction errors. Human forecasters
widely practise both forms of DA. Manually altering the internal states of the model
based on their interpretation of recent model forecast errors may act to improve future
model predictions. The forecaster may use their knowledge of the recent prediction20

errors of the model in deciding when to issue flood warnings, thereby implicitly utilising
the second type of DA. The effectiveness and consistency (across forecasters) of such
manual DA techniques is rarely reported formally (Seo et al., 2009).

These manual DA techniques can be formalised to produce deterministic assimi-
lation schemes (e.g. Cole et al., 2009; Moore, 2007). The DA process can also be25

cast in a probabilistic framework with the aim of constructing the predictive distribution
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P
(
yt+f |y1:T

)
of the observation of some quantity of interest (e.g. water level or dis-

charge) f time steps ahead given y1:T = (y1,...,yT ) the observations of that quantity up
to the current time t.

If the aim of the DA is to improve the predictions of a hydrological model M a com-
mon framework (e.g. Liu and Gupta, 2007) is to cast the model in state space form so5

that the hydrological states (indexed by time) st evolve according to:

st+1 =M(st,ut,εt) (1)

where the ut are observed extraneous inputs (e.g. precipitation) and εt a stochastic
noise. The model states are then related to the observed values by the observation
function H and stochastic noise ζt+1:10

yt+1 =H(st+1,ζt+1). (2)

The stochastic term εt may be additive, that is

st+1 =M(st,ut)+εt.

It may also act within M to represent a number of features such as noise on the forcing
term ut or time evolving model parameters (e.g. Rajaram and Georgakakos, 1989). By15

correcting the states of the model it may be hoped that predictions derived for unob-
served sites (such as the internal nodes of a hydraulic model) may also be improved.
This of course cannot be validated until observations are taken at these points.

The operational usefulness of the predictive distribution constructed from the above
state space formulation is dependant upon:20

– an appropriate description of the distributions of εt and ζt;

– an adequate solution of the filtering problem inherent in producing the forecasts.

Addressing both of these topics introduces a number of barriers to the operational
implementation of this technique.
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If either M or H is non-linear the solution to the filtering problem is not trivial. Ap-
proximate solutions to the filtering problem can be provided by a number of algorithms
such as particle filters (e.g. Doucet et al., 2001; Moradkhani et al., 2005a; Weerts
and El Serafy, 2006), non-linear extensions to the Kalman Filter (Rajaram and Geor-
gakakos, 1989; DaRos and Borga, 1997; Evensen, 2003; Moradkhani et al., 2005b;5

Reichle et al., 2008) or variational techniques (Li and Navon, 2001; Madsen and Skot-
ner, 2005; Seo et al., 2003).

Particle filters, which approximate the desired distributions through Monte-Carlo
sampling, can be considered the most flexible, although the computational burden can
be large (Smith et al., 2008) and implementation difficult when εt dominates the ob-10

servation noise (Liu and Chen, 1998). The remaining techniques require less compu-
tational resource but introduce assumptions such as unbounded distributions that may
require careful reparameterisation of the hydrological model if the states are to remain
hydrologically interpretable, e.g. volumes of water in the river channel must be greater
or equal to zero.15

All the techniques outlined above make multiple calls to the process model at each
time step. The computational cost of this may be prohibitive for applications in real time
when the lead times required for decisions about warnings are a constraint. This is
particularly true if the implementation of the filtering algorithm is achieved by providing
code that “wraps” the hydrological model and interacts by altering the initial state and20

parameter files (Weerts et al., 2010).
Regardless of the computational technique utilised great care should be taken in

constructing the description of εt and ζt (Beven et al., 2008; Kirchner, 2006), partic-
ularly if there may be systematic biases, including phase errors, in the data or model
(Reichle, 2008). The validation of these choices may require the re-analysis of a sig-25

nificant number of historic events, itself time consuming.
Using DA to improve the forecasts of the difference between the hydrological model

and observed data can often be performed at minimal computational cost. If a suit-
able historic record of model output is maintained, the computational cost of setting
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up the DA may also be minimal. A wide variety of stochastic models have been pro-
posed. These range from the classical auto-regressive moving average (ARMA) time
series models of Box and Jenkins (1994) used operationally in the UK (Moore, 2007)
to more complex semi-parametric methods (e.g. Krzysztofowicz and Maranzano, 2004;
Maranzano and Krzysztofowicz, 2004).5

To provide reliable forecasts (in the pragmatic and probabilistic sense) these formu-
lations and others (e.g. Montanari and Brath, 2004; Weerts et al., 2011; Seo et al.,
2006) have to attempt to capture the potentially complex evolution of the model residu-
als. These residuals may incorporate a systematic or temporally varying bias. Reliance
on temporal correlation within the residuals must be tempered by the fact that the cor-10

relation may be non-stationary, often being low at key times such as during the rising
limbs of hydrographs (Todini, 2008) and much higher during recession periods. Resid-
uals in extreme situations such as floods may also possess characteristics different
to the majority of the data. Furthermore, each flood may reveal previously unknown
shortcomings in the hydrological/hydraulic model(s) making their residuals difficult to15

predict. In such situations, it may be useful to utilise robust error models and predictive
bounds.

