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Abstract

Drought in East Africa is a recurring phenomenon with significant humanitarian im-
pacts. Given the steep climatic gradients, topographic contrasts, general data scarcity,
and, in places, political instability that characterize the region, there is a need for spa-
tially distributed, remotely derived monitoring systems to inform national and interna-5

tional drought response. At the same time, the very diversity and data scarcity that
necessitate remote monitoring also make it difficult to evaluate the reliability of these
systems. Here we apply a suite of remote monitoring techniques to characterize the
temporal and spatial evolution of the 2010–2011 Horn of Africa drought. Diverse satel-
lite observations allow for evaluation of meteorological, agricultural, and hydrological10

aspects of drought, each of which is of interest to different stakeholders. Focusing on
soil moisture, we apply triple collocation analysis (TCA) to three independent methods
for estimating soil moisture anomalies to characterize relative error between products
and to provide a basis for objective data merging. The three soil moisture methods eval-
uated include microwave remote sensing using the Advanced Microwave Scanning Ra-15

diometer – Earth Observing System (AMSR-E) sensor, thermal remote sensing using
the Atmosphere-Land Exchange Inverse (ALEXI) surface energy balance algorithm,
and physically-based land surface modeling using the Noah land surface model. It was
found that the three soil moisture monitoring methods yield similar drought anomaly es-
timates in areas characterized by extremely low or by moderate vegetation cover, par-20

ticularly during the below-average 2011 long rainy season. Systematic discrepancies
were found, however, in regions of moderately low vegetation cover and high vegeta-
tion cover, especially during the failed 2010 short rains. The merged, TCA-weighted soil
moisture composite product takes advantage of the relative strengths of each method,
as judged by the consistency of anomaly estimates across independent methods. This25

approach holds potential as a remote soil moisture-based drought monitoring system
that is robust across the diverse climatic and ecological zones of East Africa.
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1 Introduction

The 2010–2011 Horn of Africa drought affected over 13 million people (Ledwith, 2011).
The failure of the October to December 2010 “short” rains and delayed arrival of the
April to June 2011 “long” rains caused crop failures across Somalia, Ethiopia and
Kenya. The price of food reflected the effect of crop failures on a food insecure region;5

the price of maize in Kenya, for example, rose 246 % over the span of a year (Funk,
2011). On 7 June 2011, the Famine Early Warning System Network (FEWS NET) is-
sued a statement declaring the crisis to be “the most severe food security emergency
in the world today”. Over the course of the next two months, the crises worsened and
the United Nations declared famine in five regions of Somalia (United Nations, 2011).10

In broad terms, the drought and subsequent famine were anticipated by forecast-
ers who recognized that an emerging La Niña event in summer 2010, occurring on
top of steady Indian Ocean warming that has been associated with reduced precip-
itation in the Horn of Africa, and combined with weakened social resilience due to
poor harvests and rangeland conditions in recent years, presented a significant risk to15

the region (Funk, 2011). Given such warnings – albeit warnings that come with sub-
stantial uncertainty – national governments and international actors were in position to
respond quickly when the rains failed. The failure to muster adequate disaster mitiga-
tion can be attributed largely to political instability and to the limitations of what can be
accomplished in reactive drought response. At the same time, adequate emergency in-20

tervention is also limited by inadequate access to reliable, spatially-distributed drought
monitoring information available in near real-time. In situ monitoring networks, though
critical to drought planning and response, are limited in this regard, both practically –
the Horn of Africa has limited networks and is affected by political instability – and in-
herently – it is difficult to capture the spatial variability of drought impacts using point25

monitoring stations alone.
For this reason, there has been considerable interest in developing East African

drought monitoring systems based on remotely sensed and model derived analyses.

4589

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/4587/2012/hessd-9-4587-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/4587/2012/hessd-9-4587-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 4587–4631, 2012

Soil moisture
drought monitor for

East Africa

W. B. Anderson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The most advanced of these systems is the Famine Early Warning System Network
(FEWS NET), which operates throughout East Africa, Afghanistan, and Central Amer-
ica. A United States Agency for International Development (USAID) project in opera-
tion since 1985, FEWS NET combines local socio-economic information with agricul-
tural production and precipitation information to predict food security conditions (Funk,5

2009). Satellite data feeds into the system in the form of remotely sensed vegetation
indices and precipitation estimates, while a Water Requirements Satisfaction Index
(WRSI) model is used to gauge crop conditions. Additional remote drought monitors
covering East Africa include the Experimental African Drought Monitor maintained
by the Land Surface Hydrology Group at Princeton, which provides near real-time10

drought monitoring for all of Africa using the Variable Infiltration Capacity (VIC) hydro-
logical model and a long-term retrospective meteorological reanalysis (Sheffield et al.,
2006) to quantify current drought conditions across the continent1. The International
Research Institute for Climate and Society Map Room2 serves regional precipitation
anomaly maps derived from the Climate Anomaly Monitoring System Outgoing Long-15

wave Radiation Precipitation Index (CAMS OMI; Janowiak and Xie, 1999) while the
Global Drought Monitor provides drought monitoring that includes coverage of Africa
at a spatial resolution of ∼100 km and at monthly intervals. The Global Drought Mon-
itor is based on the Standardized Precipitation Index (SPI) and the Palmer Drought
Severity Index (PDSI).20

Outside of Africa, there are numerous examples of experimental and operational
drought monitoring systems that rely on either remote sensing or hydrological mod-
els. In the United States, these include the Vegetation Drought Response Index (Veg-
DRI), which monitors drought conditions for the continental United States by combin-
ing climate-related variables with satellite-derived vegetation condition information ob-25

tained using Advanced Very High Resolution Radiometer (AVHRR)-based vegetation
indices (Brown, 2010), and the Experimental Surface Water Monitor, based on VIC

1http://hydrology.princeton.edu/∼justin/research/project global monitor/overview.html.
2http://iridl.ldeo.columbia.edu/maproom/.
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(Wood, 2008). Other AVHRR-derived drought indices include the Vegetation Condition
Index (VCI), derived from AVHRR Normalized Difference Vegetation Index (NDVI) data
and the Temperature Condition Index (TCI), which is calculated using AVHRR thermal
data (Kogan, 1995, 1990), as well as the Vegetation Health Index (VHI) which com-
bines the VCI and TCI (Kogan, 1997). Remotely sensed land-surface temperature and5

vegetation cover information have also been combined within the Atmosphere-Land
Exchange Inverse (ALEXI) surface energy balance algorithm (Anderson et al., 1997,
2007a) to generate an Evaporative Stress Index (ESI), quantifying anomalies in the
ratio of actual to potential evapotranspiration (Anderson et al., 2011a, 2007b).

