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Abstract

We describe a parameter estimation framework for the Unified Land Model (ULM) that
utilizes multiple independent data sets over the Continental United States. These in-
clude a satellite-based evapotranspiration (ET) product based on MODerate resolu-
tion Imaging Spectroradiometer (MODIS) and Geostationary Operation Environmental5

Satellites (GOES) imagery, an atmospheric-water balance based ET estimate that uti-
lizes North American Regional Reanalysis (NARR) atmospheric fields, terrestrial wa-
ter storage content (TWSC) data from the Gravity Recovery and Climate Experiment
(GRACE), and streamflow (Q) primarily from the United States Geological Survey
(USGS) stream gauges. The study domain includes 10 large-scale (≥105 km2) river10

basins and 250 smaller-scale (<104 km2) tributary basins. ULM, which is essentially
a merger of the Noah Land Surface Model and Sacramento Soil Moisture Accounting
model, is the basis for these experiments. Calibrations were made using each of the
criteria individually, in addition to combinations of multiple criteria, with multi-criteria
skill scores computed for all cases. At large-scales calibration to Q resulted in the best15

overall performance, whereas certain combinations of ET and TWSC calibrations lead
to large errors in other criteria. At small scales, about one-third of the basins had their
highest Q performance from multi-criteria calibrations (to Q and ET) suggesting that tra-
ditional calibration to Q may benefit by supplementing observed Q with remote sensing
estimates of ET. Model streamflow errors using optimized parameters were mostly due20

to over (under) estimation of low (high) flows. Overall, uncertainties in remote-sensing
data proved to be a limiting factor in the utility of multi-criteria parameter estimation.

1 Introduction

The evolution of land surface models (LSMs) towards increasingly complex represen-
tations of hydrologic and biophysical processes requires special attention to the fidelity25

of the models in partitioning water and energy budget components. The traditional
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validation of models using observations of a single prognostic variable can result in
model predictions that are inherently biased towards that variable (McCabe et al.,
2005). The evaluation of multiple model outputs (as opposed to single-output anal-
ysis, such as streamflow) has received increasing attention (e.g., Gupta et al., 1999;
Crow et al., 2003; McCabe et al., 2005; Khu et al., 2008, Werth and Guntner, 2010; Mil-5

zow et al., 2011). Among the variables other than streamflow that have been used for
LSM evaluation are evapotranspiration (Nandagiri, 2007), surface heat fluxes (Gupta
et al., 1999; McCabe et al., 2005), hydrochemical and isotope tracers (Son and Siva-
palan, 2007; Lischeid, 2008; Birkel et al., 2010), land surface temperature (Crow et al.,
2003; McCabe et al., 2005), snow water equivalent (MacLean et al., 2010), terrestrial10

water storage (Werth and Gunter, 2010; Milzow et al., 2010), and water table level
(Khu et al., 2008). The more frequent use of multivariate observations is attributable
in part to their growing availability. Some satellite-based observations now have peri-
ods of record exceeding a decade for single sensors, and multiple decades for some
multi-sensor merged records.15

In the context of parameter estimation, multi-criteria analyses can aid in addressing
the issue of equifinality (Beven and Freer, 2001). The equifinality problem arises when
different parameter sets result in similar model performance. One approach to reduc-
ing equifinality issues and quantifying uncertainties in model calibration is the General-
ized Likelihood Uncertainty Estimation (GLUE) framework of Beven and Binley (1992),20

which can aid in selection of model calibration parameters through estimating the like-
lihood that each parameter set is the true predictor of the system. A distribution of
likelihoods among many parameter values is then generated and used to define uncer-
tainties and select parameters. Herein we consider an alternative calibration method-
ology (detailed in Sect. 3.4) that selects parameters via ancillary objective functions.25

After identifying several top-performing sets of model parameters, the addition of obser-
vational sources is used to constrain parameter values – i.e., multivariate performance
analyses. This reduces the number of similar feasible parameter sets to allow selection
of a single best parameter set and hence produce robust parameter estimates. Robust

4419

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/4417/2012/hessd-9-4417-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/4417/2012/hessd-9-4417-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 4417–4463, 2012

Multi-criteria
parameter estimation

B. Livneh and
D. P. Lettenmaier

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

model parameters are especially important when models are used to predict outcomes
for model forcings outside the range observed in the model parameter estimation (cali-
bration) period. Interannual variability of streamflow regime is one such example, which
provides a basis for the investigation of potential future changes in river discharge that
might result from climate or land-use change (Kingston et al., 2011). Robust model5

parameters are also essential for examining the importance of spatial and temporal
scale on land surface response. Spatial scale can, for instance, determine the nature
of environmental impact assessments (João, 2002), and the categorization of droughts
(Shukla et al., 2011), but also determine how localized hydrologic events propagate
through a larger system (for instance, flash flooding from tributary catchments as it af-10

fects the hydrologic response of a much larger region). The accurate modeling of scale
effects ultimately aids in decision making and issuing timely warnings.

2 Modeling context

The Unified Land Model (ULM – Livneh et al., 2011) is the LSM used in this study. ULM
is essentially a merger of two widely used models: the Noah LSM (Ek et al., 2003;15

used in most of NOAA’s coupled weather and climate models), and the Sacramento
soil moisture accounting model (Burnash et al., 1973; used for hydrologic prediction
within the National Weather Service). The parameter estimation experiments reported
here can also be viewed as a means to evaluate ULM rigorously in ways that extend
the work of Livneh et al. (2011). Additionally, given the ULM’s heritage and widespread20

use of Noah and Sac, the implications of the results should be broadly relevant to the
modeling community.

The objective of this work is to examine the benefits and potential tradeoffs of incor-
porating multiple observations (multiple-criteria) into model calibration across a range
of hydroclimatic conditions and spatial scale. This will involve computing simultaneous25

skill-scores between the model and each observed criteria. Using this information, the

4420

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/4417/2012/hessd-9-4417-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/4417/2012/hessd-9-4417-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 4417–4463, 2012

Multi-criteria
parameter estimation

B. Livneh and
D. P. Lettenmaier

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

nature of error accumulations and interannual variability in resulting model predictions
can also be examined.

We first apply a multivariate model calibration procedure over some of the major river
basins of the Continental United States (CONUS), and follow with similar calibrations
for selected interior tributary catchments. Single and multi-criteria objective functions5

were used to assess the added value of including information such as remotely sensed
ET and TWSC in the calibration procedure. Estimated parameters were then used to
analyze simulated streamflow variability, seasonality, and autocorrelation; examining
both model skill and error propagation across different spatial scales and hydroclimatic
regions.10

3 Data and methods

In this section we describe the experimental design, including the study domain, the
model, and model forcing and evaluation data. We follow with a description of the model
calibration strategy and the trend and error analyses.

3.1 Basin selection, streamflow, and meteorological data15

The study domain is comprised of river basins of different sizes within the CONUS,
selected to provide a broad cross section of hydroclimatic conditions and basin areas
that are representative of typical land surface modeling applications. The largest river
basins (hereafter major basins) are shown in Fig. 1 and their characteristics are sum-
marized in Table 1. For several major basins, particularly in the Western US, natural-20

ized streamflow data were obtained that have been adjusted for anthropogenic impacts,
including upstream (reservoir) regulation, water withdrawals and evaporation from up-
stream reservoirs (see Table 1). In addition to the 10 major basins a set of 250 smaller
catchments (herein tributaries) were selected, most of which are tributaries to the ma-
jor basins (Fig. 2). The tributaries are a subset of the MOPEX (Schaake et al., 2006)25
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data set, which have been screened to assure that they have an adequate density of
precipitation gauges and are minimally affected by upstream anthropogenic activities
such as irrigation diversion and reservoir operations. Hence streamflow observations
for the tributaries were obtained directly from United States Geologic Survey (USGS)
archives. All basins were further screened here to have a minimum of 20 years of data5

with 100 % record completeness within the period 1990–2009 to facilitate the use of
remote sensing data sets in multi-criteria parameter estimation.