Section 2 outlines a parsimonious stochastic error model for providing probabilistic
forecasts at a single observational site. The simplest form of stochastic model pre-
sented has been utilised previously for operational flood forecasting (Lees et al., 1994).20

The generation of the predictive distribution using the linear Kalman filter is presented.
Methods for estimating the parameters of the model are discussed in Sect. 3. Section 4
presents an example application using an operational flood forecasting model from the
UK. The validity of the assumptions used in parameter estimation is investigated and
the usefulness of the uncertainty representations illustrated.25

599

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/595/2012/hessd-9-595-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/595/2012/hessd-9-595-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 595–627, 2012

Adaptive correction
of deterministic

models

P. J. Smith et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2 Methodology

This section presents the stochastic error model utilised within this paper and the com-
putation of the predictive distribution. The representation of the stochastic error model
and its evolution is outlined in a state space framework giving a natural framework for
computing the predictive distribution as a filtering problem.5

2.1 Error Model

Recall that y1:T = (y1,...,yT ) is a vector of T observations indexed by time with corre-
sponding deterministic hydrological/hydraulic model predictions m1:T . The observation
yt is then related to the prediction mt by an adaptive gain gt and noise term εt as
outlined in Eq. (3).10

yt =mtgt+εt (3)

The gain gt is a time varying correction for the bias in the model forecast and is
evolved stochastically according to local level (Harvey, 1989) or generalised random
walk (Jakeman and Young, 1984; Young et al., 1989) models.

The simplest local level model considered is a random walk where gt is given as the15

sum of its previous value and the stochastic noise ηt. That is

gt =gt−1+ηt. (4)

This is referred to as the random walk (RW) model. The local linear trend (LLT) model
generalises this by introducing the slope dt which follows a random walk driven by the
stochastic noise ξt. Thus,20

gt = gt−1+dt−1+ηt (5)

dt = dt−1+ξt. (6)

In this paper it is assumed that εt, along with the stochastic noise terms ηt and ξt
are not correlated with each other or in time. Further they are realisations of unimodal,
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symmetric, unbounded random variables that can be summarised by their first two
moments:

E[εt] = E[ηt]=E[ξt]=0

Var[εt] = σ
2

Var[ηt] = qησ
2

5

Var[ξt] = qξσ
2.

The validity of these assumptions can assessed from the forecast residuals as shown
in Sect. 4.

If qη = qξ the trend in the LLT model is deterministic, resulting in the deterministic
local linear trend (DLLT) model. When qξ is zero the slope is fixed and the evolution of10

the gain becomes a random walk with drift (RWD) model, that is:

gt =gt−1+d +ηt.

Setting qη to zero but allowing positive qξ results in an integrated random walk trend,
referred to as the IRW model. This often results in a smoother adaptation of gt com-
pared to the RW model outlined in Eq. (4).15

The models outlined above for gt are parsimonious the only unknown parameters
other then σ2 being the values of noise variance ratios qη and qξ. A further level of
complexity can be included by incorporating smoothing or damping parameters. Inclu-
sion of such a parameter α in Eq. (4) results in a first order auto regressive (AR) model
for the gain:20

gt =αgt−1+ηt. (7)

Inclusion of the smoothing parameters (α and β) in the local linear trend model gives:

gt = αgt−1+dt−1+ηt (8)

dt = βdt−1+ξt. (9)
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This is referred to as the smoothed local linear trend (SLLT) model. Two special cases
of this are the smoothed random walk (SRW) model; in which β = 1 and qη = 0; and
the damped trend (DT) model in which qη = qξ and α = 1. More general and higher
order representations are also possible, such as doubly integrated random walks. Ex-
ploration of these is beyond the scope of this paper.5

All the models outlined can be conveniently expressed in a state space form with
state vector xt =

[
gt dt

]′
describing the gain (gt) and its slope (dt). The state vector

evolves according the state transition matrix F and system noise matrix G as:

xt =Fxt−1+G
[
ηt
ξt

]
. (10)

The state vector is related to the observations by10

yt =h′
txt+εt (11)

where ht =
[
mt 0

]′
. The values taken by F and G depend upon the model selected.

Table 1 outlines the values taken in terms of the matrix forms given in Eq. (12) for the
various models considered along with any other parameter constraints.

F=
[
F11 F12
0 F22

]
G=

[
G11 0
0 G22

]
. (12)15

Two methods for the estimation of the parameters are presented in Sect. 3. The
following sub-section discusses the use of the Kalman filter to generate the expected
value and covariance of the predictive distributions.

2.2 Prediction using the Kalman filter

The assumptions regarding the stochastic noise terms presented in Sect. 2.1 are the20

minimum required for application of the linear Kalman filter (Kalman, 1960). Suppose
the distribution of xt has similar properties to that of the errors with its expected value
and variance given by x̂t and σ2Pt (where Pt is a 2×2 matrix), respectively. The
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Kalman filter can be used to predict future states and assimilate the observed data as
it becomes available.