Combined satellite/model drought monitoring tools are also becoming more com-10

mon. Data assimilation systems merge observations with physically based models,
using the model to provide spatially and temporally complete estimates of all drought-
relevant hydrologic variables and the observation record to correct for model error. Ex-
amples include the North American Land Data Assimilation System (NLDAS; Mitchell
et al., 2004) and Gravity Recovery and Climate Experiment (GRACE) Data Assimila-15

tion System3 Drought Monitors (Houbourg et al., 2012). The NLDAS Drought Monitor
covers the continental United States and is based on output from the Mosaic (Koster
and Suarez, 1996), VIC (Cherkauer and Lettenmaier, 1999), Sacramento Soil Moisture
Accounting (SAC-SMA) (Burnash, 1995), and Noah (Chen et al., 1996; Ek et al., 2003;
Koren et al., 1999) land-surface models (LSMs). These models are uncoupled and20

forced mainly by observational data to avoid numerical weather prediction forcing bi-
ases. Anomalies and percentiles in soil moisture, stream flow and runoff are computed
for each individual model and for ensemble averages with respect to climatological nor-
mal conditions computed for 1980 to 20074 (Mitchell et al., 2004). The GRACE Data As-
similation System Drought Monitor produces weekly updated soil moisture and drought25

indicators. Terrestrial water storage observations from GRACE satellite data are inte-
grated with additional meteorological measurements using an Ensemble Kalman Filter

3http://drought.unl.edu/MonitoringTools/NASAGRACEDataAssimilation.aspx.
4http://www.emc.ncep.noaa.gov/mmb/nldas/drought/.
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within the Catchment Land Surface Model (Zaitchik et al., 2008). Current hydrologic
conditions are expressed as percentiles relative to baseline measurements from 1948
to 2009.

For all of the value that these satellite and model-based drought monitors provide,
a monitoring system based on a single algorithm or observational record is prone to5

systematic and/or transient error. This is a particular concern in data poor regions like
East Africa, where it is not possible to evaluate a remote drought monitor compre-
hensively against in situ observations. In this context, it is desirable to apply multiple,
independent methods to remote drought monitoring in order to characterize systematic
differences between methods, to identify and address limitations in particular tech-10

niques, and to generate consensus drought indices. Merging independent methods to
generate a consensus drought index will help reduce the random and systematic error
components of the input datasets.

In this paper we examine the 2010–2011 Horn of Africa drought using remotely
sensed estimates of soil moisture, evapotranspiration, precipitation, and terrestrial wa-15

ter storage. The relative merits of each observational technique are discussed in quali-
tative terms, and soil moisture estimates are then assessed quantitatively and merged
into a consensus drought monitor product by applying a Least Squares algorithm that
depends on Triple Collocation Analysis (TCA)-based errors associated with soil mois-
ture anomalies derived from ALEXI, AMSR-E, and the Noah LSM. TCA is a statistical20

method for characterizing consensus and discrepancies across multiple independent
datasets. Though developed originally for oceanographic applications (Stoffelen, 1998),
the method has recently been applied successfully to the problem of estimating soil
moisture variability at regional to global scale (Scipal et al., 2008; Hain et al., 2011;
Parinussa et al., 2011; Yilmaz et al., 2012). TCA is of particular value in regions that25

lack in situ soil moisture monitoring networks, as consensus anomaly estimates derived
from multiple independent datasets can be interpreted as a measure of confidence in
the absence of adequate in situ evaluation data.
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2 Methods

2.1 Soil moisture estimates

2.1.1 AMSR-E passive microwave sensor

The Advanced Microwave Scanning Radiometer for EOS (AMSR-E) is a passive
microwave-radiometer system mounted on the Aqua satellite. From July 2002 to5

September 2011, AMSR-E retrievals of microwave brightness temperature were used
to derive estimates of surface soil moisture with near daily coverage. The instrument
is currently experiencing an antenna malfunction that may be terminal, but similar mi-
crowave measurements are available on existing and planned satellite missions. Sev-
eral algorithms have been developed to estimate soil moisture on the basis of AMSR-E10

retrievals. In this application, we use the soil moisture product derived using the Land
Parameter Retrieval Model (LPRM) developed by Vrije Universiteit Amsterdam (VUA)
and the National Aeronautics and Space Administration (NASA). The LPRM algorithm
relies on C-band observations and can utilize X-band observations under conditions
of radio frequency interference in the C-band (Owe et al., 2008). The LPRM product15

was chosen over other available AMSR-E soil moisture products on the basis of previ-
ously published comparisons (Rudiger et al., 2009; Wagner et al., 2007; Draper et al.,
2009; Hain et al., 2011). The product produces daily ascending and descending esti-
mates at 01:30 a.m. and 01:30 p.m. local time. To avoid complications such as sun glint
and strong temperature gradients, which are more prevalent in the ascending passes20

when using the VUA algorithm, only descending passes (01:30 a.m. LT) of the AMSR-E
measurements were used (Kerr and Njoku, 1990; Crow et al., 2010).