The meteorological data used in this study were derived by Livneh et al. (2012) and
are available at a 1/16◦ resolution over the CONUS domain for the period 1915–2010.
Precipitation and daily minimum and maximum temperatures were obtained for the10

National Oceanic and Atmospheric Administration (NOAA) Cooperative Observer (Co-
op) stations shown in Fig. 1. Wind data were linearly interpolated from a larger (1.9◦

latitude-longitude) NCEP–NCAR reanalysis grid (Kalnay et al., 1996) that was used to
produce daily wind climatology for years prior to 1948. For complete details of model
forcing data (see Livneh et al., 2012).15

3.2 Auxiliary model evaluation data

In addition to streamflow observations, we made use of two independent estimates of
ET, which, like streamflow, are predicted by ULM. The first arises from an atmospheric
water balance over the major basins, whereas the second, derived from remote sens-
ing, is available on a spatially distributed basis, but for a relatively short (compared with20

most of the streamflow records) period of roughly one decade.

3.2.1 Atmospheric water balance ET (ETAWB)

Computing an atmospheric water balance has been a long-standing means for studying
atmospheric exchanges of moisture over large areas. For a given atmospheric domain,
with vertical extent to the 100 mbar height25
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∇ · 1
g

ps∫
100

qV dp+
∂
∂t

1
g

ps∫
100

qdp

 = P −ET (1)

where the first term is the convergence of liquid into, or out of the column, the second
term is the change in moisture (or precipitable water) from the column over time, q is the
specific humidity, V is the mean horizontal wind velocity, p is pressure at elevation, g is
the gravitational constant, and P is precipitation. Historically, the terms on the left-hand5

side of Eq. (1) were obtained using a “picket fence” approach based on radiosonde
observations (e.g., Starr et al., 1965; Rasmussen, 1967; Rosen and Omolayo, 1981;
Ropelewski and Yarosh, 1998). Areal moisture fluxes could then be estimated by in-
tegrating the divergence spatially over the domain, following Green’s Theorem. More
recent studies (Oki et al., 1995; Yeh et al., 1998; Syed et al., 2005; Yeh and Famigli-10

etti, 2008) have used this approach, where the spatial fields come from atmospheric
reanalyses, which assimilate radiosonde data, as well as other satellite sources of
information about the vertical profile of moisture and temperature. Yeh et al. (1998)
examined the lower limit of spatial scale for applicability of the atmospheric water bal-
ance approach and found that despite early estimates requiring areas >2×106 km2

15

(Rasmussen, 1968), accurate estimation of the climatology of regional evaporation is
possible at scales as small as 105 km2. At spatial smaller scales smaller than about
105 km2, the accuracy of the estimates degrades rapidly.

We use the North American Regional Reanalysis (NARR; Mesinger et al., 2006) as
the source of the two terms on the left-hand side of Eq. (1), both of which are standard20

NARR archived fields. The NARR output reflects the assimilation of radiosonde and
satellite data that are routinely used in numerical weather prediction, but performed
with a “frozen” version of the weather prediction model and data assimilation systems.
The right-hand side of Eq. (1) is based on the gridded precipitation fields derived from
a network of approximately 20 000 precipitation gauges across the Continental US by25
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Livneh et al. (2012). Figure 3 illustrates the atmospheric water balance as used in this
study.

3.2.2 Satellite-based ET (ETSAT)

Satellite remote sensing provides a promising alternative to direct observations for hy-
drologic prediction, although this is a source that has not been widely used to date5

– most likely because satellite-based data record lengths are only now approaching
a decade. We used a MODIS-based ET data product produced by Tang et al. (2009).
This product is based on the VI-Ts method described by Nishida et al. (2003) which
uses only satellite-based (no surface data) products. Specifically, downward solar ra-
diation is from the SRB data set of Pinker and Laszlo (1992), based on Geostationary10

Operation Environmental Satellites (GOES) and vegetation index (VI) and surface tem-
perature (Ts) data are from MODIS. Two key assumptions of the algorithm are (a) that
the evaporative fraction is constant over the diurnal cycle, and is well estimated by val-
ues from the daytime satellite overpass (of EOS/Terra in this case), and (b) there is
a substantial variation in VI-Ts pairs over a local region, such that an upper envelope15

of VI and Ts can be defined. The reader is referred to Tang et al. (2009) and Nishida
et al. (2003) for details of the algorithm. The algorithm was applied at 0.05◦ spatial
resolution, where each pixel represents the average of an area with 0.25◦ radius, to
address assumption (b) above.

Comparing this approach with ground observations, Tang et al. (2009) computed in-20

stantaneous and daily mean ET differences of less than 10 % and 15 % on average,
respectively. VI-Ts derived ET agreed favorably with estimates from a much higher res-
olution Landsat-based method over irrigated areas of the Klamath River Basin in the
Western US. Nishida et al. (2003) found correlations of R2 > 0.85 at 13 flux tower sites
over CONUS. Kalma et al. (2008) surveyed a number of satellite-based ET methods25

(including the Nishida et al., 2003 VI-Ts method) and noted they can provide good esti-
mates of the catchment’s average evaporation on a daily basis subject to cloud cover.
However, they found that an important uncertainty in the ET estimates resulted from
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land surface temperature errors from the satellite estimates that could be as great as
3–5 K due to atmospheric effects. Ferguson et al. (2010) analyzed a similar satellite-
based ET product and argued that a significant issue with satellite-based ET products
is that they are not constrained by soil/surface water availability. They found that in
some cases the high ET-demand during the warm season results in satellite-based ET5

estimates that are unrealistically large.

3.2.3 Terrestrial Water Storage Change (TWSC)

The terrestrial water balance can be written as the difference between precipitation, P ,
and streamflow, Q, and ET:

TWSC = P −Q−ET. (2)10

Storage plays a key role in the Earth’s climate system and the supply of freshwater
for human use, via interaction with groundwater, soil moisture, plant water, snow, and
land-ice. The Gravity Recovery and Climate Experiment (GRACE) provides a basis
for estimating monthly variations of TWSC over areas order of 105 km2 based on the
effect of TWSC on changes in the Earth’s gravitational field measured by a pair of15

satellites. Temporal gravity variations at these spatial and temporal scales are mainly
caused by mass redistribution in the atmosphere and oceans, tides, postglacial re-
bound, and terrestrial water cycling (Klees et al., 2008). Monthly gravity field solutions
are computed at the University of Texas at Austin Center for Space Research (CSR),
the GeoForschungsZentrum Postsdam (GFZ) and the Jet Propulsion Laboratory (JPL),20

which use different processing strategies and hence yield slightly different results. Sim-
ilar to Werth and Gutner (2010), we used an average of GRACE gravity fields from
these three processing centers (differences among the data sets can be considered
a measure of data uncertainty). Lo et al. (2010), Werth and Guntner (2010), and Mil-
zow et al. (2011) have shown the potential for using GRACE-derived TWSC data in the25

calibration of LSMs However, the GRACE record length is relatively short (from 2002),
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and the coarse spatial resolution complicates comparisons with model predictions for
other than very large river basins.

3.3 Land surface model

Livneh et al. (2011) provide a complete description of ULM as used in this study. In
general, the land surface components are from the Noah LSM – e.g., vegetation, ET5

computation, snow model, and algorithms for computing frozen soil, surface heat and
radiative fluxes – whereas the subsurface elements (soil moisture and runoff genera-
tion algorithms, as well as infiltration) are from Sac. The snow model is described by
Livneh et al. (2010). It essentially is the standard Noah snow model augmented to in-
clude time-varying albedo, partial snow cover, and retention of liquid water within the10

snowpack. Livneh et al. (2011) tested ULM at a small number of catchments and evalu-
ated performance with respect to observed river discharge, flux towers measurements
of surface heat fluxes, and soil moisture. Table 2 summarizes plausible physical ranges
of the model soil parameters that constrained the parameter estimation here.