The one step ahead predictions of the distribution of the states, conditional upon the
data up to time t are given by the expected value:

x̂t+1|t =Fx̂t|t (13)5

and variance σ2Pt+1|t where

Pt+1|t =FPt|tF
′+GQG′. (14)

The noise variance ratio matrix Q is constructed as

Q=
[
qη 0
0 qξ

]
.

The f -step ahead prediction of the states given the information up to time t can be10

computed by repeated application of Eqs. (13) and (14).
The f -step ahead prediction error νt+f |t and prediction variance σ2ψt+f |t can be com-

puted from the forecast states using:

νt+f |t = yt+f −h′
t+f x̂t+f |t (15)

ψt+f |t = 1+h′
t+fPt+f |tht+f (16)15

Evaluation of these expressions requires knowledge of the future predictions of the
flood forecasting model.

When a new observation becomes available it can be used to condition the distribu-
tion of the gain by updating the mean and covariance using Eqs. (17) and (19).

kt+1 = P t+1|tht+1ψ
−1
t+1|t (17)20

x̂t+1|t+1 = x̂t+1|t +kt+1νt+1|t (18)

Pt+1|t+1 = Pt+1|t −kt+1h
′
t+1Pt+1|t (19)

603

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/595/2012/hessd-9-595-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/595/2012/hessd-9-595-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 595–627, 2012

Adaptive correction
of deterministic

models

P. J. Smith et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

To evaluate the above recursions some initial values for x̂0|0 and P0|0 are required. In
this paper a representation based on taking a minimal number of extra parameters is
used. To this end the expected value of the gain at initialisation is taken to represent
an unbiased forecast, that is:

x̂0|0 =
[
y0m

−1
0

0

]
. (20)5

A single additional parameter ω is introduced to describe the initial variance as:

P̂0|0 =
[
ω 0
0 ω

]
. (21)

A suitable burn-in period (see Sect. 4) is then used before commencing evaluation of
the estimation criteria outlined in the following section.

3 Estimation10

This section discusses the estimation of the unknown parameter vector θ defined for
the models considered in Table 1. Two types of estimation technique are outlined.
The first is maximum likelihood estimation based upon the assumption that the pre-
diction errors are independent realisations of Gaussian random variables. This intro-
duces stronger assumptions about the stochastic noise terms than those introduced in15

Sect. 2.1. The second method, which is based on minimising the sum of squared ex-
pected forecast errors, is more heuristic. In both cases the validity of the error assump-
tions can be assessed. This is discussed along with the the construction of predictive
error bounds.

3.1 Gaussian Maximum Likelihood20

In Gaussian Maximum Likelihood (GML) estimation the parameters θ are estimated by
maximising the likelihood of the f -step ahead predictions when it is believed that νt+f |t
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is drawn independently from a zero mean Gaussian distribution with variance σ2ψt+f |t .
Under these assumptions the log likelihood is:

l (θ)=K − 1
2

T−f∑
t=0

log
(
σ2ψt+f |t

)
− 1

2σ2

T−f∑
t=0

ν2
t+f |tψ

−1
t+f |t (22)

where K is a constant with respect to θ. The maximum likelihood estimate of σ2 can
be computed conditional upon the other parameters in θ as:5

σ̂2 =
1

T − f

T−n∑
t=0

ν2
t+f |tψ

−1
t+f |t . (23)

This allows σ2 to be concentrated out of Eq. (22) leaving (Schweppe, 1965):

l
(
θ\σ2

)
=K − 1

2

T−f∑
t=0

log
(
σ̂2ψt+f |t

)
(24)

which is dependant up on the remaining parameters (denoted θ\σ2). This can be
numerically optimised to give maximum likelihood parameter estimates of θ.10

The uncertainty in the predictions can be expressed as percentile confidence inter-
vals for the predictions constructed as:

h′
t+f x̂t+f |t ±κpσ̂ψ

1
2

t+f |t (25)

were κp is constant dependant upon p and can be computed from a standard normal
distribution; for example κ95 ≈1.96.15

The normality of the forecast residuals and their correlation can be readily assessed
using, for example, quantile and auto correlation plots (Box and Jenkins, 1994).
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3.2 Minimising the sum of the squared expected forecast errors

The second estimation technique, referred to as SEFE for the remainder of this paper,
is based on the appeal of minimising the sum of the squared expected forecasting
error:

Sf =
T−f∑
t=0

ν2
t+f |t . (26)5

The minimisation of Sf allows the estimation of all the parameters in θ except σ2. A
value for σ2 can then be estimated using Eq. (23) if required. The error assumptions
of the Kalman filter (Sect. 2.1) imply that each predictive distribution is uni-modal, sym-
metric and unbounded. Testing the symmetry of the forecast residuals, for example
using Wilcoxon sign rank test (Wilcoxon, 1945), can indicate if this assumption is valid.10

Two methods for construction of predictive confidence intervals are considered. They
make use of the theoretical symmetry of the forecast distribution and result in symmet-
ric prediction intervals.