While the temporal resolution of AMSR-E is relatively high, the spatial resolution
remains coarse at ∼25 km with a sensing depth of only ∼1 cm. The native spatial reso-
lution of AMSR-E and the remapping used in the LPRM algorithm is further discussed25

in Sect. 2.3.
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2.1.2 ALEXI thermal infrared model

The Atmosphere-Land Exchange Inverse (ALEXI) model is a thermal infrared-based di-
agnostic model that employs the two-source energy balance (TSEB) model of Norman
et al. (1995), representing the land surface as a composite of soil and vegetation cover,
while coupling with an atmospheric boundary layer model to internally simulate land-5

atmosphere feedback on near-surface air temperature (Anderson et al., 1997, 2007a).
ALEXI solves the surface energy balance for latent and sensible heat components
using time-differential land surface temperature measurements taken from geostation-
ary satellites between ∼1.5 h after local sunrise and ∼1.5 h before local noon. The
morning surface temperature rise is largely governed by soil moisture conditions and10

available energy. Wet conditions in the surface layer increase latent heat flux and there-
fore decrease morning temperature amplitude while dry conditions lead to increased
sensible heat flux and therefore higher morning temperature amplitudes. Anderson
et al. (2007b) and Hain et al. (2009, 2011) detail a method of relating latent heat fluxes
retrieved by ALEXI to soil moisture conditions by applying a soil moisture stress func-15

tion between the fraction of actual to potential evaporation (fPET) and the fraction of
available water. A relation between fPET and retrieved soil moisture values based on
ALEXI estimates of fPET may be derived that is of the form:

θALEXI = (θfc −θwp) · fPET +θwp (1)

where θALEXI is the soil moisture value reported by ALEXI, θfc and θwp are the soil20

moisture at field capacity and wilting point, respectively, and fPET is the fraction of ac-
tual to potential evapotranspiration. Note that while Eq. (1) requires information about
SM at field capacity and wilting point, these values drop out during the computation
of standardized grid cell anomalies describing the deviation from mean conditions for
each 8-day composite period at each pixel in the study period. Hain et al. (2009) val-25

idated this relationship by comparing soil moisture observations from the Oklahoma
Mesonet to ALEXI soil moisture retrievals.
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ALEXI was executed at 6-km spatial resolution over the Horn of Africa domain us-
ing hourly land-surface temperature and insolation products developed by the Land
Surface Analysis Satellite Applications Facility (LSA SAF), using imagery from the pri-
mary Meteosat Second Generation (MSG) geostationary satellite (see online: http:
//landsaf.meteo.pt and Anderson et al., 2011b). ALEXI output was then aggregated5

to the 25-km grid associated with the AMSR-E product. As a thermal remote sensing
model, ALEXI is limited to cloud-free sky conditions during the morning hours when
the ground is visible to the thermal satellite sensor.

2.1.3 Noah Land Surface Model

Offline simulations of Noah LSM version 3.2 were performed using Global Data Assim-10

ilation System (Derber et al., 1991) meteorological forcing supplemented by the three
hourly precipitation estimates from the gauge-adjusted Tropical Rainfall Measurement
Mission (TRMM) Multisensor Precipitation Analysis (TMPA), version 6 (product 3B42;
Huffman et al., 2007). Noah is a one-dimensional model that evaluates the surface en-
ergy and water budgets to calculate the distribution of soil moisture in the soil column.15

Evapotranspiration is defined as the sum of canopy transpiration, evaporation from the
top soil layer, and evaporation of canopy-intercepted water (Ek et al., 2003; Chen et al.,
1996). Soil moisture is a prognostic field for each of the model’s four vertical soil layers,
which allows for the diagnosis of both near surface and root zone soil moisture.

An LSM-based prediction of soil moisture offers the benefit of providing continuous20

estimates under all weather and surface cover conditions, as opposed to ALEXI and
AMSR-E, which are hindered by clouds and dense vegetation, respectively. Model out-
put was stored and evaluated at three-hour intervals, but only outputs aligned with
the overpass times of AMSR-E retrievals were used in this analysis to ensure a con-
sistent comparison. The AMSR-E descending overpass time for the Horn of Africa is25

04:30 GMT which corresponds to the 03:00–06:00 GMT output interval of Noah. Model
simulations were run at a spatial resolution of 25 km to match the spatial resolution of
the AMSR-E measurements. Noah simulations in this region are the subject of ongoing
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evaluation, with early results indicating that simulations forced with GDAS meteorology
supplemented by TMPA precipitation provide reasonable results over much of the Nile
Basin and surroundings (Zaitchik et al., 2010a).

2.2 Supplementary satellite-derived observations

Additional data sources were included in the anomaly analyses to depict a more com-5

plete hydrologic picture. For all datasets, we compiled gridded data for East Africa
for the period 2003–2011 and then calculated anomalies relative to the 2003–2010
climatology:

– Precipitation: three hourly TMPA precipitation estimates, averaged over 8-day
composite periods, were used to compare the 2010–2011 seasonal rains to those10

from 2003–2010.

– Vegetation Index: 16-day, 0.05◦ resolution composited MODerate Resolution
Imaging Spectroradiometer (MODIS) NDVI estimates (product MOD13C1; Huete
et al., 2002) were used to evaluate drought impacts on biomass production.

– Terrestrial water storage: monthly estimates of terrestrial water storage anomaly15

derived from GRACE were used as an independent assessment of drought con-
ditions. GRACE anomalies for the area of interest were extracted from the CSR
level 2 GRACE gridded land product, release 4, with a 300 km smoothing radius.
Land scaling factors were included in data extraction (Swenson and Wahr, 2006).5

2.3 Comparison and data merging20

For TCA, the three independent soil moisture datasets (LPRM, Noah and ALEXI) were
standardized to a common spatial resolution, depth, frequency, and unit of measure.

5GRACE land data were processed by Sean Swenson, supported by the NASA MEASURES
Program, and are available online: http://grace.jpl.nasa.gov.
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2.3.1 Resampling to a common grid

Each dataset was resampled using a nearest neighbor resample to match the
0.25×0.25 degree flat grid of the LPRM data. The ALEXI model was run with a 6 km
spatial resolution, which necessitated an aggregation of the data prior to resampling.
The Noah LSM was run at 25 km spatial resolution, requiring only a resample to match5

the chosen grid.

2.3.2 Creating composite time periods

Although each methodology is capable of producing daily measurements for the do-
main of the analysis under favorable conditions, the satellite-derived records suffered
from data gaps. LPRM gaps are a product of the overpass repeat cycle of Aqua, which10

results in spatial swaths of missing data on a regular repeat cycle, and of interference
from precipitation, dense vegetation, radio signals or frozen ground. Retrievals that
were flagged as poor quality due to such interference were removed from the analysis.
Missing values were present in the ALEXI model because the algorithm requires morn-
ing observations of radiometric surface temperature, which can only be observed for15

cloud-free regions. This creates seasonally repeating areas of sparse data coverage in
climatologically cloudy regions. Gap-filling algorithms for ALEXI have been developed
to generate daily ET estimates (Anderson et al., 2007a), but they were not utilized in
this study so as to focus only on direct retrievals of soil moisture (rather than interpo-
lated values). Eight-day composites across the period of study were created for each20

data set to avoid oversampling in the analysis due to seasonal weather events. All
available observations were averaged within a given compositing period.
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2.3.3 Estimating root zone soil moisture for all products

To standardize the depth of soil moisture estimate across LPRM, ALEXI, and Noah,
each dataset was converted to an estimate of soil moisture through the root zone. For
this study the root zone was defined as the top one meter of the soil column.