3.4 Calibration procedure and error analysis15

By far the most common method for hydrologic model calibration is through minimiza-
tion of differences between modeled and observed streamflow. The goal here was to
extend this approach to include auxiliary observational data sources to evaluate and
constrain model performance within a multi-criteria framework. The Nash-Sutcliffe effi-
ciency (NSE – Nash and Sutcliffe, 1970) was chosen to quantify model performance.20

NSE is given as:

NSE = 1−
∑n

t=1(xs,t −xo,t)
2∑n

t=1(xo,t −µo)2
= 1− MSE

σ1
o

(3)

where xo,t and xs,t are the observed and simulated values at each time-step, µo is the
observed mean and n is the total number of time-steps. NSE is useful in comparing
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inter-basin performance, since it normalizes the mean squared error, MSE, by the ob-
served variance, σ2

o , of each basin, where an NSE value of 1 corresponds to a per-
fect model, while any value less than 0 describes a model that performs worse than
simply using µo as the predictor. As described by Gupta et al. (2009), the NSE may
be decomposed to represent the correlation between model and observed calibration5

variables (e.g., streamflow), difference of means, and difference of standard devia-
tions between simulations and observations. They argue that calibrating a model within
a multi-objective perspective towards these three components is preferred as it enables
better hydrological interpretation of the solutions.

We performed optimizations using the MOCOM-UA algorithm, first developed by10

Yapo et al. (1998), as a means of maximizing NSE (minimizing model errors) and its
components within a multiple objective framework. MOCOM-UA is a Pareto-based ap-
proach that yields an optimal front (or surface) in an N-dimensional space, where N is
the number of objective-functions. The resulting set of parameters from the Pareto so-
lution defines parameter uncertainty attributable to model structural errors (Vrugt et al.,15

2003), in which optimizing one objective function, has the trade-off of reducing the per-
formance of another. In our implementation, the calibrations were first performed on the
individual criteria specifically Q, both ET products, and TWSC to obtain an optimal set
of model parameters by minimizing errors in the components of NSE. Next, the same
procedure was applied to combinations of these criteria, maximizing their individual20

NSE, to determine the trade-offs between single and multi-criteria analyses. The rela-
tive impact of calibrations on model performance with respect to different criteria was
further quantified through changes in the relative root mean squared error (rRMSE).
This metric provides an additional means for inter-basin comparison, because it is
a normalized measure that is (nearly) independent of basin or process scale.25

For each basin, the performance of the calibrated model was assessed relative to
model performance with default parameters (described in greater detail by Livneh et al.,
2011) herein CONTROL. The default parameters are comprised of the Noah LSM land
surface characteristics from the National Land Data Assimilation System (NLDAS –
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Mitchell et al., 2004) and Sac parameters based solely on soil texture (Koren et al.,
2003). For the major basins (Sect. 2.1) we also evaluated the utility of incorporating ET
(atmospheric balance and remote sensing) and TWSC as described in Sects. 2.2.1–
2.2.3. The tributary catchments are an order of magnitude too small for use of either
atmospheric balance ET or GRACE-based TWSC, and hence calibrations for these5

catchments used Q and ETSAT.
To further evaluate model performance, an analysis of the variability of hydrologic

response in both major basin and tributary streamflows was conducted, followed by an
examination of model errors at two selected basins. Three components of model re-
sponse were examined: the lag-1 autocorrelation (persistence), coefficient of variation10

(variability), and runoff efficiency (precipitation partitioning). The model’s ability to re-
produce these observed components, quantifies its representation of seasonality, and
its applicability for flood forecasting under different climate scenarios.

In the final part of the analysis, a subset of the domain was selected to further de-
tail model errors. Examining hydrographs of selected major basins and their tributaries15

provides an additional means to understand the nature of differences between simu-
lated and observed flows and if it is possible to predict how these errors may propagate
within a given region. Lastly, overall uncertainties in the model and observational data
are discussed including the manner in which they may affect this study’s conclusions.

4 Results and discussion20

We present single-criterion calibration results from the major basins first, followed by
the tributary single-criteria calibrations. We then present and discuss multi-criteria cal-
ibration results for both major and tributary basins. Finally, two regions are selected for
a general examination of model errors.
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4.1 Single criterion calibrations

We first calibrated ULM using a single criterion approach based on streamflow simu-
lation errors with the objective functions of the NSE components. Figure 4 shows the
results of model calibration to streamflow over major basins. Nearly all basins show
calibrated streamflows that follow closely with observations. Notable improvements in5

modeled streamflow were realized over COLO, despite the quantitatively poorer per-
formance compared with other basins (performance statistics presented in the next
section). Streamflow simulation errors were noted by other investigators over COLO
using the Noah LSM (Xia et al., 2011; Vano et al., 2011) which is relevant to the
ULM simulations given its heritage from Noah. Errors were attributed to the signifi-10

cant changes that were made to the Noah canopy parameterizations in its latest official
NCEP version (v2.8 – noted by Wei et al., 2012) such as stomatal resistance, seasonal
leaf-area index (LAI), and root distribution, all of which affect ET and runoff generation.
These changes generally improved performance, however the Colorado basin was an
exception that was compensated for here by ULM calibrations that allow for greater15

soil moisture capacity to store and release large snow melt volumes. For other regions,
such as CALI and OHIO, control simulations were fairly skillful at capturing dynamics of
seasonal low flows, such that only small improvements were obtained from calibrations.
For the remaining regions runoff ratios were generally too high in the CONTROL simu-
lation, requiring in most cases slight reduction in hydraulic conductivity and increases20

in moisture holding capacity and permeability parameters.
To quantify the relative uncertainty of the two remote sensing ET products, Fig. 5

compares them with the long term difference (P −Q) between observed precipitation,
P , and streamflow, Q. The underlying assumption in this comparison is that over a suf-
ficiently long time, the net change in soil moisture storage will become small and the25

ratio of ET to the difference P −Q, will approach unity. It should be noted that the ETAWB
and ETSAT products are for different periods (1979–2010, and 2001–2010, respectively)
and are plotted together to facilitate an initial approximation. In nearly all cases (except
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RED) ETAWB is larger than P −Q, corresponding to either a negative change in TWS,
or measurement uncertainty. ETSAT is available for both major and tributary basins,
where CALI is the only case with ETSAT > P −Q for a major basin as well as the mean
of all of its tributaries. This consistent bias, if not an artifact of estimation error, implies
a long term (2001–2010) loss of terrestrial water storage. Tang et al. (2009) tested this5

algorithm over Northern California and found a slight high bias in ET compared with
ground-based Bowen ratio stations, suggesting that the positive bias seen here could
be due in part to the algorithm itself. ETSAT for all other major basins was slightly less
than unity, where the mean of the respective tributaries were also less than unity The
general form of the scatter in Fig. 5 shows increasing ETSAT negative bias with increas-10

ing P −Q, characterized by a pseudo-linear slope of slightly less than one. The mean
relative biases on the order of 10–20 % are due either to the ETSAT algorithm, TWS,
observational uncertainty in P and Q, or some combination of these.