The symmetry of the forecast distribution implies that prediction confidence intervals
can be expressed as:15

h′
t+f x̂t+f |t ±ρpψ

1
2

t+f |t . (27)

The values of ρp can be estimated empirically as the pth percentile of

∣∣∣∣νt+f |tψ− 1
2

t+f |t

∣∣∣∣.

Given the finite population of residuals this empirical estimate of ρp may not be not
robust at high values of p. The values of ρp can be adapted (for given p) as more data
becomes available. Sequential tests for symmetry (e.g. Weed and Bradley, 1971) may20

be of use in such situations.
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Pukelsheim (1994) gives theoretical results for the upper limits of ρp under the uni-
model, symmetric and unbounded distributional assumptions. Specifically

Pr


∣∣∣∣∣∣∣
yt−µt+f |t

ψ
− 1

2

t+f |t

∣∣∣∣∣∣∣≥ r
≤ 4σ2

9r2
r >1.63σ. (28)

The case r = 3σ is the three sigma rule; that there is less then 5 % probability of a
sample from univariate random variable random with the aforementioned properties5

being outside of 3 standard deviations from the mean. These upper limits can be used
in two ways. Firstly, they allow for the estimation of conservative prediction confidence
intervals, allowing for a more cautious view to be taken of the prediction uncertainty.
The second use is as a means of analysing the suitability of the adaptive gain mod-
els considered by contrasting the symmetrical empirical estimates and theoretic upper10

limits of given ρp.

4 Upper Severn case study

To illustrate the effectiveness and limitations of the proposed methodology in an oper-
ational setting a case study based on the Upper Severn catchment (UK) is presented
The Upper Severn river network is situated on the border of England and Wales and15

shown in Fig. 1. The River Severn rises in the Cambrian mountains (741 mAOD) and
flows to the northeast before meeting the Vyrnwy tributary at Crew Green. The valley
is wide and flat in this confluence area, with a considerable extent of flood plain. The
river then flows east to Shrewsbury. The lower boundary of the 2284 km2 Upper Severn
catchment is defined by the gauge at Welshbridge in Shrewsbury where the median20

annual flood is greater then 284 cumecs. Average annual rainfall can exceed 2500 mm
in the head waters of the catchment. The catchment has seen seven significant flood
events in the past twelve years.
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The existing flood forecasting model consists of a number of simplified rainfall-runoff
representations linked to an ISIS hydrodynamic model. Results are shown for two sites
shown in Fig. 1, Welshbridge the lower boundary of the catchment and Llandrinio an
internal node of the hydraulic model at which observations are available. The latter is
just upstream of the junction with the major Vrnwy tributary and may be affected by5

backwater effects at flood stages.
Operationally the flood forecasting model is evaluated twice daily. At midnight it is run

in a continuous mode using observed inputs and output data assimilation to generate a
set of “warm states” which are used to initialise the forecasts. The first set of forecasts
issued at midnight (00:00) give up to 36 h lead time using forecast precipitation. The10

second set of forecasts is issued at midday (12:00). These forecasts are initialised by
evolving the “warm states” using the observed meteorological variables between mid-
night and midday. Forecast precipitation is then used to evaluate the flood forecasting
model giveing forcasts of the hydrological variables with upto 36 h lead time. Further
details can be found in Weerts et al. (2011).15

The adaptive gain correction is initialised at the start of each forecast period. The
first four hours of forecasts are used as a burn-in period for the adaptive gain. Then,
in keeping with the operational system, forecasts are issued based on the most recent
forecast run of the flood forecasting model for which the adaptive gain is burnt in. A
single year of data (2006) which contains a significant flood event is used to identify20

and estimate the adaptive correction. Three years (2007–2009) are used for validation
purposes. The results for each of the sites are summarised below.

4.1 Welshbridge

Figure 2 shows the hydraulic model predictions and observed data at Welshbridge
during the calibration period. It can be noted that there is a bias in the estimation of25

the low water level periods. Such biases often arise when attempting to achieve an
acceptable flood forecasting model. The adaptive gain correction could be utilised to
correct the forecasts in these low flow periods. The difference in relationship between
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the hydraulic model and observed data for the low flow periods and when this model is
responding to rainfall suggest that a different calibration of the stochastic model for the
adaptive gain may be required for each. For flooding purposes the response to rainfall
is more important. Therefore the calibration and validation criteria are only evaluated
at Welshbridge for the simulations of the hydraulic model which forecast a water level5

greater then 1 m.
Table 2 summarises the calibration results at various forecast lead times. The cal-

ibration using the Gaussian likelihood assumptions shows that those model for the
adaptive gain which incorporate smoothing parameters have superior performance to
those without. This becomes less marked at longer lead times with the exception of the10

IRW and DLLT models whose performance deteriorates rapidly. The use of time series
identification criteria such as the AIC (Akaike, 1974) or BIC (Schwarz, 1978) leads to
the selection of the SLLT or SRW model depending upon the lead time considered.

