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Abstract

Linear and non-linear statistical ‘downscaling’ study is done to relate large-scale cli-
mate information from a general circulation model (GCM) to local-scale river flows in
west Iran. This study aims to investigate and evaluate the more promising downscaling
techniques, and provides a through inter comparison study using the Karkheh catch-5

ment as an experimental site in a semi arid region for the years of 2040 to 2069.
A hybrid conceptual hydrological model was used in conjunction with modeled out-
comes from a General Circulation Model (GCM), HadCM3, along with two downscal-
ing techniques, Statistical Downscaling Model (SDSM) and Artificial Neural Network
(ANN), to determine how future streamflow may change in a semi arid catchment.10

The results show that the choice of a downscaling algorithm having a significant im-
pact on the streamflow estimations for a semi-arid catchment, which are mainly, influ-
enced, respectively, by atmospheric precipitation and temperature projections. Accord-
ing to the SDSM and ANN projections, daily temperature will increase up to +0.58◦

(+3.90 %) and +0.48◦ (+3.48 %) and daily precipitation will decrease up to −0.1mm15

(−2.56 %) and −0.4 mm (−2.82 %) respectively. Moreover streamflow changes corre-
sponding to downscaled future projections presented a reduction in mean annual flow
of −3.7 m3 s−1 and −9.47 m3 s−1 using SDSM and ANN outputs respectively. The re-
sults suggest a significant decrease of streamflow in both downscaling projections, par-
ticularly in winter. The discussion considers the performance of each statistical method20

for downscaling future flow at catchment scale as well as the relationship between
atmospheric processes and flow variability and changes.

1 Introduction

There is a wide agreement in the international scientific society that climate change
will modify climatic variables and hydrological extremes. Increasing greenhouse gases25

in the atmosphere leads to change air temperature and precipitation. Changes in air
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temperatures and precipitation have significant effects on the hydrological cycle. Such
changes in climatic variables will also have significant impact on local hydrological
regimes particularly in semi-arid catchments. The effects of climate change are pro-
jected to increase in the future because of rapid industry development and disregard-
ing environmental regulations. Studies were shown that this phenomenon can effect on5

different systems such as; water resources, agriculture, environment, public hygiene,
industry and economy as well (Samadi et al., 2009).

Emissions scenarios (SRES) were developed for climate change impacts studies
on different fields. In order to assist in climate change studies, the number of SRES
scenarios reduced, six markers scenarios have been elected based on the agreement10

opinion of the modeling groups. These are A1FI, A1T and A1B from the A1 family, and
A2, B1 and B2 (Alfsen et al., 2007). In this research, A2 scenario was selected for cli-
mate change assessment on streamflow. In general A2 scenario predicted the greatest
changes in air temperature and precipitation by the end of this century; therefore, the
scenario and the period considered represent a “bad” case scenario.15

This study relies on regression based statistical downscaling models (SDSM and
ANN). Based on observed data, the SDSM define relationships between the large-
scale variable data, derived either from climate model outputs or observations, and
local-scale surface conditions. The large-scale variable data from GCMs or reanalysis
data (the predictors) are chosen such that they are strongly related to the local scale20

conditions of interest (the predictands or response variable). The relationships can then
be applied to estimate changes in river flow, or other local hydrological measures such
as precipitation or air temperature, based on future projections from global or regional
climate models. The SDSM is generally separated into three types of approach which
can be combined: regression models, weather typing schemes and weather generators25

(Vrac and Naveau, 2007a). Multiple linear models, in the regression-based approach
are the most applied in downscaling, for example the well known SDSM tool (Wilby et
al., 2002). These assume a linear relationship between large-scale atmospheric pre-
dictors and the observed variable. However, several studies have shown that taking into
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consideration non-linearity between predictors and the predictand in statistical down-
scaling can improve the goodness-of-fit (Huth et al., 2008) including polynomial re-
gression (Hewitson, 1994), recursive partitioning tree (Schnur and Lettenmaier, 1998),
nearest neighbour (Zorita and von Storch, 1999), artificial neural networks (Harpham
and Wilby, 2005; Khan et al., 2006) or generalized additive models (Vrac et al., 2007a;5

Salameh et al., 2009).
Regression-based statistical downscaling modeling framework, linking GCM outputs

to a hydrological model, is usually constrained in space by the domain of calibration of
the hydrological model. Furthermore the data requirement for setting the hydrological
model parameters may be large, both for conceptual and fully distributed hydrological10

models (Arheimer and Wittgren, 1994; Eckhardt et al., 2005; Thompson et al., 2004;
Habets et al., 2008). One possibility to increase the spatial extent of forecasting river
flow at large spatial scales in response to climate change is to develop downscal-
ing models able to simulate in streamflows directly from GCM atmospheric variables.
Seeking a direct association between river flows and GCM outputs may be relevant to15

facilitate the generalization and extrapolation of river flow simulations over large spatial
scales. moreover, the direct downscaling to streamflow from GCM variables usually do
not take into account other important factors affecting the streamflow variability such as
the land use and soil cover, assuming deterministically that those factors don’t change
with time.20

Many studies presented that the global warming will influence on extreme hydrologi-
cal events in various climate, and also the field of water resources is one of the highest
priority fields with hydrological extremes in river catchments under future climate con-
ditions in the world. However the potential impacts of climate change on hydrological
extremes has received considerable attention from hydrologists during the last decade.25

Recent scientific literature on the impact of climate variability and change on river flow
is voluminous both in the context of observations and projections (see e.g. Wilby et al.,
1997, 2002, 2003; Dibike and Coulibaly, 2006; Semenov, 2007). Surprisingly, few stud-
ies have investigated such a link between atmospheric circulation patterns and flow in a
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purely predictive way, e.g., through downscaling applications particularly in a semi arid
catchment. Examples include Cannon and Whitfield (2002) who applied an ensemble
neural network downscaling approach to 21 catchments in British Columbia; Ghosh
and Mujumdar (2008) who simulated the streamflow of an Indian river for the monsoon
period using a relevance vector machine; Landman et al. (2001) who downscaled the5

seasonal streamflow at the inlets of twelve dams in South Africa from predicted monthly
mean sea surface temperature variables; Phillips et al. (2003) who used atmospheric
circulation models and regional climate predictors to generate mean monthly flows in
two British rivers; Déry and Wood (2004) who have shown that the recent variability
in Hudson Bay river was significantly clarified by the Arctic Oscillation over the last10

decades; Moradkhani and Meier (2010) applied statistical models to develop incorpo-
rate large-scale climate signals into seasonal streamflow forecasting scheme; Lawler
et al. (2003) who explained the influence of changes in atmospheric circulation and
regional climate variability on streamflows and suspended sediment changes in south-
ern Iceland; and Ye et al. (2004) who applied combinations of climate and atmospheric15

variables to explain from about 31–55 % of the variance of the annual total discharges
of three Siberian rivers. In this study, two direct downscaling strategies linking flows
to GCM, here HadCM3, and outputs are investigated to estimate the flows measured
at Gharebaghestan hydrological gauging station located in North Karkheh Catchment,
Iran. Reanalysis data from the National Centers for Environmental Prediction and the20

National Center for Atmospheric Research (NCEP/NCAR; Kalnay et al., 1996) are ap-
plied as large-scale atmospheric predictors to calibrate the models and validate the
approaches.