The requirement of variation of VI-Ts in the ETSAT derivation method is examined in
Fig. 6 through a comparison of the long-term residual term, P −Q−ETSAT, and the VI15

and Ts diversity of each basin. Basin-wide ETSAT monthly averages are shown, which
were computed from 0.05◦ pixels (described in Sect. 3.2.1). With the exception of CALI,
the large basins have a consistently small residual term and a larger VI-Ts diversity as
compared with their tributaries. The bias in Fig. 6 appears to be irrespective of the
VI-Ts diversity, or at minimum does not imply decreasing water balance residual with20

increasing VI-Ts diversity. Mean NDVI ranges by basin vary from approximately 11–115,
while skin temperature ranges vary from 46–72 K throughout the simulation period. For
example, the tributaries of MO possess among the smallest VI-Ts product range, while
their water balance residuals are near zero, while basins from CALI have larger VI-Ts
diversity products with comparatively larger water balance residual. The implications of25

Fig. 6 for this analysis are that these basins possess adequate VI-Ts diversity for the
ETSAT algorithm. Alternatively stated, the relative VI-Ts diversity alone cannot be used
as a means to qualify or disqualify the ETSAT data used here for model calibration.
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The two remote sensing ET sources show notable seasonal differences in Fig. 7.
For all basins, the ETAWB peaks earlier in the year on average relative to ETSAT, with
greater peak magnitude in all cases except CALI. The calibrations were most effec-
tive in improving the seasonality and timing of peak ET, whereas calibration improved
total ET (monthly) magnitude only for cases where the CONTROL ET was already5

larger than the respective remote sensing ET product. For cases where either ETSAT or
ETAWB were appreciably larger than simulated control ET (most frequently for ETAWB),
the calibrated ET remained less than the respective ET product. This difference in ET
magnitude was greatest for the western-most basins, which generally exhibit warm-
dry summers with large ET demand. This discrepancy comes about in part because10

of the constraint imposed by ULM’s water balance, something that the remote sens-
ing products don’t reflect, and often plays a role when ET demand is high. Over the
cold-season (DJF), calibrated-ULM frequently matched ETSAT, whereas the larger cold-
season ETAWB exceeded the calibrated model estimates at all but ARK and LOW, which
have comparatively mild cold-seasons. Notwithstanding the western-most basins, the15

differences between the calibrated model and the respective ET (calibration objective-
function) in Fig. 7 are notably less than the difference between the two remote sensing
data sets, which can be considered a measure of observational uncertainty.

The seasonal cycle of modeled TWSC has similar amplitude to the GRACE prod-
uct for most of the basins, as shown in Fig. 8. In nearly all cases, calibration brings20

the mean simulated TWSC within the envelope of observational uncertainty for mean
TWSC (denoted by the dark-gray shading). In relative terms, the CALI region has the
largest seasonal cycle for both the observed and simulated signals, while regions such
as ARK, GBAS, and MO, have much smaller amplitudes that are well replicated by
ULM. Modest TWSC discrepancies can be expected since we are comparing the model25

– which is constrained by a relatively shallow (∼2 m) water balance – to the uncon-
strained estimate of TWSC made by GRACE, which may include contributions from
deep groundwater movement and has a coarser native spatial resolution.
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The single-criteria calibrations for the tributaries were organized by classifying each
catchment by its aridity index, AI; a metric first proposed by Budyko (1974):

AI = Rnet,ann/LPann. (4)

In which Rnet,ann is the annual average net radiation, L is the latent heat of vaporiza-
tion, and Pann is the mean annual precipitation, such that LPann is the amount of energy5

needed to evaporate the available precipitation, Pann. AI values exceeding 1 denote
increasingly arid (or water limited) conditions, whereas values less than unity denote
moist (or radiation limited) conditions. Figure 9 shows the resulting daily calibrated NSE
values for the tributaries. Daily NSE values are expected to be smaller than for monthly
flows, due to the increased variability in observed flows at the finer temporal scale,10

which is indeed the case in Fig. 9. A large number of the total tributaries have AI be-
tween 0.6 and 1.2. With the exception of two tributaries of RED, the model performance
appears to decrease with increasing AI, beginning at AI ≈ 0.6. Figure 10 shows a sim-
ilar plot but for ET calibrations. Given the seasonality of ET and its strong dependence
on atmospheric forcing – i.e., downwelling radiation – many of the tributaries have NSE15

values above 0.6, with higher NSE values than for the corresponding Q calibrations.
However, for a small number of cases (6), ET calibration could not raise model NSE
above zero – e.g., less skill than climatology. These disagreements result from cases
in the southern part of the domain where ETSAT values are not constrained by water
availability (arid basins) and peak ETSAT values are in some cases greater than twice20

the peak modeled values. Notwithstanding specific NSE values for the aforementioned
single-criteria calibrations, the degree of improvement resulting from calibration relative
to the CONTROL case is presented in greater detail in the following section.

4.2 Multi-criteria calibrations

A central objective of this study was to examine the extent to which calibration to-25

wards multiple criteria could improve model simulations relative to each of the criteria.
A visual representation of the multi-criteria calibration for the major basins is shown in
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Fig. 11, while the entire set of results are tabulated in Tables 3 and 4. The three axes
in Fig. 11a represent objective functions (NSE) geared towards minimizing modeled
errors in, Q, ET, and TWSC, respectively. Within each calibration set, a single optimal
solution was selected that represents a tradeoff between optimizing its respective ob-
jective functions, giving equal weight to each. For example, the calibration labeled Q,5

ETAWB produced a set of simulations that minimized the objective functions for each of
these quantities (Q and ETAWB), creating an envelope of similarly scoring simulations
(a Pareto front). In order to select the optimal calibration from among these, the sim-
ulations which best minimized errors in the auxiliary criterion – in this case TWSC –
was chosen. From Fig. 11a it is clear that single-criterion calibrations often lead to poor10

performance in the other criteria. The exceptions to this pattern are the single criterion
Q-calibrations, which have the largest number of simulations closest to the ideal point
(1.0, 1.0, 1.0). Double and triple-criteria calibrations that include Q, were generally the
next closest to ideal, with those containing TWSC generally more successful. Con-
versely, calibrations that did not include Q more frequently performed poorly in one or15

more criteria, as this lack the implicit overall water balance associated with high fidelity
Q simulations – i.e., the timing and partitioning of surface runoff, which encompasses
water availabilities for both ET and TWSC. It is assumed here that the observational un-
certainty associated with the ETSAT, ETAWB, and TWSC objective functions are larger
than for Q observations.20

The extent to which each criterion was improved through calibration is illustrated in
Fig. 11b, quantified by the rRMSE difference with each basins CONTROL simulation.
Examining this figure along with the accompanying tables (Tables 3 and 4), it is clear
that calibrations to certain criteria have the potential to either improve or worsen model
performance towards other criteria. Very generally, the results form a central cluster25

with three branches. The central cluster of simulations is comprised mostly of multi-
criteria calibrations that exhibit modest improvements in each criterion. This modest
improvement in each criterion is consistent with the degree of improvement noted by
Gupta et al. (1999) for their multicriteria calibrations towards surface heat fluxes. The
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lower branch is made up mostly of single-criteria ET calibrations (ETSAT, ETAWB) that
exclusively improve ET performance, for cases where the objective function conflicts
with the other criteria, and hence worsens the performance in other criteria. The upper-
left branch is made up of calibrations for which there is good agreement between the ET
and TWSC data, and hence large improvements in these objective functions through5

calibration. The upper-right branch follows similarly except with agreements between
TWSC and Q data.

This analysis suggests that at the regional scale (larger than ≈ 105 km2), calibrations
towards Q are generally more robust than those towards TWSC and ET in a multi-
criteria context. Overall, the remote-sensing auxiliary criteria (ETAWB, ETSAT, TWSC)10

generally provide useful information regarding the seasonality of the terrestrial water
balance. However, these criteria alone or in combination do not appear sufficient to
appreciably improve model simulations of Q, as may be the desire in an ungauged
basin.