ALEXI provides a single column-integrated soil moisture estimate that reflects soil5

moisture from the surface to the rooting depth of the vegetation: surface soil wetness
cools the surface through direct evaporation, while root zone soil moisture leads to
cooling through plant transpiration. The degree to which near-surface vs. deeper root
zone soil moisture influences the ALEXI signal is assumed to be related to the observed
green vegetation cover fraction (fc; Hain et al., 2009, 2011), as described further below.10

The Noah LSM produces a stratified soil moisture estimate that is divided into four
layers: 0–10 cm, 10–40 cm, 40–100 cm and 100–200 cm. For the purposes of this study
the first layer (0–10 cm) was considered the surface layer while the depth-weighted
average of the first three layers (together 0–100 cm) was considered the root zone.

LPRM produces soil moisture estimates for only the top layer of soil (∼1 cm). An15

exponential filter (Eq. 2) was used to extrapolate these measurements and simulate
infiltration of surface soil moisture into the root zone. The filter used was developed
by Wagner et al. (1999) and has been employed by Ceballos et al. (2005), Albergel
et al. (2008) and Hain et al. (2011). The filter applies a two-layer water balance that
estimates the root zone soil moisture using a surface soil moisture measurement and20

a characteristic time of variation between the surface and root zones (Wagner et al.,
1999):

θ(tn)LPRM rz =

∑
θ(tn)LPRM sfe

− tn−ti
τ∑

e− tn−ti
τ

(2)

where θ(tn)LPRM sf represents the soil moisture retrieval for a past day ti , θ(tn)LPRM rz
represents the root zone soil moisture estimation for a given day (tn), and τ represents25

the characteristic time of variation between the surface layer and root zone in the soil
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profile. Optimal values for τ were calculated as those that maximized the correlation
between the Noah LSM root-zone estimates and root-zone estimates computed by
running the Noah 0–10 cm soil moisture estimates from 2003–2011 through the expo-
nential filter (Eq. 2).

The true depth of the soil moisture estimate produced by ALEXI is related to the5

fraction of green vegetation cover (fc). Over bare soil the latent heat is dominated by
the evaporation from the top layer of soil, similar to the sensing depth of microwave
sensors such as AMSR-E (Hain et al., 2011; Crow et al., 2007). Over densely vegetated
areas (fc > 75%), ALEXI latent heat is dominated by the evapotranspiration from the
canopy layer, which is indicative of soil moisture in the root zone. This relationship is10

approximated by Eq. (3)

θALEXI = (1− fc)θALEXI sf + fcθALEXI rz (3)

where θALEXI is the total profile soil moisture estimate retrieved from ALEXI, θALEXI sf
and θALEXI rz are respectively the surface and root zone soil moistures and fc is the
fractional green vegetation cover. For this study θALEXI sf and θALEXI rz are not indepen-15

dently retrieved, but are included in Eq. (3) to construct a conceptual framework. LPRM
and Noah soil moisture measurements were scaled using the same methodology so
that the physical value being measured remains consistent across all products:

θLPRM = (1− fc)θLPRM sf + fcθLPRM rz (4)

θNoah = (1− fc)θNoah sf + fcθNoah rz (5)20

where θLPRM sf is defined as the LPRM surface soil moisture retrieval and θLPRM rz is
the estimate produced by the exponential filter. θNoah sf is the first Noah soil moisture
output layer (0–10 cm) and θNoah rz is the sum of the first through third layers (0–10 cm,
10–40 cm and 40–100 cm).25

The green vegetative cover of a pixel for LPRM and Noah was determined using
MODIS 16-day NDVI estimates (MOD13C1) and the linear relationship of Gutman and
Ignatov (1998):
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fc =
(NDVI−NDVI0)

(NDVI100 −NDVI0)
(6)

NDVI0 refers to the minimum observed NDVI for the entire area of study over the entire
time period. In this case NDVI0 was calculated by averaging the five smallest observed
values. NDVI100 refers to the maximum observed NDVI and was calculated as the
average of the five largest observed values. NDVI is the specific NDVI for a given pixel5

at a given time. Small differences between MODIS-derived fc and the Meteosat-derived
fc used in the ALEXI processing stream may have a small impact on estimates of
relative error between the three soil moisture products.

2.3.4 Calculation of anomalies

Root zone soil moisture estimates for LPRM and Noah were generated using the NDVI10

fc and the method described in the previous Sect. 2.3.3. These depth-matched datasets
were then used in the anomaly analysis. Two categories of anomalies were produced
for this study: time series anomalies averaged over the area of interest (40.625◦ to
48.125◦ E, −3.1255◦ to 9.375◦ N; Fig. 1), and spatially distributed anomalies for all of
East Africa in hydrologic year 2010–2011. The area of interest was selected to cap-15

ture the area of maximum drought intensity, as identified through our own analyses
and independent reports of the drought. All anomalies were calculated relative to the
pre-drought baseline, 2003–2010. The ALEXI model was not included in the anomaly
analysis because the dataset for East Africa only dates back to 2007 due to limitations
on the LSA SAF product archive extent.20

2.3.5 TCA and TCA-based data merging

Triple Collocation Analysis (TCA) is a method that can be used to estimate the relative
error variance associated with three collocated datasets, provided that the datasets
are mutually linear and have independent error characteristics (Janssen et al., 2007).

4600

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/4587/2012/hessd-9-4587-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/4587/2012/hessd-9-4587-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 4587–4631, 2012

Soil moisture
drought monitor for

East Africa

W. B. Anderson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

TCA is a powerful technique but only produces meaningful results if each dataset is
measuring the same physical parameter (and are therefore mutually linear). To en-
sure that independent datasets were, indeed, appropriate for TCA, cross-correlations
of the products were calculated. Pixels with very low cross-correlations (r < 0.2) were
interpreted as non-analogous and were excluded from the TCA. All datasets were con-5

verted to a single reference climatology to account for variations in mean and standard
deviation, following the methods of Hain et al. (2011); in this case Noah was chosen to
be the reference dataset, but the choice of reference does not affect the results of the
analysis.