Climate appears to be generally changeable precipitation and temperature during the
last half of the 20th century particularly in arid and semi-arid catchments. Regions with25

arid and semi-arid climates could be sensitive even to insignificant changes in climatic
characteristics. Understanding the relationships among the hydrologic regimes, climate
variables, and anthropogenic effects are important for the sustainable management of
water resources in these regions. The goal of this study is to compare two statistical
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downscaling models, namely the Statistical Down-Scaling Model, and artificial neural
network, then applied their downscaled results in a proper hydrologic model. In fact,
the ultimate goal of downscaling approaches is to generate an estimate of meteoro-
logical variables corresponding to a given scenario of future climate so these research
meteorological variables will be used as a basis for hydrological impact assessments.5

A schematic diagram of statistical downscaling tools on streamflow can find in Fig. 1. In
this study, the “observed” large-scale atmospheric predictors from the National Centers
for Environmental Prediction (NCEP) reanalysis data sets are used for calibration and
validation of the downscaling models, and then the derived predictors of the Hadley
Centre Coupled Model version 3 (HadCM3) are used in simulating daily precipitation10

and daily temperature for the current period (1961–1990) (Samadi et al., 2010). The
objective of this study is to assess future streamflow in a semi arid catchment due to
each downscaling model using global circulation model (GCM) simulated predictors
instead of the observed NCEP predictors.

This analysis provides some indication of how each downscaling model will affect15

the generation of future streamflow based on the GCM outputs. In addition the focus of
this study will address the two following questions:

1. Can the relationship between climate processes and the hydrological variability
be modeled by the downscaling framework according to hydrological systems?
As such, a wide set of NCEP/NCAR atmospheric variables are tested as potential20

predictors for flows.

2. As a synthesis of this work, is the proposed downscaling framework relevant for
understanding future streamflow changes under climate change projection? As
an illustration, future seasonal changes in flows are projected and discussed ac-
cording to Karkheh regime (semi-arid area) over the region, using one GCM and25

one scenario (A2).
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2 Materials and methods

2.1 A brief description of statistical downscaling models

Downscaling methods are the most widely used in anticipated hydrologic impact stud-
ies under various scenarios; however, few studies have specifically focused on as-
sessing future streamflow due to the different statistical downscaling methods, but fu-5

ture streamflow projections studies are still one of the hot topics particularly in arid
and semi arid regions. In this research regression-based statistical downscaling mod-
els will capture for projection of future streamflow changes in a semi arid area. Sta-
tistical Regression-based downscaling methods use empirical relationships between
local scale climatic variables (predictand (s)) and regional large scale variables (pre-10

dictor(s)), two types of regression-based downscaling models, statistical downscaling
model and artificial neural network, were applied in this study. The SDSM version 4.2
was used as linear method to downscale daily precipitation and temperature, it is a
user friendly software package designed to implement statistical downscaling meth-
ods to produce high-resolution daily climate information from coarse resolution climate15

model data. The software also uses weather generator methods to produce multiple re-
alizations (ensembles) of synthetic daily weather sequences. The SDSM model is a two
step conditional resampling methodology. This multisided method downscaled area av-
eraged precipitation using a combination of regression based methods and a stochas-
tic weather generator. Precipitation at individual sites resample from their distributions20

dependent on the downscaled area average precipitation. Twenty ensembles of down-
scaled daily precipitation and daily temperature have been generated. Precipitation is
modeled as a conditional process in which local daily precipitation is correlated with
the occurrence of wet-days, which in turn correlated with regional scale atmospheric
predictors. Temperatures are modeled as unconditional process in SDSM model, in25

which a direct link is assumed between the large scale predictors and local scale pre-
dictands. More detail regarding this model, including evaluations of its performance,
can be found in Wilby et al. (1997, 2002, 2003).
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Neuro-Solutions 5 was applied to downscale climatic variables in non-linear method.
In this model a non-linear regression relationship is developed between a few selected
large-scale atmospheric predictors and catchments scale meteorological predictands.
In developing that relationship different networks were used in which inputs were sup-
plied and the network was trained using a variation of years and predictors for the case5

of neural network downscaling. First the networks trained with all predictors variables
as input to the networks. Then a sensitivity analysis is done to determine the most
relevant predictors, which should be selected for further retraining. Sensitivity analy-
sis provides a measure of the relative importance among the predictors by calculating
how the model output varies in response to variation of an input. The basic idea of10

sensitivity analysis is that the inputs to the neural network are shifted slightly and the
corresponding change in the output is reported. The network output is then computed
for a specified number of inputs above and below the mean. This process was repeated
for each input. The neural network was then retrained with the few selected predictor
variables independently for both predictants (daily precipitation and temperature) till15

acceptable validation performance was achieved.
Both downscaling models calibrated by using NCEP (National Centre for Environ-

mental Prediction) reanalysis data as large-scale predictors (Semenov, 2007) and it
also provided for HadCM3 simulations as well. The NCEP derived predictor data have
been interpolated into the same grid as HadCM3, normally for each different GCM20

the NCEP derived predictor data will be slightly different, and it needs to re-analysis
downscaling model in each time for a different GCM.

2.2 Ihacres rainfall-runoff model

2.2.1 Data availability

Typically the available data for the catchment is limited to daily precipitation and tem-25

perature and, in some cases, stream discharge. Thus the mathematical representation
most often used is a rainfall-runoff model. Rainfall-runoff models fall into several cate-
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gories: metric, conceptual and physics-based models (Croke et al., 2000, 2001, 2004).
Metric models are typically the most simple, using observed data (and streamflow) to
characterize the response of a catchment. Conceptual models impose a more complex
representation of the internal processes involved in determining catchment response,
and can have a range of complexity depending on the structure of the model. Physics-5

based models involve numerical solution of the relevant equations of motion.

2.2.2 Model structure

The selection of the model to use is based on the issue(s) being investigated and
the data available. As more complex questions are asked, more complex models are
needed to provide the answers. The Ihacres model is a hybrid conceptual-metric model10

and is a lumped parameter model, using the simplicity of the metric model to reduce
the parameter uncertainty inherent in hydrological models while at the same time at-
tempting to represent more detail of the internal processes than is typical for a metric
model (Kokkonen et al., 2003).