The results from the SEFE calibration suggest that, with the exceptions of the SRW,
IRW and DLLT models, there is little difference in RMSE perfomance at short to medium15

lead times. At longer lead times the SLLT and AR models return lower RMSE values.
For shorter lead times the random walk model may then be preferred due to its parsi-
mony. For both calibration methodologies the DLLT and IRW perform poorly indicating
that rate of change of the slope dt is not smooth or constant.

Figure 3 shows two summary plots of the standardised 6 h forecast residuals of the20

SLLT model calibrated using the Gaussian likelihood methodology. The upper pane
indicates the residual distribution has heavier tails than a standard normal distribution.
This is particularly true of the lower tail and is the result of including some low water
periods in the calibration. Excluding these suggests that the Gaussian assumption is
approximatly valid. The lower plot indicates that the residuals are correlated up to at25

least a lag of 28 samples, or 7 h, approximately the forecast lead time. This and the
low corelation value suggest that the conditional independence assumption, while not
strictly valid, may be a reasonable approximation.
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The forecast residuals of the SEFE methodology can also be assessed. The lower
pane of Fig. 4 shows the auto-correlation pattern in the residuals of the RW model
fitted by the SEFE methodology for a 6 h leadtime. The correlation within the residuals
is higher and more persistant at longer lags than for the Gaussian calibration. The
upper pane of Fig. 4 indicates a lack of symmetry in the residuals confirmed by a5

Wilcoxon sign rank test.
Table 3 shows the percentage of observations falling within the 95 % prediction con-

fidence interval during the validation period. The high percentages for the Gaussian
likelihood calibration at short forecast lead times further supports the suggestion that
the assumptions used in deriving the likelihood may not be valid. The results for the10

SEFE calibration indicate that the symmetrical empirical estimation of ρp derived dur-
ing calibration performs poorly in the validation period. The predictive bounds derived
using the theoretical upper limit appear to bracket around 99 % of the data during the
validation period, suggesting they are unduly conservative.

Figure 5 shows the predictions made using the SLLT model calibrated using the15

Gaussian methodology for the largest flood events at Welshbridge in the calibration
and validation periods. The results are encouraging with the adaptive gain acting to
correct the model forecast towards the observed values. During both the calibration
and validation period adaptive gain methodology is able to correct for errors in both
the timing and magnitude of the hydrograph peaks as well as the receeding limb. The20

validation results also reveal one aspect of how the adaptive gain behaves in a less
than ideal situation. During January there is a period where no observations are taken.
During this time, the prediction interval can as first be seen to gradually widen, as no
further observations are available to condition the correction of the current simulation
of the flood forecasting model. Then, when the next run of the flood forecasting model25

becomes availalbe the prediction interval widens since the adaptive gain model is ini-
tialised but no observations are avaialable to condition the initial uncertainty about the
components of the gain. In such situations the forecaster making operational deci-
sions may wish to consider the past simulation of the flood forecasting model and the
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corresponding adaptive gain.

4.2 Llandrinio

Tables 4 and 5 summarise the performance in calibration and validation of the adap-
tive gain models at Llandrinio. As at Welshbridge there is a bias in the baseflow of
the hydraulic model. Perfomance is assessed only when the flood forecasting model5

predicts a water level greater than 1.8 m. For all the gain models the performance
deteriorates markedly at longer lead times. As for Welshbridge gain models which rep-
resent a smooth or constant change in the gain; that is DLLT and IRW models; perform
more poorly. Similar analysis to that applied at Welshbridge indicates that, although
the assumptions of the likelihood model are not strictly valid, the Gaussian calibration10

methodology performs much better then the SEFE methodology in validation (Table 5).
One of the main reasons for rapidly decreasing perfomance at longer lead times is

highlighted in the upper pane of Fig. 6 where the rising limb of the hydrograph is poorly
characterised. In part this is due to difficulties with correctly initialising the adaptive gain
when the catchment is reponding to a rainfall event yet the model is still rising from its15

bias lowflow estimate. This is exacerbated at Llandrinio, compared to Welshbridge,
since the response of the catchment to rainfall is much more rapid. This suggests that
rapidly changing gain values, caused for example by timing errors between the flood
forecasting model and the observed data are much more difficult to capture using this
methodology than gradually changing biases.20

The lower pane of Fig. 6 highlights the danger of assimilating erroneous observa-
tions, which in this case produce a significant bias in the predictive confidence interval
at future observations.
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5 Conclusions

The results presented in this paper indicate that comparatively simple error models
combined with real time data assimilation can provide useful probabilistic forecasts.
The techniques used are not computationally demanding. In an operational setting only
the linear Kalman filter evolving two states need be evaluated. Though not discussed5

this can be readily implemented in spreadsheet packages without recourse to more
complex programming. This makes the addition of these data assimilation techniques
to existing deterministic forecasting systems very straightforward with a very low “cost
of entry”.

The results shown are for a medium size river basin. These suggest that the calibra-10

tion based on the Gaussian maximum likelihood theory, though not satisfying the error
assumption used in its derivation, performs well in practice. The results at Llandrinio
highlight some difficulties in initialisation of the gain and are generally poorer then those
downstream at Welshbridge. It remains to be seen if such a data assimilation method-
ology is able to perform adequately on small basins where the response to rainfall is15

more rapid and timing errors, due perhaps to errors in the rainfall forecast, are more
severe (though see Alfieri et al., 2011, for some initial results).