Figure 12 shows multi-criteria results for the tributaries and follows the same format15

as Fig. 11 with considerably more data points for the Q and ETSAT criteria. In contrast
to the major basin results in Fig. 11a, Fig. 12a shows that the multi-criteria calibra-
tion (Q, ETSAT) for the tributaries performs competitively with both single-criterion cal-
ibrations in terms of NSE for a large number of tributaries. For all calibration criteria,
there are basins that perform poorer than climatology – i.e., NSE < 0 – however these20

are mostly for single-criterion calibrations relative to the other criterion. For example,
it follows intuitively that the ETSAT calibration has instances of poorer NSE with re-
spect to Q, than does the Q, ETSAT calibration. Figure 12b shows quantitatively greater
improvements in Q performance than ET (note that the horizontal axes are not the
same in this plot). This reflects the greater flexibility in model structure and (soil) pa-25

rameter combinations considered here to influence Q outputs versus ET with relation
to a given set of atmospheric forcings. For both Q and ETSAT, rRMSE improvements
in single-criterion calibrations were frequently made at the expense of rRMSE of the
other criterion. An interesting finding is that the top Q simulations from approximately
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one third of all tributaries (81) resulted from multi-criteria Q, ETSAT calibrations. This is
in direct contrast to the major basin calibrations, in which the top performing Q simu-
lations resulted exclusively from single-criterion Q calibrations. For only six tributaries
(∼2 % of all tributaries), ETSAT calibrations improved Q to a comparable degree to Q
calibrations. Therefore, consistent with the major basin analysis, the use of only auxil-5

iary remote-sensing criteria (in this case, only ETSAT) was not sufficient to appreciably
and reliably improve Q performance. The unique conclusion here is that the inclusion
of an auxiliary remote sensing criterion (Q, ETSAT) for the tributary basins (<104 km2)
can improve calibration results beyond that of the single-criterion calibration.

4.3 Hydrologic response and model error analysis10

Calibrated model parameters for this extended streamflow analysis were selected from
Sect. 4.2 based on the best performing Q calibrations. In the case where several of the
best calibrations have similar skill in simulating Q (arbitrarily NSE values within 5 % of
one another), the parameters associated with the simulation with higher performance
in the auxiliary criteria were selected – i.e., ETSAT, ETAWB, and TWSC for major basins,15

ETSAT only for tributaries. As part of this validation, basins were screened for a period
of record that was significantly longer than the calibration window (18 yr), chosen here
to be ∼70 yr, to provide a robust characterization of their hydrologic response.

Table 5 shows the simulated and observed runoff efficiencies, lag-1 autocorrelations,
and coefficients of variation for both major basins and tributaries. These variability com-20

ponents were computed using flows at a monthly time-scale to facilitate direct compar-
ison between major and tributary flow responses, since most major basin streamflows
were only available monthly. Runoff efficiencies were fairly well matched by ULM across
basins and scales, with a few exceptions, most notably COLO. For cases of large runoff
efficiency discrepancy – i.e., larger than 10 % – simulated efficiencies were consistently25

higher than observed. This could result from model errors such as negative biases in
ET estimates (noted for several basins in Sect. 4.1), inadequate soil moisture stor-
age capacity, or negative biases in the precipitation forcing, all of which could produce
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higher runoff efficiency than observed. Model persistence (i.e., lag-1 autocorrelation)
follows observations reasonably well. For cases of notable disagreement, simulated
persistence was most frequently higher than observed, which may be due in part to
a lack of information of extreme/localized meteorological events in the forcing data.
The major basins UP and CRB are unique in this regard, where the model is less per-5

sistent than observations. Persistence errors do not appear to be related to coefficient
of variation errors, as modeled CV was both higher and lower than observations for
basins where modeled flows were more persistent than observations. Modeled CV val-
ues were the most varied and did not show a systematic bias across basins or across
scale.10

Two major basins were selected to examine streamflow errors more closely, the CRB
and OHIO. To enable a visual comparison among basins with different flow magnitudes,
the streamflows in Fig. 13 were converted to z-scores, via subtraction of the long-term
observed mean flow and division by the standard deviation. CRB has a variety of in-
teresting hydroclimatic features such as alpine, maritime and arid regions and its tribu-15

taries possess the widest range of AI values of any region. Model errors for the major
basin are concentrated near the time of peak flow, relating to snowmelt dynamics in
this heavily snowmelt influenced region. The major basin model flows were less per-
sistent with higher CV than observations, which is consistent with the sharper peak
in the hydrograph. The time of peak flow comes on-average one month earlier in the20

tributaries, reflecting their rapid response and shorter times of concentration. Over the
tributaries, the model tends to under (over) predict high (low) flows, such that beginning
at the time of peak flow tributary errors tend to precede major basin errors by approxi-
mately one month. The range of AI values and snow versus rain dominated conditions
between the major basin and its tributaries are depicted in the multiple hydrographs of25

the bottom panel, revealing that the large snowmelt dominated component of the major
hydrograph was only scarcely sampled by the tributaries in the study domain.

The Ohio River Basin is situated within a more uniform continental hydroclimatic
regime than the CRB. Its tributaries are more numerous (46, versus 9 in CRB) and
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hence represent an even more comprehensive range of conditions specific to the re-
gion. The timing of maximum and minimum flows is remarkably similar between the
mean of the tributaries and the major flows, consistent with the relative hydroclimatic
homogeneity of the region. Similar to CRB, the model under (over) predicted high (low)
flows, while high correlation among tributary streamflow is evident from their respective5

hydrographs. The smoother simulated hydrographs at both scales is consistent with the
overestimated persistence and under estimated variance noted in Table 5.

Given the multiple data sets used in this study, it is essential to temper the findings
with the impact of overall data uncertainty. To train the model, several independent data
sets were used that could lead to offsetting errors across these datasets – i.e., ET ver-10

sus TWSC – highlighting potential water budget inconsistencies and data uncertainties.
This is an inherent potential pitfall in using independent datasets, however it may aid
in ultimately bracketing true conditions. One technique to reconcile such inconsisten-
cies is through redistributing the total water balance error from multiple sensors back
to each of the individual components using a Kalman error approach (Pan et al., 2011).15

This approach is beyond the scope of this work; however it may offer a framework to
further improve the consistency of the remote sensing water budget analyses in the
future.

Overall sources of error and uncertainty are as follows. TWSC uncertainties were
perhaps the largest within the study; evident in the disparity between mean monthly20

values from individual processing streams in Fig. 8. A further uncertainty arose in com-
paring these data with ULM, given the different reference depths considered by each.
ETAWB errors were most likely to arise from the atmospheric components (left side of
Eq. 1) that were contingent upon the NARR analysis increment, particularly problematic
over coastal regions (Ruane, 2010); wherein adjustments to latent heating of the atmo-25

spheric column are made to overcome moisture excesses in the underlying Eta model.
ETSAT estimates were subject to uncertainty from the input MODIS skin temperatures,
which Ferguson et al. (2010) described as being the largest source of error for a similar
satellite-based ET product, in lieu of errors associated with emissivity and land-surface
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characteristics. Furthermore, the ETSAT estimates are not strictly constrained by mois-
ture availability that could lead to further data uncertainty. Q uncertainties due to ran-
dom errors in the USGS current meters or (for major basins) naturalization data and
algorithms could skew the interpretation of the model performance and trend analysis.
Albeit, it is not immediately apparent in which direction the skew would occur and it5

is expected – at least in the case of the in-situ USGS data – that these errors would
be small relative to the greater complexities in the remote sensing data. Meteorolog-
ical forcing errors may exist, particularly in regions of topographical complexity. Most
notably, precipitation errors would prevent the model from matching streamflow timing,
magnitude, and variability, while surface temperature and wind errors could translate10

into erroneous estimates of surface water and energy fluxes. Lastly, errors in model
structure, or conceptualization errors may exist that ultimately prevent the model from
correctly simulating certain processes, or achieve the correct results for the incorrect
reason via calibration. Investigating these types of errors would require a more directed
and rigorous error analysis including detailed measurements of surface fluxes of mois-15

ture and energy and their respective uncertainties.