Figure 2 shows the generic structure of Ihacres model. It contains a non-linear loss15

module which converts into effective rainfall (that portion which eventually reaches the
stream prediction point) and a linear module which transfers effective rainfall to stream
discharge. Further modules can be added including one that allows recharge to be
output. The inclusion of a range of non-linear loss modules within Ihacres increases
its flexibility in being used to access the effects of climate and land use change. The20

linear module routes effective rainfall to stream through any configuration of stores in
parallel and/or in series (Croke et al., 2002, 2003, 2004). The configuration of stores
is identified from the time series and discharge but is typically either one store only,
representing ephemeral streams, or two in parallel, allowing base flow or slow flow to
be represented as well as quick flow. Only rarely does a more complex configuration25

than this improve the fit to discharge measurements (Jakeman and Hansberger, 1993).
Figure 2 shows the conversion of climate time series data to effective rainfall using

the non-linear module, and the linear module converting effective rainfall to streamflow
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time series. The original structure of the Ihacres model used an exponentially decaying
soil moisture index to convert into effective rainfall. Ye et al. (1997) adapted this model
to improve the performance of the model in ephemeral catchments. This involved intro-
ducing a threshold parameter (I) and a nonlinear relationship (power law with exponent
parameter p) between the soil moisture index and the fraction of that becomes effective5

rainfall.
The Ye et al. (1997) has been coded within Ihacres v, reformulated to enable the

mass balance parameter c (Eq. 1) to be estimated from the gain of the transfer function,
and to reduce the interaction between the c and p parameters. The effective UK in the
revised model is given by:10

UK = [c (Φk − I)]p rk (1)

Where rk is the observed, c, I and p are parameters (mass balance, soil moisture
index threshold and non-linear response terms, respectively), and φk is a soil moisture
index given in Eq. (2):

φk = rk +
(
1 − 1/τk

)
φk−1 (2)15

With the drying rate τk given in Eq. (3):

τk = τw exp (0.062f (Tr − Tk)) (3)

Where τw and τr are parameters (reference drying rate, temperature modulation and
reference temperature respectively). This formulation enables the gain of the transfer
function to be directly related to the value of the parameter c, thus simplifying model20

calibration. This version of the model is more general than the version used within the
Ihacres PC model (Post and Jakeman, 1996) which can be recovered by setting pa-
rameters l to zero and p to one (with the soil moisture index) in the original model given
by Sk = cΦk This version of the non-linear module is described in detail in Jakeman
et al. (1990), Jakeman and Hornberger (1993) and Jakeman and Hornberger (1993).25
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Examples of studies that have used this version of Ihacres (with minor modifications to
the Eq. 3) can be found in Post and Jakeman (1996), Schreider et al. (1996) and Ye et
al (1997). The success of these models is often influenced by the calibration skills of
the user. Those with the necessary skills and experience can often afford only limited
time to assist others in setting up simulations. Such models are often criticized for being5

over-parameterized (Hibbard, 1998; Jakeman and Hornberger, 1993; Jakeman et al.,
1990). Where major validation of catchment models is through comparison of observed
and modeled streamflow, it is known to be statistically unsound to model hydrographs
with more than about five model parameters.

2.2.3 Model calibration and performance10

A systematic manual calibration was chosen for setting up the hydrological model. The
calibration relies primarily on the measured and estimated values of the model param-
eters available from the study area. This ensures that a physically meaningful set of
initial parameter values is used for the calibration. The calibration parameter thresh-
olds are defined as initial parameter value 75 %. The performance of the hydrological15

model at the end of each calibration trial is assessed by the following four statistical
measures:

1. R2 is showed a linear relationship between dependent variables and independent
data that the range of it is between 0 till 1(0–1), so when the rate of R2 is near to 1 it
showed the stranger relationship between two group of data (Eq. 4).20

R2 =


1
n

n∑
m=1

(
QO − µp

)
(QM − µo)

σQO × σQM


2

(4)
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Q is flow (discharge), µ is the mean of data, σ is the variance, and n is the number
of data, o and M indexes are showed independent and dependent data (model data)
respectively.

2. Error in runoff Volume (EV %) (Eq. 5)

EV =
VO − VM

VO
× 100 [%] (5)5

Where VO is the observed, and VM modeled total runoff volume.
3. Root Mean Squared Error (RMSE) (Eq. 6)

RMSE =

√√√√√ n∑
i=1

(Qo −QM )2

n
(6)

Q is flow (discharge), and n is the number of data; o and M indexes are showed
independent and dependent data (model data) respectively.10

4. Nash & Sutcliffe (Nash and Sutcliffe, 1970) efficiency criterion (E ) (Eq. 7)

E = 1 −
∑N

t=1

(
QOt −QMt

)2∑N
t=1

(
QOt − Q̄O

)2
[−] (7)

Q̄O =The average observed river flow for the simulation period.
Each calibration trial is assessed according to the above described criteria. If the per-

formance of the model is acceptable, the calibration process is completed, otherwise15

the initial calibration parameters are altered and the process repeated.

2.3 Application of the model in Karkheh catchment

Karkheh is one of the major catchment where is irrigating around five provinces in
the west of Iran. Ghareso River sub-catchment is selected for this case study; it is
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located in the northwest of Karkheh catchment in the far western corner of Iran (Fig. 3).
Ghareso is considered to be a climatically sensitive region, because the river originates
in an area having high rainfall, but feeds arid and semi-arid regions in downstream.
The area of Ghareso sub catchment is approximately 5793 km2, the elevation changes
from 1237 to 3350 and the mean elevation is 1555 m. The average land surface slope5

is 14 percent. Annual mean temperature of the study area is 14.6 ◦C, varying from
1.1 ◦C in February to 27.3 ◦C in August. The warmest time of year is in July when it
is 26.95 ◦C on average, but could get up to 37.8 ◦C maximum. On the other hand, the
coldest time of year is in January when it is 1.15 ◦C on average, but could get down to
−4.2 ◦C minimum in this month. Annual average precipitation is about 447 mm, ranging10

from 215 mm to 785 mm. The annual rainfall occurs during 35 wet days for 74 mm for
Kermanshah synoptic station inside of Ghareso sub-catchment.

The dominate land use is agriculture which covers around 67 % of the sub catchment
(Landsat 1993). Wheat and barley are the major crops grown in this area. 5370 km2 of
the total area is drained into the outlet, where the main gauge station, Gharebaghestan,15

is located. The length of Ghareso River is 215 Km. Daily weather data for mean pre-
cipitation and temperature were obtained from the records of the main climate station
(Kermanshah synoptic station) (Fig. 4) for the period of 1961–1990. Daily streamflow
was collected from Gharebaghestan station for the period of 1971–2000 (Samadi et al.,
2009). The main urban centre in the Ghareso sub catchment is the city of Kermanshah,20

which is designated as a growing centre in the capital of Kermanshah province.
Ghareso river mostly located in the Zagros mountain regions where the annual

peak of flows generally occurring during the spring snowmelt. Conversely, the Ghareso
regime characterizes highland regions, influenced by heavy winter rainfall which lead-
ing to maximum annual flows in the winters. Floods and droughts represent the main25

hydrological hazards in Ghareso sub catchment. Snowmelt is a major flood producing
factor in this area, generating flood events most frequently in March. Intensive flood
producing storms are most frequent in March and April. Periods of low flows usually
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occur during the summer, and the risk of droughts is highest in the months of June till
September.