Recognising that the gain at different sites may be correlated opens up a further
line for future research. If such correlations can be successfully exploited it will both
increase the robustness of the data assimilation scheme to missing observations and20

potentially allow forecast updating at sites where very limited data are available (e.g. lo-
cations only observed during the calibration of a hydraulic model). The exploration of
such strategies is the subject of on-going research.

Acknowledgements. This work was made possible by the UK Environment Agency project
SC080030 Probabilistic Flood Forecasting. P. J. S. is also funded by the IMPRINTS EU FP725

project. D. T. was also funded by the UK Flood Risk Management Research Consortium.

612

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/595/2012/hessd-9-595-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/595/2012/hessd-9-595-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 595–627, 2012

Adaptive correction
of deterministic

models

P. J. Smith et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

References

Akaike, H.: New Look At Statistical-model Identification, IEEE T. Automat. Contr., AC19, 716–
723, 1974. 609

Alfieri, L., Smith, P. J., Thielen-del Pozo, J., and Beven, K. J.: A staggered approach to
flash flood forecasting case study in the Cévennes region, Adv. Geosci., 29, 13–20,5
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Table 1. Model considered for the evolution of the gain specified in terms of the state space
form in Eq. (12) along with any parameter constraints.

Model F11 F12 F22 G11 G22 Constraints Unknwon Parameters θ

RW 1 0 0 1 0 qξ =0
(
σ2,qη

)
LLT 1 1 1 1 1

(
σ2,qη,qξ

)
DLLT 1 1 1 1 1 qη =qξ

(
σ2,qη

)
RWD 1 1 1 1 0 qξ =0

(
σ2,qη

)
IRW 1 1 1 0 1 qη =0

(
σ2,qξ

)
AR α 0 0 1 0 qξ =0

(
α,σ2,qη

)
SLLT α 1 β 1 1

(
α,β,σ2,qη,qξ

)
SRW α 1 1 0 1 qη,=0

(
α,σ2,qξ

)
DT 1 1 β 1 1 qη =qξ

(
β,σ2,qη

)
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Table 2. Calibration results for Welshbridge showing the log likelihood and RMSE (bracketed)
for various forecast lead times and GRW models.

2 6 9 12 18 24

RW 20835.30 (0.08) 11997.89 (0.18) 8912.81 (0.25) 7428.73 (0.31) 6736.32 (0.36) 6311.21 (0.42)
LLT 21141.29 (0.07) 11737.83 (0.18) 8496.08 (0.25) 7175.45 (0.30) 6491.85 (0.35) 6036.23 (0.41)
DLLT 20948.38 (0.09) 11137.46 (0.21) 7635.90 (0.28) 5265.25 (0.32) 3362.42 (0.37) 1747.25 (0.43)
RWD 20809.24 (0.07) 11730.53 (0.18) 8496.09 (0.25) 7175.45 (0.31) 6491.85 (0.36) 6036.23 (0.41)
IRW 20946.31 (0.09) 11137.10 (0.21) 7635.72 (0.28) 5262.32 (0.32) 3353.63 (0.37) 1736.39 (0.43)
AR 20868.70 (0.08) 12084.28 (0.18) 9044.89 (0.24) 7581.42 (0.29) 6855.06 (0.34) 6417.59 (0.39)
SRW 21913.09 (0.09) 12323.80 (0.20) 9392.21 (0.27) 8116.53 (0.30) 6610.70 (0.40) 6100.62 (0.45)
DT 21918.88 (0.07) 12339.99 (0.17) 9047.37 (0.24) 7448.73 (0.30) 6747.79 (0.35) 6332.88 (0.40)
SLLT 21962.31 (0.07) 12447.34 (0.17) 9138.63 (0.24) 7607.88 (0.29) 6908.54 (0.33) 6428.87 (0.38)
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Table 3. Fraction of observations at Welshbridge bracketed by the estimated 95 % prediction in-
tervals during validation. Bracketed results are those for the SEFE calibration with the italicised
and bold values corresponding to the empirical and theoretical symmetric bounds.