5 Conclusions

We have exploited several observational data sets together with an LSM to estimate
various components of the terrestrial water budget. The analysis focused on ways to
train ULM to observational data sets to improve estimates of the water budget compo-20

nents. The results were presented to provide insight into tradeoffs in the performance
with respect to each criterion. The single-best performing streamflow parameters for
each basin were utilized to streamflow variability and hydrologic response. Finally, an
examination into potential error sources was made to illustrate specific causes behind
discrepancies in simulated streamflows and their relationship across scale. The most25

important conclusions of this analysis are:
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1. Model calibrations towards a single-criterion had varied results. At large scales
(≥105 km2) most basins were able to replicate Q, ET, and TWSC individually
with reasonable skill, despite uncertainties in the data themselves and discrepan-
cies between modeled and native retrieval resolutions. At 250 small-scale basins
(<104 km2) over daily time steps, ET calibrations generally scored higher than Q,5

however for a small number of these, strong disagreements between the model
and remote-sensing product lead to ET simulations that were poorer predictors
than climatology, while Q calibrations always provided additional skill.

2. At large-scales, calibrations towards multiple-criteria had the best overall perfor-
mance when Q was included, followed by ETSAT, ETAWB, and TWSC. Altogether,10

calibrations towards Q alone had the best all-around performance in terms of the
other criteria, while neither of the other criteria (ET, TWSC) alone or in combina-
tion was able to add appreciable skill to Q prediction.

3. Multi-criteria performance at small scales followed similarly to the large-scale
analysis with the notable exception that the mutli-criteria calibration (Q and ETSAT15

together) out-performed the single criterion Q-calibration in terms of Q perfor-
mance at roughly one third of the basins. This suggests that traditional streamflow
calibration stands to benefit from the inclusion of remote-sensing data.

4. The lack of a systematic bias in the satellite-ET product over a number of basins
of varying VI and Ts diversity indicates that above a certain threshold, VI-Ts diver-20

sity alone may not be an adequate predictor of quality of the satellite-based ET
product. Rather, the issue of unbounded ET estimates during summer was most
detrimental to the quality of ET estimates.

5. The use of multiple criteria in the calibration procedure, at minimum serves to
reduce the equifinality problem when choosing the “best” instance of the model25

parameters.
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6. Investigating model error sources revealed that simulations generally under (over)
predicted high (low) flows. Comparing errors across scales also brought forth
issues with travel times and integrating differing hydroclimatic conditions across
basins.
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Table 1. Major hydrologic regions considered in this study including streamflow gauges and
drainage areas.

Hydrologic Region Abbreviation Applicable criteria Streamflow gauge location USGS ID Area (km2)

Arkansas-Red ARK Q∗, ET, TWSC Arkansas R. near Little Rock, AR 07263450 409 296
RED Q∗, ET, TWSC Red R. at Index, AR 07337000 124 397

California CALI Q∗, ET, TWSC Sacramento R. near Rio Vista, CA 11455420 69 300
San Joaquin R. near Vernalis, CA 11303500 35 058
Eastside streams and central valley floor ∗∗ 4655

Colorado COLO Q∗, ET, TWSC Colorado R. above Imperial Dam, AZ 09429490 488 213
Columbia CRB Q∗, ET, TWSC Columbia R. at Dalles, OR 14105700 613 827

Columbia R. at Birchbank, BC 12323000 88101
Great Basin GBAS ET, TWSC N/A N/A 367 602
Lower Mississippi LOW ET, TWSC N/A N/A 221 966
Upper Mississippi UP Q, ET, TWSC Upper Mississippi R. at Grafton, IL 05587450 443 665
Missouri MO Q∗, ET, TWSC Missouri R. at Hermann, MO 06934500 1 353 269
Ohio OHIO Q, ET, TWSC Ohio R. at Metropolis, IL 03611500 525 768

* Indicates that naturalized flows were obtained.
** Unimpaired flow data for the Sacramento-San Joaquin River Delta were estimated by the California Department of Water Resources, which receives
a small contribution from eastside streams and flows from the central valley floor.
N/A – indicates that stream flow was not applicable; GB does not have an outlet at the basin boundary, LM represents the confluence of multiple inflows and
reliable flow data was not obtainable.
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Table 2. List of ULM soil parameters from Sac and their plausible ranges.

Parameters Unit Description Plausible range

UZTWM mm Upper zone tension water maximum storage 1.0–300
UZFWM mm Upper zone free water maximum storage 1.0–300
UZK day−1 Upper zone free water lateral depletion rate 0.05–0.75
ZPERC – Maximum percolation rate 1.0–350
REXP – Exponent of the percolation curve equation 0.0–5.0
LZTWM mm Lower zone tension water maximum storage 1.0–500
LZFSM mm Lower zone free water supplemental maximum stor-

age
1.0–1000

LZFPM mm Lower zone free water primary maximum storage 1.0–1000
LZSK day−1 Depletion rate of the lower zone supplemental free

water storage
0.01–0.8

LZPK day−1 Depletion rate of the lower zone primary free water
storage

0.0001–0.025

PFREE – Percolation fraction going directly from upper zone
to lower zone free water storages

0.0–0.8

PCTIM – Impervious fraction of the ground surface 0.0–0.1
ADIMP – Maximum fraction of additional impervious area

caused by saturation
0.0–0.45
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Table 3. Summary of skill scores and improvements from the single-criterion calibrations; nu-
meric values show improvement, while dash cells indicate no improvement in model skill for the
respective variable. Underlined values denote the specific ET observation to which calibration
was performed.

Calibration quantity NSE skill rRMSE improvement
Basin Q ETAWB ETSAT TWSC Q ETAWB ETSAT TWSC

Q ARK 0.85 0.88 0.89 0.17 1.68 0.06 0.18 2.88
RED 0.78 0.81 0.70 0.37 2.65 0.15 0.19 2.03
CALI 0.94 0.75 0.10 0.53 0.48 0.20 0.02 4.19
COLO 0.46 0.57 0.50 0.32 5.78 0.14 0.11 6.01
CRB 0.78 0.50 0.63 0.69 0.77 0.06 0.14 7.30
MO 0.87 0.77 0.74 0.61 1.76 – – 11.49
OHIO 0.86 0.68 0.76 0.43 0.21 – 0.02 0.80
UP 0.72 0.54 0.56 0.20 0.46 – – 2.60

ETAWB ARK – 0.93 0.76 0.03 – 0.11 0.08 –
RED – 0.89 0.62 0.39 – 0.21 0.15 2.66
CALI 0.22 0.84 0.36 0.41 – 0.27 0.11 2.17
COLO – 0.61 0.56 0.05 3.65 0.15 0.13 2.63
GBAS – 0.62 0.43 0.57 – 0.21 0.23 3.23
CRB – 0.63 0.54 0.67 – 0.13 0.08 6.96
LOW – 0.92 0.76 0.42 0.00 0.05 0.04 6.17
MO – 0.93 0.78 0.47 0.36 0.02 – 6.92
OHIO 0.15 0.92 0.74 0.37 – 0.05 0.00 –
UP – 0.93 0.82 0.04 – 0.10 – –

ETSAT ARK – 0.81 0.96 – – – 0.27 –
RED – 0.77 0.90 0.32 – 0.12 0.32 0.62
CALI 0.45 0.45 0.65 0.31 – 0.03 0.24 0.75
COLO – 0.53 0.69 0.02 3.16 0.12 0.20 2.26
GBAS – 0.59 0.53 0.60 – 0.20 0.27 3.57
CRB – 0.45 0.65 0.27 0.05 0.04 0.15 1.43
LOW – 0.73 0.97 0.20 0.15 – 0.26 1.62
MO – 0.78 0.96 0.20 – – 0.22 –
OHIO – 0.71 0.96 0.32 – – 0.25 –
UP – 0.84 0.96 0.06 – – 0.21 –

TWSC ARK – 0.80 0.87 0.37 – – 0.16 11.49
RED – 0.55 0.24 0.57 – 0.02 0.00 8.38
CALI 0.15 0.71 0.07 0.47 – 0.17 0.00 3.22
COLO – 0.11 0.26 0.19 2.53 0.00 0.01 4.25
GBAS – 0.59 0.48 0.59 – 0.20 0.25 3.52
CRB – 0.53 0.54 0.68 – 0.07 0.07 7.17
LOW – 0.77 0.63 0.58 – – – 9.97
MO – 0.91 0.82 0.52 0.52 – 0.02 8.49
OHIO 0.39 0.69 0.54 0.55 – – – 2.70
UP – 0.75 0.76 0.42 0.13 – – 7.75
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Table 4. Same as Table 3, except for multi-criteria calibrations.