3 Results

3.1 Downscaling results

The river basin climate scenarios can be expressed as daily changes in mean rainfall5

depth and in mean temperature; these two variables are main factors at a river basin
which input as observed data to downscaling models. Regression-statistical downscal-
ing models present relationship between observed statistics and atmospheric circula-
tion variables derived from NCEP/NCAR reanalysis data and it is one of the transfer
GCM (here HadCM3) model to SRES scenarios, given that the same relationship holds10

during climate enhancement. The NCEP/NCAR reanalysis data are regridded to meet
the HadCM3 grid size by simple interpolation. Then relevant atmospheric circulation
variables are selected and derived at a grid center (34.21◦ N, 47.9◦ E) where the Ker-
manshah synoptic station is located. Statistical downscaling is much easier to apply
than regional climate modeling, statistical downscaling is most appropriate for sub grid15

scales (small islands, point processes, etc.), complex/heterogeneous environments,
extreme events, exotic predictands, transient change/ensembles and is not appropri-
ate for data-poor regions where relationships between predictors and predictands may
change.

The important step in both models is the choice of predictors which is constrained20

by three main factors. The predictor variables should be (1) reliably simulated by the
GCM under consideration, (2) readily available from (in this case, daily) archives of
GCM output and (3) strongly correlated with the surface variable(s) of interest. Candi-
date predictor variables should be: physically and conceptually sensible with respect to
the predictand; strongly and consistently correlated with the predictand; readily avail-25

able from archives of observed data and GCM output; and accurately modeled by the
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GCMs. It is also recommended that the candidate predictor suite contain variables de-
scribing atmospheric circulation, thickness, stability and moisture content. Large-scale
relevant predictors are selected by using correlation analysis, partial correlation anal-
ysis and scatter plots in the SDSM and by sensitivity analysis in the ANN model as
well.5

The length of the data series available for all variables at Ghareso sub catchment
is 30 yr. So, it was decided to establish climate scenarios for a period of 30 yr from
the statistically downscaled series. The period coincident with the time of observa-
tion (1961–1990) is referred as a reference climate period. The changing factors of
the mean rainfall statistics and the mean temperature in the subsequent one climate10

periods (2040–2069) of the 21st century relative to the reference climate period are
evaluated. The statistical analysis of Kermanshah observed database showed that Six
months sum rainfall is 200.5 (72 %); mean daily humidity is 24.8 %, maximum and aver-
age rainfall is 108 mm and 1.32 mm respectively. Maximum and minimum temperature
in Kermanshah synoptic station is 34.2◦ and −18.5◦ respectively.15

3.1.1 SDSM validation

The SDSM calculates statistical relationships which are developed using observed cli-
matic variables and assumes that these relationships remain valid in the future. This
model develops a relationship between large scale predictors and predictands (daily
precipitation and daily temperature). Precipitation is modeled as a conditional process20

in this research whereby Kermanshah’s daily precipitation is correlated with the occur-
rence of wet-days, which in turn is correlated with regional-scale atmospheric predic-
tors. In this study, a wet day is defined as a day with non-zero daily precipitation of
0.1 mm or more. Temperature is modeled as an unconditional process in the SDSM,
in which a direct link is assumed between the large scale predictors and local scale25

predictands. No transformation is applied to daily temperature data because daily tem-
perature data is mostly normally distributed.
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Both the observed and HadCM3 derived predictor variables have been normalized
with respect to their 1961-1990 means and standard deviations. Having re-trained the
daily precipitation and temperature models using observed predictor – predictand re-
lationships for the full 30 yr record (1961–1990), the models were next used to down-
scale equivalent regional predictor variables and 30 yr time-slices were considered:5

1961–1990 (indicative of current climate forcing) and 2040–2069 (indicative of future
climate forcing). For comparative purposes, changes in HadCM3 monthly mean precip-
itation and temperature were computed for the grid-box closest to Kermanshah station.
In this research, mean sea level pressure, surface zonal velocity and 500 hPa diver-
gences were determined to be the best predictors for precipitation and, mean sea level10

pressure, surface vorticity and 500 hPa geopotential heights were found to be the best
predictors for temperature analysis in the SDSM model. Figure 5 indicates that the ex-
planatory power of individual predictors can vary markedly on a month to month basis
even for closely related predictands.

The monthly mean of daily precipitation and daily temperature is shown in Fig. 5.15

This comparison found that the average variation between daily downscaled precipi-
tation and temperature (HadCM3, 1961–1990) and observed data are 0.097 mm and
2.19 ◦C respectively. Mean results show large precipitation amounts during spring, less
precipitation in winter and less changeable precipitation through summer and autumn.
The model shows increasing precipitation in, April, May, June, September and October20

and a large decrease in January, March, November and December totals. However,
there is less agreement about the magnitude of expected increases in July and Au-
gust. HadCM3 model under the SDSM projections for the 2040–2069 time periods
presents a slight reduction in precipitation throughout the year (−0.11 mm). The aver-
age precipitation decreases by up to −0.53 mm in winter and slightly increases the rest25

of year. Future precipitation under HadCM3 outputs increases by up to +0.4 mm and
+0.004 mm in the spring and summer respectively.

Figure 5 also shows changes in monthly mean temperatures between 1961–1990
and 2040–2069, for daily values and means daily temperature, respectively. For this
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variable, the SDSM suggests increased warming particularly in the month of January
(+3.40 ◦C). The climate change scenario for the 2040–2069 time periods show a gen-
eral increase in temperature throughout the year (+0.58 ◦C). The annual mean temper-
ature increases from +1.15 ◦C (autumn) to +2.15 ◦C (winter) and decreases on average
from −0.6 ◦C to −2.6 ◦C in spring and summer respectively. The SDSM method indi-5

cates that the greatest warming will occur in the period December–January/February,
with much less warming during the remainder of the year. So the warm season is go-
ing to be slightly cooler and the rainy season (spring) is going to be much rainier. The
greatest difference between daily precipitation and temperature with the model projec-
tion (had 40–69) occurred in December (0.94 mm) and January (4.1 ◦C) respectively;10

an important reason for this reduction is the passage of Mediterranean anticyclone
crosses during cold season in this area which affects regional climate. Also, the impor-
tant winds of the area consist of the western winds that transfer the relative humidity of
the Atlantic Ocean and Mediterranean to the territory of this area in the winter causing
rainfall. The northern wind that blows in summer is effective in modifying the climate in15

part of the area and reducing the heat, continuous stability of Azor near tropical zone
in the summer is another reason of hot and intolerable climate in the summers. The
“Saam” or “Somoum” wind blows only in the frontier zone making the climate very hot
and intolerable in summers and also causing damages which both those reasons ig-
nored in GCM modeling. Also, another important reason for reduction of precipitation20

is precipitation relates to local factors like topography which is disregarded in GCM
simulation. This is due to the inability of the GCM model to resolve sub-grid scale
atmospheric processes such as orographic enhancement of rainfall over the Zagros
Mountains, and precludes a direct operational use.