As part of the data normalization process, a seasonal mean (µ) and standard de-10

viation (σ) was computed for each eight-day composite soil moisture estimate (θ) of
each dataset. The seasonal mean and standard deviation were calculated for the years
2007–2010 using a 24-day centered window (one composite-week on either side of
the composite of interest) and used to convert the ALEXI and LPRM soil moisture
estimates into Noah climatology as outlined in Eqs. (7) and (8).15

θ′
LPRM = µNoah + (θLPRM −µLPRM)

(
σNoah

σLPRM

)
(7)

θ′
ALEXI = µNoah + (θALEXI −µALEXI)

(
σNoah

σALEXI

)
(8)

Following a rescaling of each dataset, the normalized seasonal composites were used
as input for TCA as described in Eqs. (9) through (11). A full discussion of these meth-20

ods can be found in Stoffelen (1998). Each pixel from each dataset was analyzed over
the 2007–2010 time period to calculate TC values (ε2):
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ε2
Noah =

〈(
θNoah −θ′′

LPRM

)(
θNoah −θ′′

ALEXI

)〉
(9)

ε2
LPRM =

〈(
θ′′

LPRM −θNoah
)(

θ′′
LPRM −θ′′

ALEXI

)〉
(10)

ε2
ALEXI =

〈(
θ′′

ALEXI −θ′′
LPRM

)(
θ′′

ALEXI −θNoah
)〉

(11)

where θ′′ represents the rescaled seasonal composites and brackets indicate a tem-5

poral average taken over the study period 2007–2010.
In areas above the correlation threshold set for the TCA, TC values were used as an

objective measure for soil moisture data merging. A least squares approach was used
to derive the weights for each product following the methods of Yilmaz et al. (2012). In
order to produce an unbiased merged product, the sum of the weights of all products10

was constrained to one (wx+wy +wz = 1). The cost function (J) to be minimized in this
case is the error variance of the merged product obtained from the least squares based
merging method that depends on the TCA based errors. The cost function changes de-
pending on the number of available soil moisture datasets for a given time and location.
If only two datasets are available at a given pixel, the cost function is:15

J = ε2
m = wxε

2
x + (1−wx)ε2

y (12)

If all three datasets are available the cost function becomes:

J = ε2
m = wxε

2
x +wyε

2
y +wzε

2
z (13)

J = ε2
m = wxε

2
x + (1−wx −wz)ε2

y +wzε
2
z (14)

20

and if only one dataset is available, it is given the full weight. Applying the least squares
approach to the cost functions in Eqs. (12) and (14) yields the following weights.

For two available datasets scenario:

wx =
ε2
y

ε2
x +ε2

y

(15)
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wy =
ε2
x

ε2
x +ε2

y

(16)

For three available datasets scenario:

wx =
ε2
yε

2
z

ε2
xε

2
y +ε2

xε
2
z +ε2

yε
2
z

(17)

5

wy =
ε2
xε

2
z

ε2
xε

2
y +ε2

xε
2
z +ε2

yε
2
z

(18)

wz =
ε2
xε

2
y

ε2
xε

2
y +ε2

xε
2
z +ε2

yε
2
z

(19)

Equations (15)–(19) were used to produce a weighting map for each product in the
domain of the TC analysis. Note that these weights are stationary provided that the10

number of datasets with available measurements remains constant.
In areas below the correlation threshold set for the TCA, no TC values were pro-

duced; however, that does not mean that no useable data are available for the weight-
ing map. For the case in which a significant correlation was observed between two
of the methods in an area that was screened out of the TCA, an equal weight was15

assigned to each of the correlated methods.

3 Results and discussion

3.1 Anomaly analysis

TRMM precipitation measurements from June 2003 to June 2011 were used to com-
pare the magnitude and duration of the 2010–2011 seasonal rains with those of the20
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previous seven years (Fig. 2). The precipitation data show a near complete failure of
the October–December rains as well as weak April–June rains. In fact, FEWS NET
determined that the total anomaly in precipitation during the 2010–2011 rainy seasons
was the most severe in the last fifty years for parts of Kenya and Ethiopia (USAID FEWS
NET, 2011). The lack of precipitation is evident in modeled and remotely sensed esti-5

mates of soil moisture, NDVI, and terrestrial water storage (Fig. 3). For each of these
variables, the 2010–2011 drought was the most severe negative anomaly in magnitude
and duration recorded during the period of analysis. The drought is unique in that it was
a two-season drought of comparable magnitude to previous drying events of shorter
duration.10

The datasets displayed in Fig. 3 represent the 2010–2011 droughts in similar but
not identical ways. Soil moisture anomalies (LPRM and Noah) trend negative from the
very beginning of the negative anomaly in precipitation (October 2010), but they persist
beyond the end of each failed rainy season. This is to be expected, as soil moisture
anomalies reflect cumulative precipitation anomalies and are known to provide memory15

in the climate and hydrological system. In the period between the 2010 short rains and
the 2011 long rains, TMPA anomalies return to near zero – true almost by definition
for the period between rainy seasons in this region – and LPRM, which is dominated
by surface soil moisture variability, notwithstanding the fc filter, nearly returns to a zero
anomaly as well. Noah soil moisture and MODIS NDVI anomalies, both of which reflect20

dry conditions in the root zone, remain negative even between rainy seasons, indicating
that agricultural drought carried over from the failed short rains to the beginning of the
long rainy season. A snapshot of NDVI or Noah root zone soil moisture anomalies taken
in March 2011, then, would indicate that the land was in moisture deficit going into the
planting season, where a snapshot of surface soil moisture or precipitation would not.25

GRACE offers an entirely different perspective on the drought. Interestingly, there
was a strong negative anomaly in terrestrial water storage even at the “onset” of
the 2010–2011 drought. Indeed, GRACE retrievals indicate that total water storage
in the area of interest has declined relatively steadily since 2007 (data not shown). The
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relevance of this multiyear decline in total water storage to drought impacts in 2010–
2011 has yet to be investigated.