Calibration quantity NSE skill rRMSE improvement
Basin Q ETAWB ETSAT TWSC Q ETAWB ETSAT TWSC

QETAWB ARK 0.59 0.89 0.74 – 1.43 0.07 0.06 –
RED 0.09 0.81 0.57 – 2.14 0.15 0.13 –
CALI 0.68 0.64 0.27 0.40 0.13 0.13 0.08 2.04
COLO – 0.55 0.55 0.09 4.11 0.13 0.13 3.06
CRB – 0.16 0.26 0.41 0.21 – – 3.10
MO – 0.87 0.77 0.29 1.24 – – 2.06
OHIO 0.74 0.89 0.76 0.47 0.12 0.01 0.02 1.40
UP 0.71 0.86 0.81 0.31 0.45 0.02 – 5.18

QETSAT ARK 0.50 0.87 0.75 – 1.36 0.04 0.07 –
RED – 0.74 0.54 – 2.02 0.10 0.11 –
CALI 0.71 0.45 0.62 0.35 0.15 0.03 0.22 1.29
COLO – 0.55 0.69 0.02 3.95 0.13 0.20 2.26
CRB – 0.19 0.58 0.42 0.35 – 0.10 3.31
MO – 0.86 0.72 0.22 1.25 – – 0.25
OHIO 0.69 0.78 0.77 0.38 0.09 – 0.03 0.04
UP 0.60 0.88 0.82 0.23 0.39 0.04 – 3.35

QTWSC ARK 0.46 0.87 0.68 0.18 1.35 0.04 0.03 0.68
RED – 0.82 0.66 0.45 – 0.15 0.17 4.34
CALI 0.71 – – 0.38 0.17 – – 1.81
COLO – 0.53 0.60 0.05 4.21 0.13 0.15 2.65
CRB 0.09 – 0.01 0.40 0.39 – – 3.04
MO 0.06 0.87 0.75 0.27 1.30 – – 1.67
OHIO 0.73 0.85 0.71 0.50 0.11 – – 1.82
UP 0.55 0.63 0.65 0.32 0.37 – – 5.45

ETAWB TWSC ARK – 0.88 0.86 0.35 – 0.06 0.15 10.13
RED – 0.59 0.32 0.49 – 0.03 0.03 5.46
CALI 0.15 0.76 0.11 0.43 – 0.21 0.02 2.47
COLO – 0.64 0.63 0.14 3.94 0.17 0.17 3.68
GBAS – 0.59 0.47 0.59 – 0.20 0.25 3.50
CRB – 0.56 0.56 0.69 – 0.09 0.09 7.30
LOW – 0.85 0.71 0.58 – – 0.00 9.92
MO – 0.93 0.79 0.50 0.66 0.02 – 7.95
OHIO 0.42 0.90 0.71 0.54 – 0.02 – 2.46
UP – 0.88 0.80 0.37 0.13 0.04 – 6.66

ETSAT TWSC ARK – 0.89 0.89 0.32 – 0.05 0.18 8.08
RED – 0.79 0.79 0.43 – 0.13 0.24 3.62
CALI 0.52 0.70 0.70 0.38 0.00 0.20 0.27 1.81
COLO – 0.71 0.71 0.10 3.31 0.12 0.21 3.23
GBAS – 0.50 0.50 0.59 – 0.12 0.26 3.53
CRB – 0.40 0.50 0.30 0.94 0.16 0.18 2.54
LOW – 0.77 0.77 0.52 – – 0.05 8.40
MO – 0.82 0.82 0.49 0.55 – 0.02 7.65
OHIO 0.39 0.79 0.79 0.48 – – 0.04 1.46
UP 0.42 0.81 0.81 0.38 0.32 – – 6.88

QETAWB TWSC ARK 0.43 0.89 0.71 – 1.33 0.06 0.04 –
RED – 0.80 0.47 – 2.04 0.14 0.09 –
CALI 0.63 0.64 0.41 0.37 0.09 0.13 0.13 1.59
COLO – 0.53 0.60 0.05 4.21 0.13 0.15 2.65
CRB – 0.11 0.39 0.63 0.31 – – 6.36
MO – 0.92 0.80 0.40 0.54 0.11 0.14 1.83
OHIO 0.73 0.88 0.72 0.51 0.11 0.01 – 1.95
UP 0.53 0.77 0.77 0.27 0.36 – – 4.13

QETSAT TWSC ARK 0.49 0.73 0.73 – 1.37 – 0.06 –
RED – 0.46 0.46 – 1.97 – 0.08 –
CALI 0.63 0.41 0.41 0.37 0.09 0.06 0.13 1.59
COLO – 0.60 0.60 0.05 4.21 0.06 0.15 2.65
CRB 0.09 0.01 0.01 0.40 0.39 – – 3.04
MO – 0.80 0.80 0.30 1.04 0.11 0.09 2.83
OHIO 0.74 0.74 0.74 0.45 0.12 – 0.01 1.12
UP 0.63 0.79 0.79 0.34 0.41 – – 5.76
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Table 5. Variability analysis for observed followed simulated trends by major basin and tributary
averages over a 70 yr period, including runoff efficiency, Re, lag-1 autocorrelation, r1, and the
coefficient of variation, CV.

Major basin Total sub- Sub-basin tributary averages
Re r1 CV basins∗ Re r1 CV

obs. sim. obs. sim. obs. sim. obs. sim. obs. sim. obs. sim.

ARK 0.14 0.15 0.49 0.49 1.03 1.01 9/12 0.21 0.24 0.35 0.52 1.97 2.12
RED 0.12 0.14 0.46 0.48 1.14 1.02 4/5 0.16 0.15 0.52 0.77 1.38 1.61
CALI 0.46 0.45 0.65 0.65 1.02 1.05 7/11 0.41 0.49 0.60 0.69 1.77 1.39
COLO 0.10 0.14 0.68 0.72 0.99 0.92 2/2 0.41 0.67 0.55 0.68 1.39 1.14
CRB 0.45 0.45 0.72 0.66 0.80 0.85 9/18 0.36 0.41 0.63 0.64 1.11 1.09
MO 0.12 0.14 0.67 0.79 0.72 0.78 13/41 0.20 0.25 0.46 0.57 1.56 1.35
OHIO 0.41 0.40 0.63 0.71 0.74 0.60 46/66 0.41 0.45 0.48 0.60 0.95 0.75
UP 0.27 0.28 0.74 0.67 0.67 0.60 8/9 0.28 0.27 0.49 0.60 1.13 0.89
LOW NA NA NA NA NA NA 11/18 0.27 0.25 0.45 0.64 1.32 1.33
Other NA NA NA NA NA NA 54/68 0.34 0.39 0.48 0.58 1.05 1.05