In Fig. 6 the percentage of estimated variance for daily precipitation and daily tem-25

peratures are presented. Variance changes the difference between model and actual
result of downscaled daily climatic variables by adding or reducing the amount of “white
noise” applied to regression model estimates of the local process to better agree with
observations. Use of this stochastic (random) component also allows the SDSM re-
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gression model to produce multiple ensembles of downscaled weather variables. The
model (had 61–90) explains approximately +11.82 % and 14.9 % of the variance of
daily temperature and daily precipitation respectively. The variance of daily precipita-
tion was generally underestimated, most notably in January, March, April, November
and December. Observed monthly daily temperature for 1961–1990 and 2040–20695

were reproduced by the downscaling model using the predictor variables except in
winter (underestimated) and spring (overestimated). In both cases, the residuals of the
daily temperature models were found to be normally distributed.

3.1.2 ANN validation

The structure of the network is built with candidate predictors in the Neurosolution10

5 software. Initially all predictors are input to the model then large scale predictor
variables were found to be most relevant predictors in the non-linear model, such as
500 hpa geopotential height, relative humidity at 500 hpa height, relative humidity at
850hpa height, divergence near surface, 850 hPa wind direction, near surface relative
humidity, mean surface temperature, 500 hPa airflow strength.15

Each set of selected predictor variables are then used to calibrate and validate the
corresponding dynamic neural networks downscaling method. Several training experi-
ments are conducted with different combinations of input time lags and number of neu-
rons in the hidden layer until the optimum network is identified. This study found the
Time Lagged Feed Forwarded Network (TLFN) are applied to establish the best Down-20

scaling Artificial Neural Network (DANN) for the above variables using the 1961-1990
data series while the results of the other DANN models, namely multiple layer percep-
tion (MLP) and Radial Bias Function (RBF) networks, were not satisfactory. The atmo-
spheric variables columns were tagged as input and the output column was tagged as
desired. Similarly the rows must be tagged as well. The first 75 % of the rows were con-25

sidered as training and the remaining 25 % were used as testing. The training process
can take anywhere from 5 minutes to 2 h, depending on the amount of data as well as
the numbers of epochs. In this research 3500 and 2000 epochs were appropriate for
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precipitation and temperature respectively. Theoretical results presents in the forms of
a graph. The better the model, the more similar the graphs will look, and the closer to 1
the r-value will be (0.7 for precipitation and 0.91 for temperature in this research). Note
that only one hidden layer and linear TanhAxon transfer function were found to be the
best combination in this research. Sensitivity analysis was conducted and presented5

in a bar graph showing all the atmospheric variables and how much they affected the
model over time. In fact sensitivity analysis provides a measure of the relative impor-
tant variables by calculating how the model output varies in response to variation of
an input. The basic idea of sensitivity analysis is that the inputs to the neural network
are shifted slightly and the corresponding change in the output is reported. The neural10

network is then retrained with the few selected predictor variables independently for
both predictants until an acceptable validation performance was achieved. The cross
validation task was performed to predict future climate conditions of study area.

Taking into consideration that the predictand–predictors relationship is less complex
in the case of temperature downscaling. Unlike the SDSM, precipitation is downscaled15

with ANN as an unconditional process by establishing a direct link between large-scale
predictors and local scale predictand (precipitation). Moreover, the ANN model struc-
ture is considered deterministic restricting to simulate only one time series of down-
scaled daily precipitation and temperature.

In the downscaling phase, the HadCM3 model was compared to the observed pre-20

cipitation and temperature at Kermanshah synoptic station for the base period of 1961–
1990 and future period of 2040–2069 respectively. According to the ANN outputs (see
Fig. 7), daily precipitation is quite reduced for most months except May, September
and October, whereas it changes in summer (June and July). The difference between
model (Had 2050) prediction and observed precipitation is 0.43 mm, also the largest25

difference between model and observed precipitation occurred in the months of March
(1.89 mm) and December (1.55 mm), and less difference in August (0.01 mm) in the
future years. ANN results for 2050 show large precipitation amounts during May until
June and also for September; a slight increase for August and finally more reduction in
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the winter season in the future years. The greatest reduction in daily precipitation will
happen from December until April; an important reason for this reduction is the pas-
sage of the Mediterranean anticyclone in the cold season in this area which affects on
the regional climate (see SDSM projections). According to the ANN outputs, the rainy
season is predicted to become shorter, which partially offsets the marked decrease in5

precipitation projected for the winter season. At the margins of the rainy season, small
increases in monthly rainfall are projected in the summer. According to daily temper-
ature projection by the ANN, the most difference between downscaling models and
observed was happened in both December and January and the least difference in
November and March. Temperature will increase in the winter and earlier spring times;10

it reduces in the summer and the end of spring seasons, and will be changeable in
the autumn, however the ANN predicted greater difference in temperature compare
to SDSM, but overall annual temperature increases up to 0.49 ◦C according to ANN
projection. In addition temperature increasing has clearly significant affect on snow
melting and further runoff generation and more precipitation will fall as rainfall rather15

than snow in the future.
In Fig. 8 the percentage of estimated variance for daily precipitation and daily tem-

peratures is presented. The variance of downscaled daily climatic variables leads to an
overestimation/underestimation of future projections. Use of this stochastic (random)
component also allows users to find diverge of model and observed variables. The20

model (Had 61–90) explains approximately +11.12 % and 16.87 % of the variance of
daily temperature and daily precipitation respectively. The variance of daily precipitation
was generally underestimated, most particularly in January, March, April, November
and December. Observed monthly daily temperature for 1961–1990 and 2040–2069
were reproduced by the downscaling model using the predictor variables and were25

slightly overestimated for the months of January, February, July, August, September
and December. In this case, the residuals of the daily temperature models were found
to be normally distributed.
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With respect to this result, climate change is undoubtedly threatening the water avail-
ability and the reduction of water resources and snow cover in the winter season and
will put more pressure on the water resources that are already at their limit. It is thus
important to address the climate change problem in our mission since it is greatly re-
ducing the water availability in the west of Iran. Table 2 indicates the changes of climate5

variables under Hadcm3 model in the present and future years. In this table, the differ-
ence between the observed data and the Hadcm3 model was compared in 1961–1990
and 2040–2069 periods.