3.2 Spatial anomalies

Figure 4 illustrates the spatial distribution of soil moisture anomalies in the short and
the long rainy seasons. LPRM, ALEXI and Noah soil moisture anomalies all reflect that5

the failure of the short rains (late September to December) was greatest in Southern
Somalia, Kenya and East Ethiopia while the long rain failures (April to July) extended
further into Kenya, Ethiopia and Sudan. In general the soil moisture estimates agree
relatively well on the location and magnitude of the drought, but there is some discrep-
ancy in the observed spatial extent, as Noah detects a more intense drying in Central10

Sudan during the long rains than either of the satellite-based methods.
Figure 5 shows temporal cross-correlation of rescaled soil moisture anomalies be-

tween ALEXI and Noah (Fig. 5a), LPRM and Noah (Fig. 5b), and LPRM and ALEXI
(Fig. 5c) for the period 2007 to 2010. The difference in cross-correlations is displayed
in Fig. 6. For regions missing only one dataset, the cross-correlation between the re-15

maining two methods is displayed, notwithstanding edge effects due to differences in
coastal definition. Previous work in the United States (Hain et al., 2011) has indicated
that ALEXI and LPRM soil moisture retrievals perform optimally in complementary re-
gions due to strengths and limitations of each retrieval technique. Passive microwave
soil moisture retrievals, including LPRM, are inherently limited to the top 1–2 cm of20

the soil column. Use of the exponential filter softens this limitation, assuming a corre-
lation between surface and root-zone soil moisture, and can capture the influence of
deeper soil moisture to some extent, but the LPRM soil moisture estimate is still highly
sensitive to near-surface soil moisture variability, which makes it most appropriate in
sparsely vegetated regions where vertical support of soil moisture is relatively small.25

In addition, attenuation of the microwave signal in areas of dense vegetation disrupts
the retrieval of soil moisture measurements, potentially to the point of being unusable
(Njoku et al., 2004; Owe et al., 2008). The ALEXI thermal infrared model, in contrast,
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obtains its measurements based on radiometric temperature partitioned between the
soil and vegetation. This means that while the physical depth of measurement may
change as a function of vegetation, the performance is not expected to deteriorate
with increasing vegetation cover, as found by Hain et al. (2011). Indeed, the fact that
the thermally-based soil moisture estimate integrates the effects of surface evapora-5

tion and plant transpiration makes it particularly valuable in densely vegetated regions,
where root zone soil moisture variability can be significant.

Figures 5 and 6 allow us to explore this pattern, using Noah as a point of reference.
Over the majority of extremely arid regions (e.g., Egypt, Northern Sudan and portions of
Saudi Arabia and the Horn) neither product clearly correlates more strongly with Noah.10

Over semi-arid regions (e.g., Central Sudan, portions of Southern Ethiopia, Kenya and
Somalia), LPRM correlates more strongly with Noah, largely because LPRM errors are
low for sparse vegetation cover while ALEXI errors are moderate across all vegeta-
tion conditions. Some of the difference in perceived skill between ALEXI and LPRM,
however, may be related to the shorter repeat cycles of the microwave sensors as com-15

pared with the thermal infrared method. Over areas of dense vegetation (e.g., Western
Ethiopia and the Congo basin), LPRM correlates poorly with Noah and ALEXI. This is
in part due to interference from vegetation and in part due to the fact that LPRM soil
moisture estimates, even when adjusted with an fc filter, are dominated by near surface
rather than root zone variability.20

These spatial patterns can be summarized by plotting the difference between LPRM
and ALEXI correlation with Noah as a function of fractional vegetation cover (Fig. 6b).
In this application, the crossing point at which the sensors are approximately equally
correlated with Noah is at an fc of 0.60 Above this threshold, ALEXI correlates more
strongly with Noah, while below it LPRM correlates more strongly. The greatest diver-25

gence of the satellite-based soil moisture estimates is in the extremes of vegetation
density (fc < 0.35 and fc > 0.8).
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3.3 Triple collocation analysis and data merging

TCA was employed to quantify relative agreement across the three soil moisture
datasets and to provide an objective basis for data merging. TCA was not applied
in some arid regions, both because of the low cross-correlations in these regions and
because drought monitoring in these persistently dry regions is not a practical priority.5

These arid regions were masked out of TCA on the basis of their low correlation coeffi-
cient between datasets (Fig. 7). Even within regions that pass the correlation condition,
some coastal and highland areas stand out as having high TC values for all datasets.
It should be noted, however, that these TCA results are based on a somewhat limited
time series due to data availability, and that as additional data become available they10

may be incorporated into the analytical framework outlined in this paper.
As with the correlations between products, the spatial variability of the TC values for

each product was evaluated as a function of the fraction of green vegetation (Figs. 7
and 8). LPRM has a clear dependence on the fraction of green vegetation cover, with
a marked increase in TC errors above fc = 0.75. As a passive microwave based sen-15

sor, it is expected that the accuracy LPRM soil moisture retrievals would decrease
over areas of dense vegetation (Hain et al., 2011). The poor performance of LPRM in
densely vegetated areas is reflected in the TC values displayed in Fig. 7, especially
over the Congo basin. In these regions, valid LPRM soil moisture retrievals are often
not available, and are of relatively low accuracy when they are available.20

ALEXI and Noah have a less pronounced dependence on the fraction of green veg-
etation, but in general Noah maintains the constant TC values across all fc while the
TC values of ALEXI decrease above moderate fc. These trends are further confirmed
in Fig. 8b, showing the relative TC errors between retrieval techniques. LPRM has the
highest TC over high mean fraction of vegetation cover (fc > 0.70), while for areas with25

a low to moderate fraction of vegetation cover (fc < 0.70) ALEXI displays higher TC
values than those of Noah or LPRM.
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When considering the TC values from a data merging perspective, higher relative
TC values correspond to lower merging weights (see Eqs. 15–19). Owing to the het-
erogeneity of fractional vegetation and the complementary retrieval techniques, LPRM
and ALEXI received low merging weights in offsetting regions while Noah received
fairly constant weight across the domain. This relationship is best illustrated by select-5

ing a number of specific regions to analyze. For the purposes of this study four regions
for which drought may be of concern but which display markedly different vegetation
cover were chosen: the Ethiopian Highlands, the Horn of Africa, Northern Lake Victoria
and Darfur. As expected, in the areas dominated by low fractional vegetation and an
arid climate (Darfur and the Horn of Africa) LPRM and Noah received a higher merging10

weight and in general displayed lower TC values than ALEXI (Tables 1–4). However,
over moderate to dense fractional vegetation the performance of LPRM degraded (as
TC values increased), while ALEXI and Noah on average had lower TC values and
therefore received a higher merging weight.