2 6 9 12 18 24

RW 0.96 (0.59, 0.99) 0.94 (0.67, 0.98) 0.94 (0.68, 0.98) 0.93 (0.77, 0.98) 0.93 (0.79, 0.98) 0.93 (0.79, 0.98)
LLT 0.97 (0.59, 0.99) 0.94 (0.67, 0.98) 0.94 (0.67, 0.98) 0.93 (0.78, 0.98) 0.93 (0.79, 0.98) 0.93 (0.79, 0.98)
DLLT 0.99 (0.67, 1.00) 0.95 (0.81, 0.99) 0.94 (0.85, 0.98) 0.93 (0.82, 0.98) 0.93 (0.82, 0.98) 0.93 (0.81, 0.98)
RWD 0.97 (0.59, 0.99) 0.94 (0.67, 0.98) 0.94 (0.68, 0.98) 0.93 (0.78, 0.98) 0.93 (0.80, 0.98) 0.93 (0.79, 0.98)
IRW 0.99 (0.78, 1.00) 0.95 (0.81, 0.99) 0.94 (0.85, 0.98) 0.93 (0.82, 0.98) 0.93 (0.82, 0.98) 0.93 (0.81, 0.98)
AR 0.96 (0.59, 0.99) 0.94 (0.63, 0.98) 0.94 (0.65, 0.98) 0.93 (0.76, 0.99) 0.93 (0.81, 0.99) 0.93 (0.83, 0.99)
SRW 0.99 (0.77, 1.00) 0.95 (0.81, 0.99) 0.94 (0.84, 0.98) 0.93 (0.82, 0.98) 0.93 (0.86, 0.99) 0.93 (0.89, 0.99)
DT 0.99 (0.54, 0.99) 0.95 (0.63, 0.98) 0.94 (0.65, 0.98) 0.93 (0.78, 0.98) 0.93 (0.79, 0.98) 0.93 (0.79, 0.98)
SLLT 0.99 (0.51, 0.99) 0.95 (0.59, 0.99) 0.94 (0.62, 0.98) 0.93 (0.77, 0.99) 0.93 (0.81, 0.99) 0.93 (0.83, 0.99)
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Table 4. Calibration results for Llandrinio showing the log likelihood and RMSE (bracketed) for
various forecast lead times and GRW models.

2 6 9 12 18 24

RW −1061.42 (0.36) −4744.76 (0.77) −5479.30 (0.87) −5697.52 (0.93) −6391.88 (1.03) −6419.32 (1.07)
LLT −1092.91 (0.36) −4824.86 (0.78) −5534.55 (0.88) −5710.48 (0.93) −6395.27 (1.03) −6412.10 (1.07)
DLLT −1443.27 (0.45) −8904.07 (1.35) −11 843.91 (1.96) −14 014.49 (1.50) −17379.61 (1.59) −18 990.72 (1.63)
RWD −1092.91 (0.36) −4824.76 (0.78) −5534.55 (0.88) −5710.48 (0.93) −6395.27 (1.03) −6412.10 (1.07)
IRW −1437.98 (0.47) −8900.64 (1.35) −11 848.68 (1.96) −14 022.42 (1.50) −17 389.35 (1.59) −18 966.45 (1.63)
AR −967.58 (0.36) −4603.47 (0.75) −5324.49 (0.84) −5523.15 (0.89) −6201.72 (0.97) −6196.56 (0.99)
SRW 1581.67 (0.42) −1110.34 (0.69) −2202.27 (0.80) −2778.06 (0.85) −4752.12 (0.94) −5301.67 (0.98)
DT 1579.94 (0.33) −1111.16 (0.57) −2203.04 (0.65) −2778.85 (0.69) −4753.57 (0.84) −5304.04 (0.98)
SLLT 1581.66 (0.32) −1110.72 (0.58) −2200.42 (0.65) −2771.87 (0.69) −4677.89 (0.94) −5201.28 (0.98)
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Table 5. Fraction of observations at Llandrinio bracketed by the estimated 95 % prediction
intervals during validation. Bracketed results are those for the SEFE calibration with the italised
and bold values corresponding to the empirical and theoretical symmetric bounds.

2 6 9 12 18 24

RW 0.95 (0.53, 0.98) 0.94 (0.79, 0.98) 0.94 (0.81, 0.98) 0.94 (0.83, 0.98) 0.93 (0.84, 0.98) 0.93 (0.84, 0.98)
LLT 0.96 (0.53, 0.98) 0.94 (0.80, 0.98) 0.94 (0.81, 0.98) 0.94 (0.83, 0.98) 0.93 (0.84, 0.98) 0.93 (0.84, 0.98)
DLLT 0.95 (0.29, 0.99) 0.94 (0.81, 0.98) 0.94 (0.81, 0.98) 0.94 (0.69, 0.98) 0.94 (0.68, 0.98) 0.93 (0.68, 0.98)
RWD 0.96 (0.53, 0.98) 0.94 (0.80, 0.98) 0.94 (0.81, 0.98) 0.94 (0.83, 0.98) 0.93 (0.84, 0.98) 0.93 (0.84, 0.98)
IRW 0.95 (0.28, 0.99) 0.94 (0.82, 0.98) 0.94 (0.81, 0.98) 0.94 (0.69, 0.98) 0.94 (0.68, 0.98) 0.93 (0.68, 0.98)
AR 0.96 (0.32, 0.99) 0.96 (0.55, 1.00) 0.95 (0.68, 1.00) 0.95 (0.73, 1.00) 0.94 (0.73, 1.00) 0.94 (0.77, 1.00)
SRW 0.94 (0.36, 0.98) 0.93 (0.86, 0.99) 0.93 (0.90, 0.99) 0.93 (0.91, 0.99) 0.93 (0.93, 0.99) 0.93 (0.93, 0.99)
DT 0.94 (0.36, 0.98) 0.93 (0.87, 0.98) 0.93 (0.89, 0.98) 0.93 (0.91, 0.98) 0.93 (0.91, 0.98) 0.93 (0.87, 0.98)
SLLT 0.94 (0.37, 0.98) 0.93 (0.85, 0.98) 0.93 (0.87, 0.98) 0.93 (0.89, 0.99) 0.93 (0.93, 0.99) 0.93 (0.93, 0.99)
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Fig. 1. Screenshot from the UK National flood forecasting system showing the Upper Severn
catchment with the forecast sites studied highlighted. The insert shows the location of the
catchment within the UK.
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Fig. 1. Screenshot from the UK National flood forecasting system showing the Upper Severn catchment with

the forecast sites studied highlighted. The insert shows the location of the catchment within the UK.