According to the SDSM and ANN projections daily temperature will increase up
to 0.58◦ (3.90 %) and 0.48◦ (3.48 %), and also daily precipitation will decrease up10

to 0.11 mm (2.56 %) and 0.4 mm (2.82 %) respectively. The reduction of precipitation
mainly in winter seems to change season’s timing slightly in the future and it is also
evident that winter arrives later than usual due to warming weather and changing cli-
mate. The greatest difference in future projections between the downscaling model and
the observed is for December and January and the least difference in November and15

March in both the SDSM and ANN models respectively. Temperature will increase in
the winter and earlier spring times; it reduces in the summer; the end of spring seasons
and, will be changeable in the autumn according to both models. Increasing tempera-
ture will clearly affect on snow melt and further runoff generation.

The ANN model predicted an increase of temperature in the winter and decrease20

in spring (Table 1). Overall, an increase in temperature tends to actively increase the
evaporation process and reduce the soil moisture generally. On the other hand winter
precipitation will decrease and temperature will increase so it leads to earlier snowmelt
which contributes to soil moisture saturation and consequently leads to rising flow and
groundwater levels. Furthermore changes in the precipitation pattern from snow to25

rainfall in this area are caused.
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3.2 Calibration and verification

IHACRES hydrological model used with 30 years long sequence of climate data pro-
duced by the SDSM and ANN for the future climate scenario. The catchment was
calibrated on a three years period from 1 January 1980 to 31 December 1983. Assure
that the results will be sensitive to the time period selected. The calibration process is5

carried out using historical observed data at Gharebaghestan hydrometric station and
the model was able to reproduce the observed flows properly. The mean simulated
flows reproduce the mean observed flows quite well for mentioned hydrometric sta-
tion. Introducing the threshold parameter resulted in a considerable improvement in the
model fit, with R2 (proportion of discharge variance explained) values reaching 0.80810

for the calibration period. Table 2 summarizes the statistical performance measures
defined by Eqs. (4)–(7) obtained from the data used for the calibration and verification
of the hydrological model. The calibrated model was given objective function values:
R2 = 0.808, f = 1.7 and τw = 10. Overall model performance at this site, based on
calculated R2, RMSE, E and EV, was judged to be satisfactory and acceptable when15

function standards were compared. The Nash & Sutcliffe coefficient and error in runoff
volume are rather less for both calibration and verification periods, and the coefficient
of determination (R2) is showing how well streamflows are likely to be predicted by the
model. The model slightly underestimates total observed river flow volumes by 3–8 %
for 1971–2000 period and in terms of RMSE and E measures, the model performs20

similarly with the data from the calibration and verification periods. Figure 9 depicts a
plot of observed modeled flow over the modeled flow in calibration period for Ghareso
River catchment and it shows that the model was capable of simulating flow well.

The catchment was then verified on a three years period from 1 January 1985 to 31
December 1988. Verification runs showed that the model was able to reproduce the25

observed flows in Gharebaghestan hydrometric station. Introducing the threshold pa-
rameter resulted in a considerable improvement in the model fit, with R2 values reach-
ing 0.664 for the verification period. Verification parameter values are shown in Table 2
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as well as simulated streamflows in Fig. 10 (verification period), Fig. 10 exhibits the
model appropriately captured the flow and simulated the river flow profile in Ghareso
River.

Therefore, after calibrating the hydrological model with the historical record, the next
step in the investigation is to simulate streamflow in the catchment corresponding to5

future climate conditions by using the downscaled future precipitation and temperature
data described in pervious sections as input to hydrologic model. Such a simulation
helps to identify the possible trend in streamflow as well as streamflow value corre-
sponding to climate change scenario.

3.3 Model simulation corresponding to future climate change scenarios10

After calibrating the hydrological model with the historical data, the next step is simulat-
ing of flows corresponding to future climate conditions by using downscaled precipita-
tion and temperature data in the downscaling experiment. Once again, the streamflow
simulations made for the future time period with the same parameters used for ob-
served period simulation (f = 1.7 and τw = 10) by Ihacres model.15

The simulation is done with Ihacres hydrological model described in the previous
section. Input to hydrological model consist of future daily precipitation and temperature
data downscaled with SDSM and ANN. Then simulation results correspond to each
combination of downscaling techniques and hydrological model for the Ghareso river
catchment is presented in Figs. 11 and 12. The figures show the hydrologic simulations20

are based on the precipitation and temperature data downscaled with two downscaling
models which described in previous sections. Therefore, the streamflow analysis may
give different outcomes based on the particular combination of downscaling techniques
and hydrological model employed for the simulation of flow in Ghareso River. In fact
the multiyear flow simulation using SDSM and ANN outputs data fed to Ihacres model,25

showed good performance in capturing the annually of flows, although mean flows
were underestimated in the simulation experiments. The performance of the model can
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assess by evaluating the model ability to reproduce the extreme hydrological measures
which can associate to future flooding and drought.

The results displayed in Figs. 11 and 12 also revealed that the flow duration curve is
uneven (particularly in ANN outputs) to climate change; however it is also evident that
climate change has minor effect on flow regime but the effect becomes very serious as5

a small change in flow regime moves towards serious influence on water resources.
Both downscaling outputs predicted a reduction in streamflow in Ghareso sub catch-
ment under A2 scenario so it is leading to decrease the total river flow in the future. The
results indicated that, on average, the GCM output downscaled with ANN gave rela-
tively larger reduction in the streamflow than that downscaled with SDSM (see Figs. 1110

and 12). The SDSM seems to result in a relatively smaller reduction in the streamflow
than ANN. Moreover, the analysis indicates that the overall reduction in streamflow in
more complexes in the earlier and end of 2050 by ANN projection. In fact, HadCM3
showed a slight downward trend for flood season/annual flows under SDSM method
and a high downward trend for ANN outputs and thus the total annual flow fluctuates15

around the earlier and end of 2050s (mainly ANN outputs). Figure 13 is presented
monthly average of future streamflow in Ghareso River catchment by both downscal-
ing projections. According to this result models mostly underestimated except in March
when ANN predicted more streamflow. Totally SDSM and ANN were predicted a re-
duction of 2 %–14 % and 4 %–28 % percent in streamflow by 2050s respectively. ANN20

absolutely predicted future streamflow twofold less than SDSM; moreover the most
reduction will happen in April and less in July for both downscaling outputs in 2050s
which will effect on irrigation and crop production in this time. In addition streamflow
was predicted to change uneven in a minor rate in the future, which partially offsets the
marked decrease in flow projected in the winter.25

Figure 14 shows the changes of predicted mean flows corresponding to the future
downscaled precipitation and temperature data. The prediction results present an av-
erage of mean flow reduction in the middle of 2050s by SDSM and a reduction of
earlier and middle of 2050s by ANN outputs respectively. Finally this figure presented
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the ANN changes are more uneven comparing to SDSM changes and both models are
somehow showing a slightly similar changes in the middle of 2050s.