Bearing in mind the predominantly arid conditions of the study region, these results15

are also consistent with the correlation analysis (Fig. 5 and Table 5), which indicates
that Noah has the highest cross-correlations and LPRM cross-correlations are better
than the cross-correlations of ALEXI. However, the majority of the cross-correlation dif-
ferences are only marginal, especially the difference between the cross-correlations of
Noah and ALEXI, implying the weight differences we find here are only due to small20

differences that exist in the cross-correlations. Here the weights do not imply any re-
lation with the absolute magnitude of the errors, but rather only give information about
the relative magnitudes of the errors regardless of the error differences.

The performance of the merged product was compared to each individual method in
Fig. 10, which compares estimates of soil moisture during an 8-day period of the long25

rains in 2011. The merged product achieves a more complete spatial coverage than
either of the satellite methods while reflecting a consensus location and magnitude
anomaly pattern. The yearlong progression of the 2010–2011 drought is depicted in
Fig. 11, which displays the monthly anomalies of the merged product for July 2010–
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June 2011. This figure highlights the spatial evolution of the two-season drought as
captured by the merged product.

4 Conclusions

Remote sensing and physically-based models are critically important methods for mon-
itoring drought in areas with limited in situ observation networks, particularly for coun-5

tries with food security concerns. As shown in this study, remotely sensed observa-
tions are valuable for their spatial and temporal continuity as well as for their diversity
– satellite-derived observations of precipitation, soil moisture, vegetation condition and
terrestrial water storage offer a range of information on meteorological, agricultural,
and hydrological drought over space and time. An anomaly analysis of satellite and10

model-based drought indicators demonstrated that the 2010–2011 drought stands out
as an extreme event according to all measures included in this study. But different data
records provide different perspectives on the onset and progression of the drought.
TRMM and LPRM capture rapid-response anomalies associated with the failure of
rains in each rainy season, while ALEXI and Noah track the evolution of the drought15

as it deepened from 2010 to 2011, and GRACE captures the fact that the drought oc-
curred against a background of a multiyear deficit in the regional water balance. This
diversity of information is valuable for tracking the progression and severity of a drought
and for anticipating the impacts that an emerging drought may have on ecological and
human systems.20

In addition to providing observations that capture diverse drought-related processes
across time and space, earth observing systems and models often provide comple-
mentary estimates of a single variable. In this study, independent estimates of soil mois-
ture derived from passive microwave (AMSR-E; LPRM), thermal infrared (ALEXI), and
model-based (Noah) methods were cross-compared and merged into a single consen-25

sus drought monitor product using triple collocation analysis. It was found that ALEXI
complements poor LPRM performance under conditions of dense vegetation, while
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LPRM and Noah provide more consistent anomaly estimates under more sparse vege-
tation conditions. This general pattern, which derives from the fact that vegetation inter-
feres with LPRM soil moisture retrievals but does not compromise thermally derived soil
moisture estimates from ALEXI, is consistent with findings of Hain et al. (2011) for the
contiguous United States. The least squares-based objective data merging technique5

that is built over the TCA-based error estimates utilizes the complementary strengths of
each method to generate soil moisture anomaly estimates across agroclimatic zones.

While the present study is limited by short satellite data records and an absence of
direct in situ soil moisture evaluation data, the consistency of the results with studies in
the United States and the coherency of independent satellite and model-based analy-10

ses of the 2010–2011 Horn of Africa drought point to the promise of the least squares-
based merging approach that utilizes TCA-based errors. With the addition of a longer
ALEXI time-series, the sampling errors that arise from short satellite data records are
expected to decrease relative to the current study. Properly applied, this data merging
technique could form the foundation for a soil moisture-based drought monitor in East15

Africa. Such a product would complement existing drought analysis tools that are based
on precipitation anomaly, hydrological models, or vegetation indices. As demonstrated
in this study, diverse satellite and model-based monitoring methodologies provide com-
plementary information on the evolution and severity of drought. Ultimately, East Africa
– and other drought prone regions – would benefit from an accessible and intuitive20

drought portal that allows drought analysts and decision makers real time access to
a range of drought monitoring products. As a component of a much broader movement
for drought preparedness and response capacity in the region, such a monitor can
provide valuable information to inform early warning and disaster response for future
droughts.25
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Table 1. Average merging weight and TC values for the Ethiopian Highlands.

Ethiopian Highlands
(34.59◦, 40.21◦, 6.86◦, 13.53◦) (W, E, S, N)

Retrieval Average TCA value Average merging
[(m3 m−3)2] weight

LPRM 4.312×10−4 0.283
ALEXI 3.914×10−4 0.331
Noah 2.822×10−4 0.385
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Table 2. Average merging weight and TC values for Darfur.

Darfur
(23.89◦, 27.78◦, 9.82◦, 19.09◦) (W, E, S, N)

Retrieval Average TCA value Average merging
[(m3 m−3)2] weight

LPRM 1.107×10−4 0.351
ALEXI 1.561×10−4 0.264
Noah 1.134×10−4 0.384
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Table 3. Average merging weight and TC values for the Horn of Africa.

Horn of Africa
(40.62◦, 48.12◦, −3.12◦, 9.37◦) (W, E, S, N)

Retrieval Average TCA value Average merging
[(m3 m−3)2] weight

LPRM 3.023×10−4 0.401
ALEXI 5.700×10−4 0.212
Noah 2.793×10−4 0.387
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Table 4. Average merging weight and TC values for Northern Lake Victoria.

Northern Lake Victoria
(28.71◦, 35.95◦, −0.25◦, 3.65◦) (W, E, S, N)

Retrieval Average TCA value Average merging
[(m3 m−3)2] weight

LPRM 4.867×10−4 0.273
ALEXI 5.187×10−4 0.330
Noah 3.331×10−4 0.396
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Table 5. Average anomaly correlations.