Fig. 2. Summary plots of the data available for Welshbridge during the calibration period. Points represent

observed data with the line being the concatenation of the output of the most recent hydraulic model initiali-

sation. A bias in the prediction of low flows is clearly shown as are periods of missing data and poor model

initialisation.

16

Fig. 2. Summary plots of the data available for Welshbridge during the calibration period.
Points represent observed data with the line being the concatenation of the output of the most
recent hydraulic model initialisation. A bias in the prediction of low flows is clearly shown as
are periods of missing data and poor model initialisation.

623

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/595/2012/hessd-9-595-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/595/2012/hessd-9-595-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 595–627, 2012

Adaptive correction
of deterministic

models

P. J. Smith et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 3. Summary plots of the analysis of the 6 hour forecast residuals for the DT model calibrated using the

Gaussian maximum likelihood methodology. The upper pane shows the quantile quantile plot of the standard-

ised residuals compared to a standard normal distribution. The lower pane shows the auto-correlation of the

residuals.

Fig. 4. Summary plots of the analysis of the 6 hour forecast residuals for the RW model calibrated using the

SEFE methodology. The upper pane shows the quantiles of the absolute values of the residuals. The solid line

being positive residuals and the dotted line being negative residuals. The lower pane shows the auto-correlation

of the residuals.

17

Fig. 3. Summary plots of the analysis of the 6 h forecast residuals for the DT model calibrated
using the Gaussian maximum likelihood methodology. The upper pane shows the quantile
quantile plot of the standardised residuals compared to a standard normal distribution. The
lower pane shows the auto-correlation of the residuals.
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Fig. 3. Summary plots of the analysis of the 6 hour forecast residuals for the DT model calibrated using the

Gaussian maximum likelihood methodology. The upper pane shows the quantile quantile plot of the standard-

ised residuals compared to a standard normal distribution. The lower pane shows the auto-correlation of the

residuals.

Fig. 4. Summary plots of the analysis of the 6 hour forecast residuals for the RW model calibrated using the

SEFE methodology. The upper pane shows the quantiles of the absolute values of the residuals. The solid line

being positive residuals and the dotted line being negative residuals. The lower pane shows the auto-correlation

of the residuals.
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Fig. 4. Summary plots of the analysis of the 6 h forecast residuals for the RW model calibrated
using the SEFE methodology. The upper pane shows the quantiles of the absolute values of the
residuals. The solid line being positive residuals and the dotted line being negative residuals.
The lower pane shows the auto-correlation of the residuals.
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Fig. 5. Examples of 6 hour ahead forecasts given at Welshbridge for two large flood events during calibration

(upper pane) and validation (lower pane) periods generated using the DT model calibrated using the Guassian

methodology. The shaded area represents the 95% prediction confidence interval with the solid line the expected

value of the predictions. Observed data points are also shown.

Fig. 6. Examples of 6 hour ahead forecasts given at Llanrinio for two large flood events during calibration

(upper pane) and validation (lower pane) periods generated using the RW model calibrated using the Guassian

methodology. The shaded area represents the 95% prediction confidence interval with the solid line the expected

value of the predictions. Observed data points are also shown.
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Fig. 5. Examples of 6 h ahead forecasts given at Welshbridge for two large flood events during
calibration (upper pane) and validation (lower pane) periods generated using the DT model
calibrated using the Guassian methodology. The shaded area represents the 95 % prediction
confidence interval with the solid line the expected value of the predictions. Observed data
points are also shown.
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Fig. 5. Examples of 6 hour ahead forecasts given at Welshbridge for two large flood events during calibration

(upper pane) and validation (lower pane) periods generated using the DT model calibrated using the Guassian

methodology. The shaded area represents the 95% prediction confidence interval with the solid line the expected

value of the predictions. Observed data points are also shown.

Fig. 6. Examples of 6 hour ahead forecasts given at Llanrinio for two large flood events during calibration

(upper pane) and validation (lower pane) periods generated using the RW model calibrated using the Guassian

methodology. The shaded area represents the 95% prediction confidence interval with the solid line the expected

value of the predictions. Observed data points are also shown.
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Fig. 6. Examples of 6 h ahead forecasts given at Llanrinio for two large flood events during
calibration (upper pane) and validation (lower pane) periods generated using the RW model
calibrated using the Guassian methodology. The shaded area represents the 95 % prediction
confidence interval with the solid line the expected value of the predictions. Observed data
points are also shown.
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