3.4 Hydrological extremes under future climate scenarios

To meet the goals of the comprehensive study, the SDSM and ANN models used in
this paper to replicate the present (baseline) climate and downscale an ensemble of5

different future climate change scenario in the north of Karkheh catchment. The hy-
drological model is run with a 30-yr long sequence of climatic data produced by SDSM
and ANN for one future climate scenario. The SDSM and ANN outputs generate overall
3.7 m3 s−1 and 9.47 m3 s−1 reductions in the average annual daily flow respectively. The
SDSM and ANN models were significantly predicted an uneven reduction in streamflow10

during 2040–2069, so this can be perhaps explained by the shift in the period of daily
flows from all months. The most decreasing and increasing of SDSM prediction will
happen in 2060 (12.6 m3 s−1) and 2050 (0.31 m3 s−1) respectively, while the most de-
creasing and increasing of ANN outputs will occur in 2042 (32.49 m3 s−1) and 2065
(0.8 m3 s−1) respectively. There is an even change of streamflow in the middle of 205015

(yr) for both downscaling projection. The SDSM simulation seems more reliable than
ANN so this research results showed the response of Ghareso subcatchment to runoff
is purely linear behaviors, subsequently future changing will happen according to a lin-
ear trend in this area, while ANN model is a nonlinear model and it is a proper model in
multiple catchments where the responses of catchment to runoff will be complex where20

precipitation is distributed unevenly.
In this study, challenges imposed on water management, without forecasting con-

sideration, by only projected temperature and precipitation increases are likely to be
made as well as by substantial increasing in snowmelt, rain and snowfall in the spring
months, when the reservoirs are filled to their full capacities in this time, so most water25

resources management strategies should concentrate on the earlier of spring as well
as winter season in the future.
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4 Discussion

Changes in global climate will have significant impacts on local hydrological regimes,
which will consequently have ramification on environmental as well as water resources
and economic systems. The projected global climate change in the current century
may have both beneficial and adverse environmental impact, but the larger changes5

in climate will cause the more adverse effect predominate. Moreover, relatively small
climatic variations can create large changes in water resources, especially in arid and
semi-arid regions, consequently watersheds, where water resources and water avail-
ability are already under stress in arid and semi-arid regions, are most likely to be
highly vulnerable to these possible changes in climatic conditions. This research has10

been carried out using 30 yr of observed and downscaled data and it aimed to define
future values by using of the potential skill of GCM data for hydrological applications.
Regression- based statistical downscaling techniques applied in this study to predict
future climatic condition in the study area.

Climate impact assessment on hydrological systems requires generation of future15

climate data series and simulation of these series through a hydrological model. Such
an approach is usually referred as a suitable simulation experiment. To assess the po-
tential impacts of climatic change on runoff in one of the Karkheh River’s subcatchment,
scenarios of changes in temperature and precipitation were applied as inputs into the
Ihacres model, and overall Ihacres model predicted uneven and minor changes over20

future period. Indeed, the results at two downscaling models highlight that by using
predicted precipitation and temperature data as direct input to the hydrological model,
the simulated river flow substantially underestimates future river flow in the Ghareso
sub catchment.

With respect to future trends, the SDSM and ANN have predicted an increase in25

annual temperature of Ghareso sub catchment by the 2050s to be in the range of
3.90 (.58 ◦C) to 3.48 (0.48 ◦C) percent while these techniques predicted a decrease in
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annual precipitation in the range of 2.56 (0.1 mm) to 2.82 (0.4 mm) percent in the same
time period.

At the same time, the hydrological simulation which was based on the downscaled
precipitation and temperature data showed an overall decreasing trend in the mean
annual flow in the north of Karkheh catchment. In general the hydrologic simulation5

results show that, the data downscaled with ANN and SDSM resulted in a decrease
in mean annual flow in the range of 15.4 to 38.8 percent in 2050s. In fact, Ghareso
River flow changes corresponding to downscaled precipitation and temperature pre-
sented a reduction in mean annual flow of 3.7 m3 s−1 (SDSM outputs) and a reduction
of 9.47 m3 s−1 (ANN outputs) in the future period totally. Increased temperature will10

have a clearly significant effect on snow melting and on runoff generation. According to
the SDSM outputs the most reduction of precipitation will happen in the winter season
and a slight increase during the rest of the year, also daily temperature will increase in
the winter season and will be changeable in the rest of seasons. Furthermore winter
precipitation will decrease and temperature will increase leading to earlier melt snow15

contributing to soil moisture saturation and dramatic increase of streamflow in the future
and ground water level. Overall, an increase in temperature tends to actively increase
the evaporation process and generally reduce the soil moisture.

ANN model predicted an increasing of temperature in winter and decreasing in
spring. As well winter precipitation will decrease and temperature will increase so it20

leads to melt snow earlier which contribute to soil moisture saturation and conse-
quently lead a rising flow and ground water level relevantly. In the end of winter, the
rising temperature triggers snowmelt and typically generates a flow increase in the
river catchment system, which may continue until spring. On the other hands, an in-
crease/decrease of climatic variables may increase / decrease or shift the seasonality25

of climate/runoff as well, so future peak runoff may occur uneven in the end of winter
or earlier of spring in Ghareso sub catchment. Significant increase in the snowmelt
induced annual maximum daily flows can be expected due to longer snowmelt period
stretched toward the end of winter, with more unevenly distributed snowmelt intensi-
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ties in Zagros mountain ranges. Overall, an increase in temperature tends to actively
increase the evaporation process and reduce the soil moisture generally.

In this study, when we consider climate change impacts on monthly basis, the data
downscaled with ANN and SDSM resulted in the highest reduction in streamflow in April
and the highest increase in March of 5.4 % is typical by ANN projection which seems to5

be the results of earlier spring snow melting effect. However the same data downscaled
with SDSM resulted in reduction of spring streamflow followed by the rest of year. Nev-
ertheless, two downscaling methods resulted in a reduction of streamflow during the
winter months which is consistent with the overall increase in winter temperature and its
effect in reducing freezing. Significant reductions in streamflow are projected with win-10

ter decreases particularly likely to occur. Significant reductions in streamflow are also
projected for late autumn as well as an increased late spring streamflow is signified in
ANN projection. Least reduction will happen in the late summer season in the SDSM
outputs and increasing of streamflow will occur in the late summer by ANN projections.
At the same time a decreased summer drought propensity is indicated, especially by15

ANN model and it will decrease a smaller amount by SDSM projection eventually. Over-
all the SDSM and ANN projections predicted 20.94 m3 s−1 and 17.97 m3 s−1 of average
future streamflow respectively and most rainfall will happen in the earlier of spring by
both downscaling techniques in the future. The highest streamflow will occur in March
for both downscaling models and the least streamflow will happen in September by20

SDSM and ANN models respectively.
However, overall the ANN presented the most noticeable shortcomings compared

to the SDSM. The ANN model did not consider precipitation downscaling as a condi-
tional process; rather it established a direct nonlinear relationship between large-scale
predictors and local scale predictands suppressing the precipitation occurring process,25

which causes significant errors in downscaled daily precipitation. Moreover, the ANN
model considered here is deterministic, restricted to create only one time series, while
20 ensembles can generate in SDSM model which can predict future climatic variables
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relatively more reliably. Furthermore the ANN model is so susceptible in the choice of
network type and hidden layer which may generate more uncertainty by different users.