Retrieval Pair Darfur Ethiopian Highlands Horn of Africa Northern Lake Victoria

Noah – LPRM 0.848 0.737 0.828 0.689
ALEXI – LPRM 0.798 0.720 0.773 0.636
Noah – ALEXI 0.796 0.781 0.777 0.711
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Figure 1: Selected area of interest within the Horn of Africa (40.625, 48.125, -3.125, 3 
9.375) [W, E, S, N] 4 
 5 
 6 
 7 
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Figure 2: TRMM Multisensor Precipitation Analysis (3B42) Precipitation estimates from 20 
2003 – 2011. Blue = 2010-2011; Gray = all other years. 21 
 22 
 23 
 24 

Fig. 1. Selected area of interest within the Horn of Africa (40.625◦, 48.125◦, −3.125◦, 9.375◦)
(W, E, S, N).
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Figure 1: Selected area of interest within the Horn of Africa (40.625, 48.125, -3.125, 3 
9.375) [W, E, S, N] 4 
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Figure 2: TRMM Multisensor Precipitation Analysis (3B42) Precipitation estimates from 20 
2003 – 2011. Blue = 2010-2011; Gray = all other years. 21 
 22 
 23 
 24 

Fig. 2. TRMM Multisensor Precipitation Analysis (3B42) Precipitation estimates from 2003–
2011. Blue = 2010–2011; Gray = all other years.
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 3 
Figure 3: Anomaly analysis of TRMM precipitation, LPRM and Noah soil moisture 4 
estimates, MODIS NDVI and GRACE terrestrial water storage using a Jan 2003 to Jun 5 
2010 baseline.  6 

7 

Fig. 3. Anomaly analysis of TRMM precipitation, LPRM and Noah soil moisture estimates,
MODIS NDVI and GRACE terrestrial water storage using a January 2003 to June 2010 base-
line.
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Figure 4: Seasonal anomalies averaged over the 2010 short rains (A-C) and 2011 long 35 
rains (D-F) for LPRM (A,D), ALEXI (B,E) and Noah (C,F). The short rains are defined 36 
as the period from September 12 – December 1, while the long rains span March 28 – 37 
June 30. 38 

39 

Fig. 4. Seasonal anomalies averaged over the 2010 short rains (A–C) and 2011 long rains (D–
F) for LPRM (A, D), ALEXI (B, E) and Noah (C, F). The short rains are defined as the period
from 12 September–1 December, while the long rains span 28 March–30 June.
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Figure 5: Temporal cross-correlation of rescaled soil moisture anomalies for Jan 2007 – 39 
Jun 2010 computed between A)  LPRM and Noah, B) ALEXI and Noah, and C) ALEXI 40 
and LPRM. 41 

42 

Fig. 5. Temporal cross-correlation of rescaled soil moisture anomalies for January 2007–
June 2010 computed between (A) LPRM and Noah, (B) ALEXI and Noah, and (C) ALEXI
and LPRM.
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Figure 6: Anomaly correlation difference between LPRM/Noah and ALEXI/Noah. Areas 40 
shaded in brown (blue) represent a greater correlation between Noah and LPRM 41 
(ALEXI) during the rainy seasons. A) shows the spatial distribution of correlation 42 
differences, while B) shows correlation differences as a function of the average fraction 43 
of green vegetation during the rainy seasons. 44 
 45 
 46 

Fig. 6. Anomaly correlation difference between LPRM/Noah and ALEXI/Noah. Areas shaded
in brown (blue) represent a greater correlation between Noah and LPRM (ALEXI) during the
rainy seasons. (A) shows the spatial distribution of correlation differences, while (B) shows
correlation differences as a function of the average fraction of green vegetation during the rainy
seasons.
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Figure 7: The variance of the triple collocation analysis based errors in (m3m-3)2 for each 40 
product juxtaposed with the annual average fraction of green vegetation cover. A) 41 
ALEXI TCA, B) LPRM TCA, C) Noah TCA, D) Mean fraction of green vegetation 42 
cover over the period 2007 to 2011. Gray areas in panels A-C indicate regions below the 43 
correlation threshold for the TC analysis (r < 0.2). Red boundaries in panel D indicate 44 
bounding boxes for the analysis in Tables 1-4. 45 

46 

Fig. 7. The variance of the triple collocation analysis based errors in (m3 m−3)2 for each product
juxtaposed with the annual average fraction of green vegetation cover. (A) ALEXI TCA, (B)
LPRM TCA, (C) Noah TCA, (D) Mean fraction of green vegetation cover over the period 2007
to 2011. Gray areas in panels (A–C) indicate regions below the correlation threshold for the
TC analysis (r < 0.2). Red boundaries in panel (D) indicate bounding boxes for the analysis in
Tables 1–4.
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Figure 8: The variance of the triple collocation analysis based errors in (m3m-3)2 binned 41 
as a function of average fraction of green vegetation cover during the rainy season, 42 
showing a) TCA errors for each SM retrieval technique, and b) differences in TCA 43 
between retrieval techniques. 44 
 45 
 46 

Fig. 8. The variance of the triple collocation analysis based errors in (m3 m−3)2 binned as a func-
tion of average fraction of green vegetation cover during the rainy season, showing (A) TCA
errors for each SM retrieval technique, and (B) differences in TCA between retrieval techniques.
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Figure 9: TCA based weight map for the case in which data is available from all products 42 
for A) ALEXI, B) LPRM and C) Noah. 43 
 44 
 45 
 46 

Fig. 9. TCA based weight map for the case in which data is available from all products for (A)
ALEXI, (B) LPRM and (C) Noah.
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Figure 10: Individual and merged product anomaly maps for an 8-day period during the 43 
2011 long rainy season (Apr 28 – May 06). A) LPRM, B) ALEXI, C) Noah, D) Merged 44 
Product. 45 

46 

Fig. 10. Individual and merged product anomaly maps for an 8-day period during the 2011 long
rainy season (27 April–6 May). (A) LPRM, (B) ALEXI, (C) Noah, (D) merged product.
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Figure 11: Monthly anomaly maps of the progression of the 2010-2011 drought using the 38 
merged product. July – December 2010 (A-F) and January –June 2011 (G – L).  39 

Fig. 11. Monthly anomaly maps of the progression of the 2010–2011 drought using the merged
product. July–December 2010 (A–F) and January–June 2011 (G–L).
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