∗ The number of tributaries was reduced to the first number from the second number with the requirement for ∼ 70yr
flow record.
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 817 
Figure 1: Large-scale study domain, including precipitation gauges (black dots), as well as major 818 

hydrologic regions (shaded) that are defined through their drainage at stream gauges (blue 819 

circles). The un-shaded areas within these regions are either downstream of the stream gauge, or 820 

consist of many smaller river basins which drain directly into the Atlantic or Pacific Oceans or 821 

the Gulf of Mexico. 822 

823 

Fig. 1. Large-scale study domain, including precipitation gauges (black dots), as well as major
hydrologic regions (shaded) that are defined through their drainage at stream gauges (blue
circles). The un-shaded areas within these regions are either downstream of the stream gauge,
or consist of many smaller river basins which drain directly into the Atlantic or Pacific Oceans
or the Gulf of Mexico.
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 824 

 825 
Figure 2: Small-scale study domain comprised of 250 tributary catchments using USGS stream 826 

gauges that were screened to be minimally affected by diversions, with at least 20 years of data 827 

in the past 3 decades to facilitate multicriteria comparisons. 828 

829 

Fig. 2. Small-scale study domain comprised of 250 tributary catchments using USGS stream
gauges that were screened to be minimally affected by diversions, with at least 20 yr of data in
the past 3 decades to facilitate multicriteria comparisons.
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 830 

 831 

 832 
Figure 3: Example schematic of the Upper Mississippi river basin components needed to perform 833 

an atmospheric water balance to estimate ET (equation 1), including atmospheric moisture 834 

convergence, C, change in precipitable water, dPw/dt, and precipitation, P. 835 

836 

Fig. 3. Example schematic of the Upper Mississippi river basin components needed to per-
form an atmospheric water balance to estimate ET (Eq. 1), including atmospheric moisture
convergence, C, change in precipitable water, dPw/dt, and precipitation, P .
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 837 

 838 
Figure 4: Mean monthly hydrographs in m

3
/s for the major basins for a 20 year period, the 839 

beginning of which varies by basin, depending on data availability. 840 

841 
Fig. 4. Mean monthly hydrographs in m3 s−1 for the major basins for a 20 yr period, the begin-
ning of which varies by basin, depending on data availability.
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 842 

 843 
Figure 5: Estimates of mean monthly evapotranspiration by an atmospheric water balance 844 

(ETAWB – section 2.2.1) in squares, and through satellite data (ETSAT – section 2.2.2) in circles 845 

compared with the residual of precipitation, P, minus streamflow, Q, for the major basins and 846 

smaller tributaries (smaller circles).  Shaded areas denote the domain within which ET was 847 

estimated, such that un-shaded circles represent ET from tributaries outside the major basins. 848 

849 

Fig. 5. Estimates of mean monthly evapotranspiration by an atmospheric water balance (ETAWB
– Sect. 2.2.1) in squares, and through satellite data (ETSAT – Sect. 2.2.2) in circles compared
with the residual of precipitation, P , minus streamflow, Q, for the major basins and smaller
tributaries (smaller circles). Shaded areas denote the domain within which ET was estimated,
such that un-shaded circles represent ET from tributaries outside the major basins.
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 850 

 851 
Figure 6: Comparisons of the residual of evapotranspiration from satellite data (ETSAT – section 852 

2.2.2) with precipitation, P, minus streamflow, Q, for the major river basins (larger circles) and 853 

smaller tributaries (smaller circles) 2001 – 2010, as a function of VI-Ts diversity, expressed as a 854 

product of the ranges of NDVI and skin temperature for each basin.  Departures from the dashed 855 

line denote either an uncertainty in ET estimates, or significant long-term TWS, or other 856 

observational errors. 857 

858 

Fig. 6. Comparisons of the residual of evapotranspiration from satellite data (ETSAT –
Sect. 2.2.2) with precipitation, P, minus streamflow, Q, for the major river basins (larger circles)
and smaller tributaries (smaller circles) 2001–2010, as a function of VI-Ts diversity, expressed
as a product of the ranges of NDVI and skin temperature for each basin. Departures from the
dashed line denote either an uncertainty in ET estimates, or significant long-term TWS, or other
observational errors.
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 859 

 860 
Figure 7: Mean monthly ET (mm) for the major river basins for the period 2001 – 2010 that 861 

include two sets of calibrations, satellite-based (SAT) or atmospheric water balance-based 862 

(AWB) observational products as well as the control simulation. 863 

864 

Fig. 7. Mean monthly ET (mm) for the major river basins for the period 2001–2010 that include
two sets of calibrations, satellite-based (SAT) or atmospheric water balance-based (AWB) ob-
servational products as well as the control simulation.
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 865 

 866 
Figure 8: Mean monthly TWSC (mm) for the major river basins for the period 2002-2010 867 

including the control and calibrated model simulations; the range of variability for each case is 868 

shown accordingly. 869 

870 

Fig. 8. Mean monthly TWSC (mm) for the major river basins for the period 2002–2010 including
the control and calibrated model simulations; the range of variability for each case is shown
accordingly.
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 872 
Figure 9: NSE values for ULM calibrations to streamflow at a daily time step as a function of AI 873 

for the period 1991-2010.  Shading of individual points denotes the major region for each 874 

tributary. 875 
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Fig. 9. NSE values for ULM calibrations to streamflow at a daily time step as a function of AI for
the period 1991–2010. Shading of individual points denotes the major region for each tributary.

4459

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/4417/2012/hessd-9-4417-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/4417/2012/hessd-9-4417-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 4417–4463, 2012

Multi-criteria
parameter estimation

B. Livneh and
D. P. Lettenmaier

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 877 

 878 
Figure 10: NSE values for ULM calibrations towards ETSAT at a daily time step as a function of 879 

AI for the period 2001-2010.  Shading of individual points denotes the major region for each 880 

tributary. 881 
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Fig. 10. NSE values for ULM calibrations towards ETSAT at a daily time step as a function of
AI for the period 2001–2010. Shading of individual points denotes the major region for each
tributary.
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 884 
Figure 11: ULM calibrations over major basins towards combinations of Q,ETSAT, ETAWB, and 885 

TWSC at a monthly time step for the period 1991-2010, including (a) NSE values for each 886 

criteria (cutoff at -1 for clarity), and (b) differences in rRMSE for each criteria resulting from the 887 

respective calibrations. The entire set of results for these plots is included in Table 3. 888 

889 

Fig. 11. ULM calibrations over major basins towards combinations of Q, ETSAT, ETAWB, and
TWSC at a monthly time step for the period 1991–2010, including (a) NSE values for each
criteria (cutoff at −1 for clarity), and (b) differences in rRMSE for each criteria resulting from the
respective calibrations. The entire set of results for these plots is included in Table 3.
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 891 
Figure 12: ULM calibrations over tributary basins towards combinations of Q, and ETSAT at a 892 

daily time step for the period 1991-2010, including (a) NSE values for each criteria and (b) 893 

differences in rRMSE for each criteria resulting from the respective calibrations. 894 

895 

Fig. 12. ULM calibrations over tributary basins towards combinations of Q, and ETSAT at a daily
time step for the period 1991–2010, including (a) NSE values for each criteria and (b) differ-
ences in rRMSE for each criteria resulting from the respective calibrations.
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 897 
Figure 13: Comparison between major basin and mean tributary flows and errors.  Flow data was 898 

converted to z-scores to allow for comparison among basins. The differences in aridity index 899 

(AI) are shaded according to the upper-scale for the top 3 panels and the lower scale for the 900 

bottom panel. 901 Fig. 13. Comparison between major basin and mean tributary flows and errors. Flow data was
converted to z-scores to allow for comparison among basins. The differences in aridity index
(AI) are shaded according to the upper-scale for the top 3 panels and the lower scale for the
bottom panel.

4463

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/4417/2012/hessd-9-4417-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/4417/2012/hessd-9-4417-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