Overall a warmer climate and reduction of river flow would result a significant
changes in water withdrawal demand and availability in the future of study area. It
also identified that these implications of the changes may be significant for water re-5

sources planning and management as well as for farmers within the Karkheh catch-
ment. Changes in river flow variability, is very important for water management plan-
ning and assessing future climate and its potential implication for river flows are a key
challenge facing water resource planners in arid and semi-arid catchments. Among the
most important projected impact of the climate change scenario10

on Karkheh water resources are: declines low seasonal streamflow and higher wa-
ter temperature particularly in the downstream of Karkheh where the climate mostly
changes to semi arid condition and great reduction of winter rainfall as well as stream-
flow. Besides annual streamflow are expected to be lower in most of the time but oc-
casional frequent flash floods are likely to occur in the late of spring and earlier of15

summer. However one of the challenges in hydrologic impact studies is the difficulty to
draw a line between the one caused solely by climate change and the rest caused by
any other activities different from climate change.

In general, climate change is projected to reduce streamflow in one of the main
catchment in the west of Iran. The amount of change varies depending on the pro-20

jected rainfall and projected temperature by changing evaporation rate. However the
climatic impacts on hydrology at the regional scale are uncertain, and will be influ-
ence by a complex mix of temperature, precipitation, evaporation, soil moisture avail-
ability and runoff changes. Even without any change in precipitation, this temperature
changes alone imply reduction in runoff rate and makes this area more vulnerable ad-25

jacent to natural hazards. In addition, climate change has unfavorable impacts on water
resources in semi-arid catchment. In general climate change is projected to decrease
streamflow and subsequently ground water recharge in north parts of Karkheh river
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catchment, but the effects of climate change on river flow is expected to increase the
challenges of water supplies and flood management in the 21st century in this area.

5 Summery and conclusion

The main objective of this study is essentially to build and validate a downscaling frame-
work of river flow directly from GCM outputs, to be used for future climate change5

impacts studies in the north of Karkheh catchment, Iran. The hydrological simulation
which was based on the downscaled precipitation and temperature data showed aver-
age annual discharge may decrease significantly at hydrometric stations compared to
current discharge conditions. In fact the modeled results provide a contribution to the
debate about how river flow will change under climate change impacts. These results10

in estimates of future streamflow conditions by both of downscaling methods, another
study (Samadi et al., 2012) included an uncertainty analysis which the accuracy of the
two downscaling methods was tested first by applying the downscaling methods to a
period of time with observed climate data and finally the best model was a more reliable
statistical downscaling model for this region.15

Moreover, this work adopted large-scale weather factors at only the nearest GCM
data grid to develop the downscaling model, and used the A2 scenario data pro-
jected by HadCM3. Future work should consider large-scale weather factors from a
region covering more grids in order to select the predictors and then to construct the
downscaling model. Further selection of some regions which exhibited more precip-20

itation amount can be adopted rather than the “less” amount by the models. Finally
in order to evaluate whether GCMs indeed decrease the entire projection envelope of
daily climatic variables, it is necessary to implement additional GCMs / RCMs models,
scenario, and their updated projection data, could be used to investigate the possible
change in future daily climate.25

The presented results are also regionally limited, since physical properties of the
river catchment and other concurrent catchment specific changes (e.g. topography,
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drainage density, and soil permeability), play an important role in the impact modeling.
Moreover downscaling methods must find some way to account for extreme topography
and the limitations of unevenly distributed. No downscaling technique is optimal for all
applications, and may not even be adequate for particular applications. Considerable
analysis, experience, and insight are required to select the most suitable method, or5

group of methods, and to deliver high-resolution climate scenarios at a specific site
or for a specific region that are relevant to users and credible to researchers at the
same time. Finally climate change effects on hydrology will impact on water availabil-
ity and water resources in the future so results of this research will be useful for the
government to develop proper control strategies in a semi arid region.10
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Table 1. Model changes in daily precipitation and daily temperature between 1961–1990 and
2040–2069.

Change in daily Temperature (0C) Change in daily Precipitation (mm/d) Season

ANN SDSM ANN SDSM

Downscaled HadCM3 Downscaled HadCM3 Downscaled HadCM3 Downscaled HadCM3
+3.7 +2.25 +2.87 +2.7 −1.28 −1.16 −0.53 −0.62 DJF
−0.73 +0.005 −0.26 +0.86 −0.97 −0.51 +0.04 +0.05 MAM
−0.72 −2.9 −0.39 +2.06 +0.42 +0.44 0.004 +0.004 JJA
−0.3 −1.9 +0.12 +2.12 +0.1 −0.2 +0.025 +0.14 SON
+0.49 −0.63 +0.58 +2.19 −0.43 −0.36 −0.11 −0.097 Annual
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Table 2. Calibrated and verification parameter values in Gharebaghestan hydrometric station.

R2 EV (%) RMSE E τw f parameter
station
0.808 0.4 11.23 0.999 10 1.7 Calibration
0.664 3.06 20.6 0.663 10 1.7 Verification
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Fig. 1. Schematic illustrating of the general approach for statistical downscaling on streamflow.
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Fig. 2. Generic structure of Ihacres model (Jakeman and Hornberger, 1993 and Jakeman et
al., 1990).
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Fig. 3. Location of Ghareso sub catchment in Iran.
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Fig. 4. Location of the Kermanashah synoptic station in the Ghareso subcatchment.
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Fig. 5. Monthly mean daily precipitation (a) and temperature (b) (observed and model) using
SDSM projection for the current (1961–1990) and future periods (2040–2069) in Kermanshah.
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Fig. 6. Monthly variance of daily precipitation (a) and temperature (b) (observed and model) for
the current (1961–1990) and future (2040–2069) periods in Kermanshah.
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Fig. 7. Monthly mean daily precipitation (a) and temperature (b) (observed and model) using
ANN projection for the current (1961–1990) and future (2040–2069) periods in Kermanshah.
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Fig. 8. Monthly variance of daily precipitation (a) and temperature (b) (observed and model) for
the current (1961–1990) and future (2040–2069) periods in Kermanshah.
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Fig. 9. Observed and modeled flows in calibration period in Ghareso river catchment.
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Fig. 10. Observed and modeled flows in verification period in Ghareso river catchment.
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Fig. 11. Observed (1971–2000) and future (2040–2069) modeled annual streamflow using
SDSM projection in Ghareso sub catchment.
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Fig. 12. Observed (1971–2000) and future (2040–2069) modeled annual streamflow using
ANN projection in Ghareso sub catchment.
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Fig. 13. Observed (1971–2000) and future (2040–2069) modeled monthly streamflow in
Ghareso sub catchment.
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Fig. 14. Future (2040–2069) annually streamflow changes in Ghareso sub catchment.
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